

Findings From Air Quality Studies at Santa Monica Airport

Philip M. Fine, Ph.D.

Atmospheric Measurements Manager

South Coast Air Quality Management District

Clean Fuels Retreat – February 3, 2010

Airport Air Quality Issues

- Expanding airports and increasing operations
- Proximity to surrounding communities
- Lead content of general aviation fuel
- Emissions of black carbon and ultrafine particles
- Airport includes multiple sources of air pollution
 - Aircraft, ground equipment, terminal, traffic

Previous Airport Air Monitoring Studies

- John Wayne Airport Study by AQMD (1991-1992)
 - Focused on particulate fallout, no increase in PM10 or particulates observed
- LAX by AQMD (1997 1998)
 - Ambient air quality near passenger terminals and community
 - Some CO, PM10 and VOC concentrations slightly higher than AQMD Network (but below standards), I-405 a potential source for the community monitoring
- Chicago O'Hare (2000)
 - Impact of airport on adjacent communities found for some species but measured levels still typical of urban environments
- TF Green Airport, Warwick, RI (2005-2006)
 - VOCs and PM mass comparable to other urban sites
 - Continuous black carbon measurements suggest an aircraft influence near runway
- Teterboro Airport, New Jersey (2006)
- LAX Study by UCLA/CARB (2005-2006)

AQMD Project Overview

- Part of a U.S. EPA Community-Scale Air Toxics Grant
- Characterize air toxics levels by monitoring in communities around general aviation airports (Santa Monica and Van Nuys)
- MATES III type sampling (long-term exposures)
- Two three month sampling periods
- Determine potential impact of airport emissions on measured pollutant levels

Van Nuys Airport

 Largest Number of General Aviation Operations in the Country (2006)

Santa Monica Airport

- Runways adjacent to neighborhoods
- Increased Number of Private Jet Traffic

Santa Monica Airport Sampling Sites

Santa Monica Airport Sampling Sites

Measurements

- TSP Lead and Hexavalent Chromium
- PM10 Mass and Carbon
- PM2.5 Mass & Components
- Continuous Particle Count (ultrafine)
- Volatile Organic Compounds (3 x 8 hour periods)
- Carbonyls (acetaldehyde, etc.)
- Continuous Carbon Monoxide
- Study occurred between November 2005 and March 2007
- Nominal three months at each airport in two different seasons

AQMD SM Airport Findings

- Lead levels in communities and near runways below new federal standards, but elevated at near runway sites
- Airport influence on CO, PM2.5, VOC, and carbonyl levels were not distinguishable, but appears to be minor for long term exposure
- Ultrafine particles (measured by number concentration) significantly elevated near runways during aircraft operations

Santa Monica Airport TSP Lead (ng/m³) Phase I - Apr 06 - Jul 06, Phase II - Oct 06 - Feb 07

Santa Monica
Continuous
Number
Concentrations

May, 2006

Peaks in UF
number
concentration
correspond to
aircraft take-offs

Santa Monica
Continuous
Number
Concentrations

July 07, 2006

Peaks in UF
number
concentration
correspond to
aircraft take-offs

Instantaneous Canister Samples vs. CARB VOC Emission Profiles

UCLA Study

Aircraft Emission Impacts in a Neighborhood Adjacent to a General Aviation Airport in Southern California

SHISHAN HU, *, * SCOTT FRUIN, S KATHLEEN KOZAWA, †, II STEVE MARA, II ARTHUR M. WINER, * AND SUZANNE E. PAULSON*, \$

Department of Atmospheric and Oceanic Sciences, University of California, 405 Hilgard Ave., Los Angeles, California 90095-1565, Environmental Health Sciences Department, School of Public Health, University of California, 650 Charles E. Young Drive South, Los Angeles, California 90095-1772, Preventive Medicine, Environmental Health Division, Keck School of Medicine, University of Southern California, 1540 Alcazar Street CHP-236 Los Angeles, California 90032, and California Air Resources Board, Research Division, 1001 I Street, Sacramento, California 95814

Received April 23, 2009. Revised manuscript received August 26, 2009. Accepted September 9, 2009.

Mobile platform driven along fixed routes

Real time instruments for high temporal resolution (short-term exposures)

Environ. Sci. Technol. 2009, 43, 8039-8045

UCLA Study

"We were unable to detect a signature from the airport on the South, West or North sides of the airport. The signature east of the airport was very clear."

UCLA Study

July 20, 2008

Large peaks correspond to departures

Potential Mitigation Measures

- Increase size of blast fence
- Reduce idling times
- Additional barriers such as sound walls or tree lines
- Active or passive flow diversion
- High-efficiency filtration in residences
- Additional studies on emissions from different jet sizes and alternative fuels
- Limit jet traffic at Santa Monica Airport