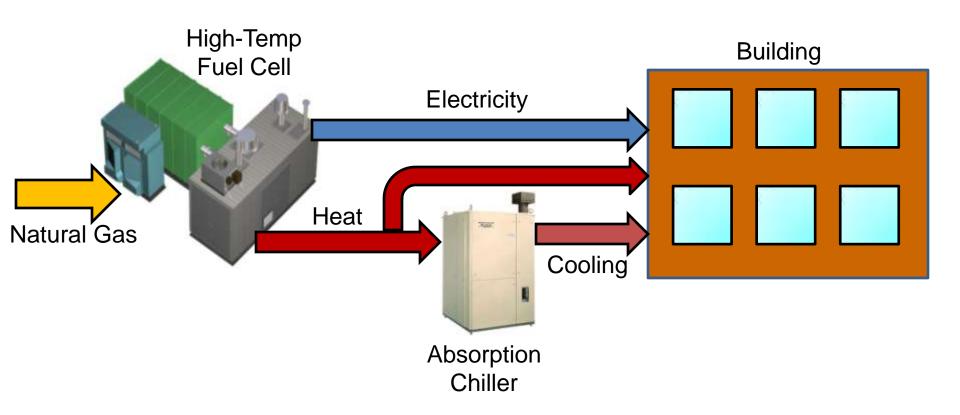


Session 2: Stationary Fuel Cells

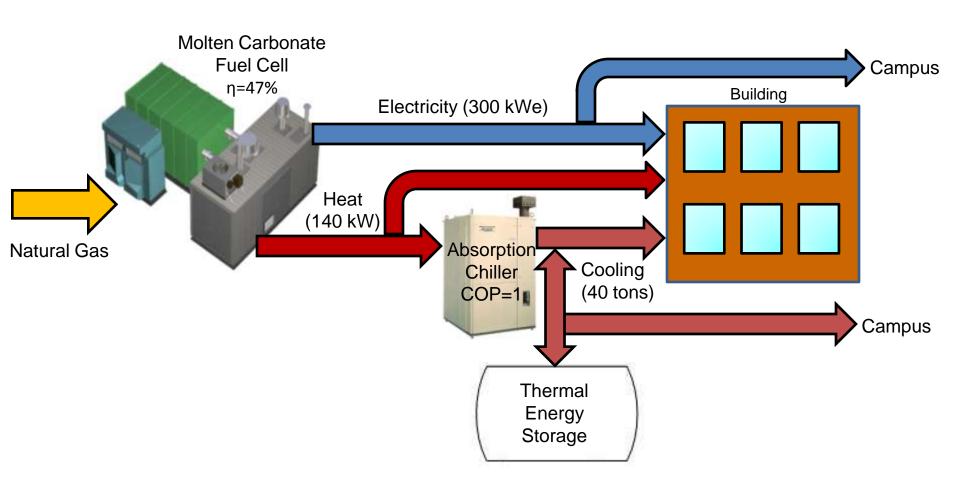
Joseph Impullitti
Program Supervisor
Technology Advancement Office

Stationary Fuel Cells Presentation


- UCI Fuel Cell Demonstration
- AQMD Fuel Cell Demonstration
- Discussion Questions

UCI Fuel Cell Demonstration

- UC Irvine will install a 300 kW fuel cell at its Science and Technology Building
- Project combines a high temperature fuel cell with absorption chiller using waste heat from the fuel cell to generate cooling
- Project will showcase a combined cooling, heat and power fuel cell system



Concept

System Design

- Project will capitalize on...
 - Distributed generation
 - High temperature fuel cells
 - Absorption chilling
 - *Demonstration of two modes of operation: commercial and institutional

Motivation

- Buildings in the U.S. account for...
 - 40% of total energy consumption
 - 30% of total greenhouse gas emissions
 - 65% of total electricity consumption
 - Cooling uses 15% of that electricity (on average) in the U.S.

- Absorption chillers operate on heat in place of electricity
- High Temperature Fuel Cells...
 - Are more energy efficient than conventional power plants (~50%)
 - Produce virtually zero criteria pollutants
 - Provide distributed, reliable power and avoid transportation losses
 - Are fuel flexible (natural gas, digester gas, landfill gas)
 - Have a small physical and acoustic footprint
 - Exhaust high-quality thermal energy

Project Overview

Goals

- **Development**: Develop, deploy, evaluate, and optimize a high temperature fuel cell (HTFC)-absorption chiller CCHP technology for the California market
- **Demonstration**: Showcase and proactively accelerate the deployment of HTFC-chiller CCHP technology into the California market

Partners

Key Subcontractors

Funding Sources

Project Overview

Multipurpose Science & Technology Building (MSTB) at the University of California, Irvine

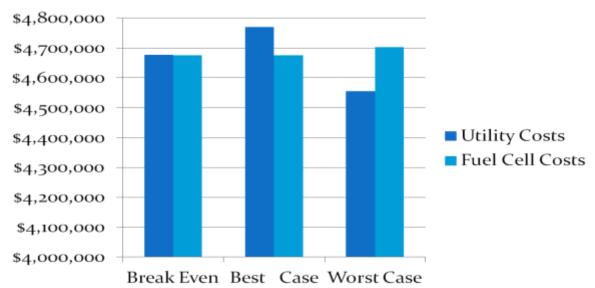
- Near NFCRC
- Highly visible
- Flex-Tech building design
 - Standard for the Irvine Co.
 - Copied by other developers
 - Commercial/Institutional

Project Cost

Source	Amount	Percentage
Fuel Cell Energy	\$100K	2%
Yazaki	\$261K	6%
SGIP	\$690K	16%
SoCalGas	\$200K	5%
Xnergy	\$988K	24%
UC Irvine	\$37K	1%
CEC	\$1.48M	35%
AQMD	\$257.5K	11%
Total	\$4.01M	100%

Demonstrate Large Fuel Cell CCHP System At AQMD

- October 2010 RFP to solicit proposals to install a natural gas, stationary fuel cell unit in the power range of 250-300kW
- Focus of the project: accelerate commercialization, operational experience, develop database, and public awareness


AQMD Fuel Cell Demonstration

- UTC Power was chosen to install a 400 kW fuel cell at AQMD Headquarters
- Electricity generated from natural gas will provide 37% of AQMD's base electrical load
- Waste heat will be used to heat water for the facilities boiler system

Cost Analysis

- AQMD Is Entering An Energy Service And Supply Agreement With UTC – UTC Owns The Equipment AQMD Purchases Power
- The Difference Between The Price Of Natural Gas And Utility Costs Determines Cost Benefit Of Onsite Generation
- Break Even, Best And Worst Case Are Based On Predictions Of Natural Gas And Utility Rate Increases

Project Benefits

- AQMD Cost Savings
- Energy Self Sufficiency
- Promoting Clean Distributed Power Generation
- Increased System Efficiency Through Use of Combined Heat and Power
- Emissions Lower than Local Utility Grid Power Content

Project Cost

Source	Amount	
SGIP	\$900,000	19%
AQMD Requested	\$3,802,732	81%
Total	\$4,702,732	100%

Creating a Value Proposition

Stationary fuel cells contribute significant value to ratepayers and the State of California... A representative fuel cell 300-1400 kilowatts in size, fueled 100% with natural gas, and operated in CCHP mode 75% of the time today contributes up to 20.1 cents of value per kilowatt-hour ("kWh") of fuel cell electricity generated based on the avoided costs of central station electricity generation.

(NFCRC, 2011)

Questions For TAC Members

- How can the government and industry stakeholders help create a value proposition for the potential businesses to employ fuel cells for self generation?
- What design or technological improvements need to occur to reduce the cost of fuel cells and to make them more applicable to a wider market of users?