Effects of Natural Gas Fuel Composition on Vehicle Emissions

Clean Fuels Program Advisory Group Meeting February 6, 2013

Background

- AQMD, CARB and CEC co-funded CE-CERT to evaluate the effects of natural gas fuel composition on vehicle emissions, especially for heavy-duty vehicles
 - Assess the viability of natural gas blends with higher Wobbe numbers (Hot Gas)
 - Used for CARB's regulatory development to amend CNG fuel standards for motor vehicles

Project Scope

- Evaluate emissions and fuel economy for vehicles operating on various natural gas fuel compositions
 - Phase 1: 2 light-duty vehicles on 4 blends
 - Phase 2: 4 heavy-duty vehicles on 6-7 blends
- Comparison between test gases for criteria pollutants, fuel economy, PM number and size distribution, ammonia and carbonyl compounds
- \$729K total project cost
 - CEC \$400K, CARB \$279K, AQMD \$50K

Light Duty Vehicles Testing

- Test Vehicles
 - 2006 Honda Civic GX, SULEV
 - 2002 Ford Crown Victoria, ULEV
- Test Fuels

Gas								Wobbe		
#	Description	methane	ethane	propane	I-butane	N_2	MN	#	HHV	H/C
1	Baseline, Pipeline gas	96.05	1.79	0.37	0.17	1.62	97	1345	1021	3.94
2	CARB certification gas	90.20	4.04	2.03		3.73	86	1329	1038	3.84
3	Hi Wobbe	83.92	9.43	3.79	1.86	1.00	68	1438	1177	3.63
4	Modified gas 3	84.03	6.86	3.76	1.85	3.50	68	1385	1131	3.66

- FTP and Unified Cycle
- Testing at CE-CERT's Vehicle Emissions Research Lab

Test Results Light Duty Vehicles

- Clear trend for fuel economy, CO₂ and NMHC for richer gases with higher WN (CNG #3 & 4)
 - Better fuel economy
 - Higher CO₂ emissions (Honda)
 - Very low NMHC levels, but levels increased for richer gases
- No clear trend for THC, CO and NOx
 - THC showed higher emissions for higher MN (CNG #1 & 2) for Crown Victoria, but no trends for Honda
 - CO emissions higher for CNG #3 & 4 for Honda under some test conditions, but no effects for Crown Victoria
 - Only limited fuel effects for NOx for both vehicles

Heavy Duty Vehicles Testing

Test Vehicles

#	Туре	Engine	Control	
1	Transit Bus	2009 Cummins 8.9L ISL-G (stoichiometric)	TWC and EGR	
2	Transit Bus	2004 JD 8.1L 6081H* (lean burn)	OC	
3	Transit Bus	2003 Cummins 8.3L C-Gas Plus (lean burn)	OC	
4	Refuse Truck	2002 Cummins 8.3L C-Gas Plus (lean burn)	OC	

^{*}JD bus was tested twice due to a mechanical malfunction

- Test Cycles
 - Buses: Central Business District
 - Refuse Truck: William H. Martin
- Testing at CE-CERT's Heavy Duty Chassis Dynamometer Facility

Heavy Duty Vehicles Test Fuels

Gas #	Description	methane	ethane	propane	MN	WN	HHV	H/C ratio
1	Baseline, Texas Pipeline	96	1.8	0.4	99	1339	1021	3.94
2	Baseline, Rocky Mtn Pipeline	94.5	3.5	0.6	95	1361	1046	3.89
3	Peruvian LNG	88.3	10.5	0	84	1385	1083	3.81
4	Middle East LNG	89.3	6.8	2.6	80	1428	1136	3.73
5	High Ethane	83.65	10.75	2.7	75.3	1385	1115	3.71
6	High Propane	87.2	4.5	4.4	75.1	1385	1116	3.70
7	L-CNG*	98.4	1.2	0.3	103.1	1370	1029	3.96

^{*}L-CNG is tested only with the refuse collection truck

Heavy Duty Test – NOx (Buses)

- NO_x emission levels for the Cummins ISL-G bus and C-Gas Plus bus were significantly lower than those of the JD bus.
- For JD and C-Gas Plus buses, higher NO_x emissions for the richer gases containing higher levels of heavier hydrocarbons but no significant trend for the ISL-G bus

Heavy Duty Test – NOx (Refuse Truck)

 Refuse truck showed the strongest fuel effects compared to the three buses, especially for the compaction segment with NOx increase of 286% over CNG 1.

Heavy Duty Test – PM (Buses)

- Total PM mass emissions were low for all three buses on an absolute level, and are at the same levels as the tunnel background.
- For the post-repair JD bus, the Cummins ISL-G bus, and the Cummins C-gas
 Plus bus, there were essentially no differences between PM mass for different
 fuel blends.

Heavy Duty Test – PM (Refuse Truck)

 Richer gases with more higher hydrocarbons showing lower PM levels, while the gases with higher MN showed higher PM levels.

Test Results Summary Heavy Duty Vehicles

- Lean burn engine vehicles showed clear trends for some emissions
 - Higher fuel economy, NOx and NMHC for richer gases (CNG #3,4,5 & 6)
 - NOx increase as much as 286% for refuse truck (compaction)
 - Higher THC, CH4 and formaldehyde for lower WN gases (CNG #1,2, & 7)
 - Higher PM for lower WN (refuse truck)
 - PM emissions very low, close to background level for buses
- Cummins ISL-G bus showed no fuel effects except for fuel economy, and had the lowest emissions except CO & NH₃
- Refuse truck showed the strongest fuel effects
- No strong fuel effects for CO and CO₂

Proposed Testing Project

- Retest John Deere bus
 - Redo testing of gases that were only tested during the initial testing (CNG #1,2 and 3)
- Testing of an ISL-G refuse truck or drayage truck
 - Determine if fuel effects are not significant for different cycles for ISL-G engines
- 195K total project cost estimate
 - \$120K from CARB, requesting \$75K from AQMD