

Rule 1148 Series Requirements for Oil and Gas Wells

Working Group Meeting No. 3 December 14, 2023 – 1:00 pm

Zoom URL: <u>https://scaqmd.zoom.us/j/91059546550</u> Dial In: 1 669 900 6833 Webinar ID: 910 5954 6550 (applies to all)

Summary of WGM #2

- Overview of oil wells, well cellars, wellheads, and gas handling
- Reviewed current leak standards and other rule applicability
- Discussed Best Available Retrofit Control Technology (BARCT) approach
- Reviewed Community Concerns
 - Optical Gas Imaging (OGI), Fenceline Monitoring, Electrification of Equipment & Oil Wells, Restricting Odorant Use, Additional Signage Requirements
- Provided updates on Rule 1148.2

Update on BARCT Assessment

BARCT Assessment

- In past working group meetings, staff has assessed South Coast AQMD regulatory requirements and emission limits for existing units
- In this working group meeting, staff will cover other regulatory requirements, assessments of pollution control technologies, initial BARCT emission limits and other considerations

Regulatory Requirements for OGI

- San Joaquin Valley Air Pollution Control District Rule 4401 Steam-Enhanced Crude Oil Production Wells contains limited OGI requirements:
 - 6.3.3.1 states that all leaks detected with the use of an OGI instrument shall be measured using EPA Reference Method 21 within 2 days
- CalGEM Public Resources Code, Division 3. Oil and Gas Regulation
 - Allows OGI usage on idle and abandoned wells
- State of Colorado, Air Quality Control Commission (AQCC) Regulation 7
 - Control of Emissions from Oil and Gas Emissions Operations
 - Defines "Infra-red Camera" and allows usage via aerial drones but requires operators to develop their own methodology
- EPA proposes using OGI in leak detection per 40 CFR part 60 Appendix K
 - Will apply to oil and gas upstream and downstream sectors

Other Regulatory Requirements

- Staff researched whether other agencies had rules or regulations in place for:
 - Fenceline monitoring
 - Electrification of equipment/wells
 - Electrification of workover rigs
- San Joaquin APCD, CalGEM, State of Colorado AQCC, and the U.S. EPA do not have rules or regulations in place for these activities

Assessment of Pollution Control Technologies

Technologies considered:

- OGI usage
- Fenceline sensors
- Electrification of workover/drilling rigs
- Electric motor replacement on wells
- Technologies to control or process gas

OGI camera

Microturbine

Workover/Drilling rigs

Non-electric engine

Cost-Effectiveness

Cost-Effectiveness Analysis

- Cost-effectiveness is based on Present Worth Value calculation
- Measured in cost per ton of pollutant reduced
- Factors and assumptions include:
 - Total Installed Cost
 - Annual Costs
 - Assumes 4% interest rate
 - > 10-year or 20-year equipment life (can vary)
 - Emission reductions

Cost-Effectiveness Analysis

- Cost-effectiveness to be calculated for controls and leak detection methods
- Threshold of \$36,000 per ton of VOC reduced, adjusted annually, established in 2022 Air Quality Management Plan
- Threshold of \$325,000 per ton of NOx, adjusted annually
- Data collected from site visits and vendors
 - Optical Gas Imaging (OGI) cost
 - Fenceline monitoring cost
 - Workover rig electrification cost
 - Oil well electrification cost

Assumptions Used for Cost-Effectiveness for Inspections Using OGI Devices

Assumptions:

- Approximately 330 oil & gas sites within AQMD's jurisdiction, ~80 companies
- 1 in 10 facilities have one major leak per year
- Leak emits 200 lbs/day of VOCs
 - > 98% less than leak rate established under Rule 1178
- A leak occurs at the midpoint in time between quarterly inspections ~ 45-day interval
- With these assumptions, 148.5 tons/yr of VOC leak from 1148.1 related equipment
- Staff is considering monthly OGI inspections which would reduce VOC emissions from leaks by 99 tons/yr

Cost-Effectiveness on OGI Devices

- Cost to purchase an OGI camera = \$120,000 per unit
- Equipment expected to have a 10-year lifespan
- 1 camera per company, 80 cameras
- \$1,500 annual maintenance/training cost
- Labor cost = \$400/day to conduct OGI inspection
- Cost-effectiveness = \$12,900/ton of VOC reduced

Cost-Effectiveness for Fenceline Monitoring

Stationary gas sensor

- Fenceline monitors observed at several oil production sites:
 - Stationary gas sensors detect gas and/or VOC emissions once it makes contact with its sensor
- 330 facilities affected by this proposal
- Assuming fenceline monitor will find leak on first day
 - > 148.5 tons/yr of VOC emissions reduced
- Staff received data for cost of monitor device as \$3,115 per sensor with \$30,000 installation cost
- Maintenance and monitoring cost of \$10,000/yr
- Equipment expected to have a 10-year lifespan
- Cost-effectiveness = \$34,382/ton VOC reduced

Incremental Cost-Effectiveness for Fenceline Monitoring

- Incremental cost effectiveness (IncrCE) for stationary gas sensor monitoring
 - Option 1 is OGI monitoring
 - Option 2 is stationary gas sensor monitoring
 - Considered over 10-year equipment life

	Present Worth Value (\$)	Emissions Reduction (tons)
Option 1	12,726,791	990
Option 2	51,057,600	1,485

IncrCE = (Cost of Option 2 – Cost of Option 1)

(Benefit of Option 2 – Benefit of Option 1)

• IncrCE = \$77,436/ton VOC reduced

Cost-Effectiveness for Fenceline Monitoring

• Used costs from 2023 amendment to Rule 1178

- Assuming 4 open path devices at \$190,000 each
- Assuming installation cost equal to equipment cost
- Assuming fenceline monitor will find leak on first day
 > 148.5 tons/yr of VOC emissions reduced
- Equipment expected to have a 20-year lifespan
- 330 facilities required to install
- Maintenance and monitoring cost = \$5,000/yr,
- Cost-effectiveness = \$169,000/ton VOC reduced

Open path sensor

Cost-Effectiveness for Workover Rig Electrification

- Staff identified two electrified workover/drilling rigs operated in the South Coast AQMD and obtained cost data
 - Assuming workover rig operates 8 hrs/day, operates 4 days/week
 - Assuming workover rig at each site 4/year, 330 sites, 40 rigs
 - Workover rigs equipped with tier 2 engines at 600 hp
 - $\circ~$ 4.992 tons/yr of NOx reduced
 - Equipment expected to have a 20-year lifespan
 - Estimated cost of \$3 million for electric rig + \$3 million for upgrades to each facility
 - Cost-effectiveness = \$11,117,788/ton NOx reduced

Additional Considerations for Workover Rigs

 Proposal to require Tier 4 Final engines on workover rigs that are operated within the South Coast AQMD's jurisdiction to be phased in over time

Cost-Effectiveness for Workover Rig Upgrade

- Assumptions:
 - Baseline emissions from a Tier 2 engine
 - Engines operate 8 hrs/day, 4 days/ week
 - Rig life expected to have a 20-year lifespan
 - Rig powered by 600 hp engine
 - ➢ 40 rigs to be used within South Coast AQMD's jurisdiction
 - o 4.63 tons/yr of NOx reduced
- Cost of Tier 4 Final workover rig
 - Costs approximately \$1,000,000 per rig
 - Maintenance cost of \$20,000 per year
- Cost-effectiveness is \$15,100/ton of NOx reduced

Cost-Effectiveness for Gas Engine Electrification

- Staff visited several oil field production sites and observed:
 - Majority of oil and gas wells are electrically driven; a few well were driven by internal combustion engines (ICEs) fueled by produced gas from site
- Beyond cost-effectiveness of replacing ICEs is handling the produced gas
 - ➤ Gas would need to be flared if no other way to utilize beneficially
 - \circ $\,$ Flaring is not a favorable outcome $\,$
 - > Options under consideration to reduce emissions include:
 - Electrify gas engine and install a microturbine to use the produced gas to generate electricity
 - o Retrofit the engines to be cleaner

21

Cost-Effectiveness for Microturbines

- Assumptions:
 - Emissions from gas engine to be equivalent to spark-ignition engine requirements from CARB's PERP Regulation
 - Engines operate 24 hrs/day, 365 days/year
- Cost of microturbine obtained from a local vendor
 - Costs approximately \$150,000 per microturbine
 - \$300,000 for installation & infrastructure
- Cost of electric motor: ~\$5,000
 - A microturbine is expected to replace three 50-hp engines
 - 1.94 tons/yr of NOx reduced
- Equipment expected to have a 10-year lifespan
- Cost-effectiveness is \$29,467/ton of NOx reduced

Cost-Effectiveness for Catalyst

- Assumptions:
 - Emissions from gas engine to be equivalent to spark-ignition engine requirements from CARB's PERP Regulation
 - Engines operate 24 hrs/day, 365 days/year
- Cost of 3-way catalyst is \$5,000
- Cost of air/fuel ratio controller is \$1,000
- Annual maintenance of \$1,000
- 3-year lifespan for 3-way catalyst
- Each engine at 50 hp
 - ➤ 1.96 tons/yr of NOx reduced for 3 engines at 50 hp
- Cost-effectiveness is \$21,073/ton of NOx reduced for 3 engines at 50 hp

Odorants

- Proposing to ban odorants that are used for masking odors created at oil field production sites and facilities including mist systems
- Allow continued usage of neutralizing agents that do not create new odors and usage of mercaptans in natural gas for safety concerns
- No cost-effectiveness calculation conducted because no emissions reductions are expected from this proposal
- Ban of odorants should not result in any additional costs

Odorant mist system

Signage Considerations

- Rule 1148.1 (d)(13) already requires signage
- Staff found small signs that were only readable if standing within a foot in front of it
- Staff also found that some signs were not visible from public streets and were placed further inside facility's entrances
- Staff proposes additional signage requirements to include:
 - Instructions to AQMD's website to sign up for oil and gas notifications
 - Minimum sizing requirements
 - Location placement

Cost for Signage

- No cost-effectiveness calculation conducted because no emissions reductions are expected from this proposal, but costs are still considered
- Based on data provided by facilities, cost of a sign is approximately \$150 (\$50 a sign + \$100 of labor for 2 people for installation)
- Total cost for proposal is \$49,500

Summary of Proposals

Staff recommends the following proposals for PAR 1148.1

- Monthly OGI inspections
- Tier 4 Final Workover Rigs
- Produced gas routed to:
 - Microturbines
 - Gas engine equipped with 3-Way Catalyst and Air/Fuel ratio controller
 - Storage or off-site processing
- Prohibit Odorant Use
- Improve Signage Requirements
- Other changes to improve clarity under consideration

Ongoing Efforts and Next Steps

Rule Development Process

Define Rule Objective and Scope

Conduct BARCT Assessment

Develop Rule Concepts

Evaluate Cost-effectiveness and Incremental Cost-effectiveness

Draft Proposed Rule Language

Proposed Rule Schedule for PAR 1148.1

Staff Contacts

South Coast AQMD staff is available to assist you with any questions or comments

Jose Enriquez Air Quality Specialist (909) 396-2640 jenriquez1@aqmd.gov

Rodolfo Chacon Program Supervisor (909) 396-2726 rchacon@aqmd.gov

Michael Morris Planning and Rules Manager (909) 396-3282 mmorris@aqmd.gov

Michael Krause Assistant Deputy Executive Officer (909) 396-2706 mkrause@aqmd.gov