# Zero Emission Heavy Duty Drayage Trucks Demonstration



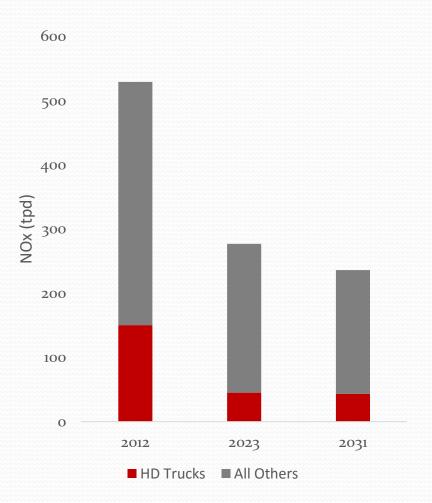








Brian Choe Clean Fuels Advisory Group September 1, 2016




### **Agenda**

- Zero Emission Heavy Duty Drayage Trucks
   Demonstration Overview
- Technology Review and Progress Update
  - Battery Electric & Hybrid Electric
  - Fuel Cell and Catenary (Joe Impullitti)



### **Background**



- Heavy-duty (HD) trucks remain one of the largest source of NOx emissions in the South Coast Air Basin
- Disproportionate impact on communities near the San Pedro Bay Port and along goods movement corridors
- High priority to develop zero and near-zero emission HD truck technologies

## Demonstration Approach/Objectives

- Develop HD truck technologies with zero emission operation capability
  - Leverage state and federal funding programs
  - Collaborate with regional and industry stakeholders
  - Engage large truck OEMs
  - Leverage previous and on-going projects
- Demonstration in real world drayage operation with fleet partners
  - Assess technical and commercial viability
  - Promote market acceptance
- Collect and analyze performance and O&M data





### **Demonstration Portfolio**

| Architecture | Manufacturer         | ZECT I | eHwy | ZECT II | GGRF | Total |
|--------------|----------------------|--------|------|---------|------|-------|
| BEV          | BYD                  |        |      |         | 25   | 25    |
|              | TransPower/Peterbilt | 4      | 1*   |         | 12   | 17    |
|              | US Hybrid            | 2      |      |         |      | 2     |
| PHEV         | BAE/Kenworth         |        |      | 1*      | 4    | 5     |
|              | TransPower           | 2      | 1*   |         |      | 3     |
|              | US Hybrid            | 3      |      |         |      | 3     |
|              | Volvo                |        | 1*   |         | 2    | 3     |
| FCEV         | BAE/Kenworth         |        |      | 1       |      | 1     |
|              | TransPower           |        |      | 2       |      | 2     |
|              | US Hybrid            |        |      | 2       |      | 2     |
|              | Hydrogenics/Daimler  |        |      | 1**     |      | 1     |
| Total        |                      | 11     | 3    | 7       | 43   | 64    |

\*Catenary

<sup>\*\*</sup>Pending Board approval

## Technology Review and Progress Update

**Battery Electric Trucks (BETs)** 

### **BET Technology**

- Electric vehicles powered by rechargeable batteries on-board
- Simple and efficient system
- Zero tailpipe emissions
- Smooth and quite operation
- Low fuel and maintenance costs



### BET Technology Challenges and Barriers

- Limited range & payloads
- Long recharging time
- Inadequate charging infrastructure
- Charging standards yet to be established
- High capital cost, both in development and incremental cost
- Unproven technology Fear of unknown

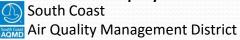
### **BET Technologies**

|                       | BYD                               | TransPower/ Peterbilt                   | US Hybrid                 |
|-----------------------|-----------------------------------|-----------------------------------------|---------------------------|
| Chassis               | BYD T9                            | International Prostar/<br>Peterbilt 579 | International Prostar     |
| Traction<br>Motor     | Two In-Line Motors<br>180 kW each | Dual Motor Unit<br>300 kW               | Induction Motor<br>320 kW |
| Transmission          | Automated Manual                  | Automated Manual                        | Direct Drive              |
| Battery<br>(kWh)      | 207                               | 215/311*                                | 240                       |
| Charger               | On-board<br>80 kW                 | On-board ICU<br>70 kW/200 kW*           | On-board<br>60 kW         |
| Recharge Time<br>(hr) | 2-3                               | 3-4/1-2*                                | 4                         |
| Range<br>(mile)       | 70-100                            | 80-100/120-150*                         | 70-100                    |

<sup>\*</sup>Applicable only to 4 of 12 Peterbilt trucks to be developed under the GGRF project



### Progress Update ZECT | BETs - TransPower


- Completed all four Electric Drayage Demonstration (EDD) trucks
- EDD2 tested on chassis dynamometer at UCR in Q4 2014
  - DTP and UDDS Cycles (72,000 lbs)
  - 2.06 2.42 kWh/mile
  - 7% grade simulation
- EDD2, EDD3 and EDD4 currently in drayage service
  - Mostly local operations with over 13,000 drayage miles accumulated
  - Quiet and smooth operations with comparable power and torque
  - Improvement needed on range and payload limitation



**EDDs** 



EDD2 on Chassis Dyno at UCR



## Progress Update ZECT I BETs – TransPower (Continued)

- Limited operations for EDD1 with older generation cells and BMS due to unreliable cells and BMS
- To be upgraded with new battery cells and BMS by Q3 2016
  - KAM cells with 60% higher energy density
  - 311 kWh in similar system weight & volume as for 215 kWh battery pack
  - 120-150 miles in operating range
  - Advanced BMS to provide dynamic balancing capability



EDD1



KAM Battery Module



## ZECT I BETs Data Collection & Analysis

#### **TransPower BETs**

- 1/15 through 6/30
- EDD2 EDD4
- 297 days of operation
- 13,150 miles traveled
- Local operations



#### **Baseline Trucks**

- 10/14 through 2/15
- Two diesel trucks (2013 Mack)
- 166 days of operation
- 23,590 miles traveled
- Filtered for local operations



### **Average Daily Use**

|                       | EDDs                       | Baseline Diesel         |
|-----------------------|----------------------------|-------------------------|
| Operation Time        | 4.5 hrs                    | 7.4 hrs                 |
| Idle Time             | 2.2 hrs                    | 3.4 hrs                 |
| Distance              | 44.2 miles                 | 86.4 miles              |
| Trailer Distance      | 28.1 miles                 | N/A                     |
| Average Total Speed   | 12.0 mph                   | 12.0 mph                |
| Average Driving Speed | 20.0 mph                   | 21.8 mph                |
| Fuel Consumption      | 2.2 kWh/mi<br>(18.0 MPGde) | 6.6 kWh/mi<br>(5.8 mpg) |
| Regen Energy          | 0.37 kWh/mi                | N/A                     |
| Ending SOC            | 54.8%                      | N/A                     |
| Kinetic Intensity     | 1.19                       | 0.77                    |

## Progress Update ZECT I BETs - US Hybrid

- Completed first BET in Q3 2015
  - Developed and integrated on-board charger
  - Modified drive train to direct drive (cost & weight benefits)
- Chassis dyno testing at UCR in Q4 2015
  - DTP and UDDS Cycles with 70,000 lbs. GCWR
  - Preliminary results show 2.2 to 2.8 kWh/mi
     (DTP) & 3.0 kWh/mi (UDDS)
- On-road testing including Vincent Thomas Bridge (7% grade) with a fully loaded container
- Deployed in drayage service in early Q3 2016



US Hybrid BET on UCR Dynamometer



US Hybrid BET During On-Road Testing



### Progress Update GGRF BETs

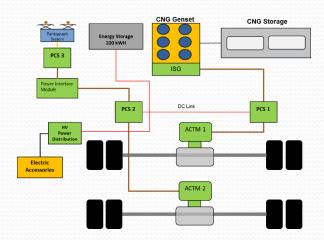
- Agreement with CARB to be completed within next 30 days
- Contracts with OEMs to be executed in Q4 2016
- BYD to develop 25 BETs based on T9 Prototype
  - Phase 1 trucks (5) Q1/Q2 2017
  - Phase 2 trucks (20) Q1/Q2 2018
- TransPower/Peterbilt to develop 12 BETs based on EDD drivetrain
  - Phase 1 trucks (4) Q3 2017
  - Phase 2 trucks (8) Q3 2018
- Project to be completed by April 2019

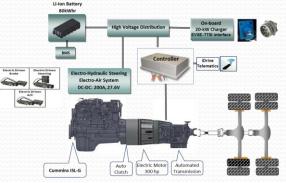


BYD T9

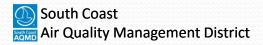


**EDD Truck** 





## Technology Review and Progress Update

## Plug-In Hybrid Electric Trucks (PHETs)


### **PHET Technology**

- Electric drive with auxiliary power unit (APU) for extended range and augmented power
  - Series hybrid
  - Parallel hybrid
- Support a wider range of duty cycles
- Zero emission operation capable in sensitive zones
- Steady state operation to minimize fuel consumption and emissions
- Refueling time comparable to conventional trucks





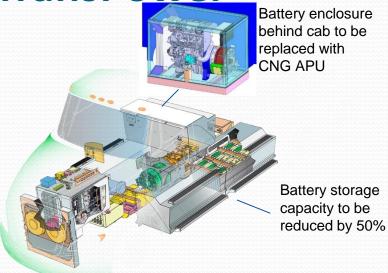
LNG Plug-In Hybrid Electric Drayage Truck "PHET" Powertrain System Configuration



## PHET Technology Challenges and Barriers

- Optimized balance of power and capacity between traction motors and APU
- High incremental cost
- Hybrid system weight penalty
- Certification standards yet to be established





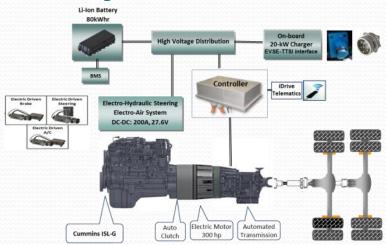

### **PHET Technologies**

|                         | <u> </u>                                  |                           |                     |                    |
|-------------------------|-------------------------------------------|---------------------------|---------------------|--------------------|
|                         | BAE/Kenworth                              | TransPower                | US Hybrid           | Volvo              |
| Chassis                 | Kenworth T680 &<br>Peterbilt 579          | International Prostar     | Peterbilt 384       | Mack Pinnacle      |
| Traction<br>Motor       | Two 200 kW Motors (one on each real axle) | Dual Motor Unit<br>300 kW | PM Motor<br>223 kW  | PM Motor<br>150 kW |
| Transmission            | Automated Manual                          | Automated Manual          | Automatic           | Automated Manual   |
| APU                     | Cummins 8.9L CNG                          | Ford 3.7L CNG             | Cummins 8.9L LNG    | 11L Diesel         |
| Battery (kWh)           | 50-100                                    | 155                       | 80                  | 10-20              |
| Storage Tank<br>(DGE)   | 40-50                                     | 60                        | 72                  | 75                 |
| Charger                 | Off-board<br>90 kW                        | On-board ICU<br>70 kW     | On-board<br>20 kW   | On-board<br>11 kW  |
| Recharge/Refuel<br>Time | 1-2 hrs/<br>10-15 min                     | 2-3 hrs/<br>10-15 min     | 4 hrs/<br>10-15 min | 1 hr/<br>10-15 min |
| AER/Range<br>(mile)     | 30-40/150-200                             | 30-40/150-200             | 30/250+             | 10/300+            |

Progress Update
ZECT I PHETs - TransPower

- Project added to ZECT I in Q3 2015
- Series hybrid system based on the ElecTruck<sup>TM</sup> system with a 3.7L CNG engine APU
- A prototype generator on the eHighway catenary truck undergoing testing and fine tuning
- Development of engine test dyno for calibration and validation
- Long lead components ordered
- First PHET to be completed by Q4 2016






TransPower CNG Catenary Truck



## Progress Update ZECT I PHETs - US Hybrid

- Project added to ZECT I in Q3 2015
- Parallel hybrid system to convert three LNG trucks with 8.9L ISLG LNG engine
- Capable of providing higher power and torque than ISX 12 & ISX 15
- First PHET completed in time for 2016 ACT Expo in May
- Currently undergoing on-road testing for fine tuning and validation
- Chassis dyno testing at UCR in Q3/Q4 2016
- Deployment with TTSI in Q4 2016



LNG Plug-In Hybrid Electric Drayage Truck "PHET" Powertrain System Configuration



### Progress Update GGRF PHETs

- Contracts with OEMs to be completed in Q4 2016
- Volvo to demonstrate two PHETs developed from prior projects, focusing on efficiency and emission optimization
  - Phase 1 deployment in Q4 2017
  - Phase 2 deployment in Q4 2018
- BAE/Kenworth to build four PHETs based on ZECT II PHEV system
  - Phase 1 deployment in Q1 2018
  - Phase 2 deployment in Q1 2019



Volvo PHET Prototype



Kenworth T680



### **Questions & Discussion**