CLEAN FUELS PROGRAM ADVISORY GROUP SEPTEMBER 3, 2015 Catenary Project Update

Joseph Impullitti Program Supervisor

Siemens Demonstration Project

- Designed to prove catenary truck concept in real-world drayage operations
- Catenary system
 - One mile length, both directions
 - Pole spacing similar to street lights (possibility of dual-use poles, but not existing poles)
 - DC power substation with remote monitoring
 - Test track for software & hardware adjustments
- Four demonstration trucks
 - Diesel hybrid, CNG hybrid, Battery-electric, and Future TBD platform

Catenary Truck Platforms

- 1. Volvo Diesel Hybrid
 - Major OEM partnering through existing DOE diesel hybrid development project
 - All-electric range capability (off catenary)
- 2. TransPower CNG Hybrid
 - Major OEM chassis
 - Project partners are OEM and local integrators
- 3. TransPower Battery-electric
 - Leveraging local integrator's current technology development
- 4. BAE Kenworth CNG Hybrid
 - Leveraging DOE project with catenary accessible hybrid

Project Status: Catenary Trucks

- The TransPower CNG
 Hybrid and Battery
 Electric truck is going
 through final assembly
- The vehicles will be tested on the off-the-road test track in Carson along Alameda Street this month

Project Status: Catenary Trucks

- The Volvo Diesel
 Hybrid truck is in
 Sweden where it is
 being outfitted with
 their hybrid system
 and the Siemens
 pantograph
- The vehicle will be ready for demonstration in March

Infrastructure

- Infrastructure consists of:
 - Poles and supports for catenary lines in each direction
 - Lanes can be shared with other vehicle traffic
 - Sub Stations,
 approximately one per mile

Demonstration Location

- Approximately one mile along Alameda Street in the city of Carson
- Current route for northbound trucks to warehouses and 405

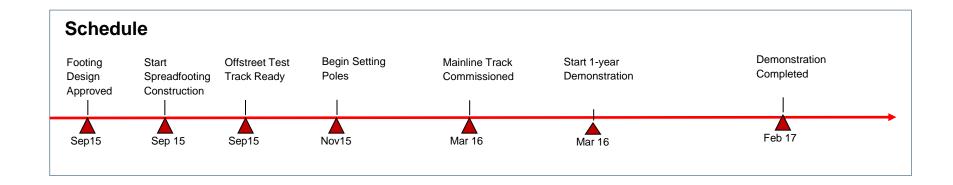
Project Status: Infrastructure

- Potholing along
 Alameda Street
 medium uncovered an unidentified pipeline
- Original design for underground foundations for the poles needed to be changed

Pole Footing Redesign

Problem:

- Unidentified pipeline and soil conditions prevent installing planned below ground foundation
- Approach:
 - Design and install a new foundation type that will sit entirely above ground
- Solution:
 - Two design concepts: poured-in-place concrete footings and precast concrete footings
 - Siemens determined that the precast concrete footing was the best solution based on impact to cost and schedule


Looking North Along Alameda

Schedule Impacts

Background

- Assumes that utility and City of Carson approval of spread footing design received by September 15, 2015
- Does not take into consideration any other requirements utilities or Carson may request or impose

Project Status: Off-the-road Test Track

- Test track is paved
- OCS foundations completed
- Power Supply is connected to SCE grid
- Commissioning of the power supply and test track will be completed by mid September
- TransPower will test their trucks on the track end of September

Future Project Milestones

- Test track completed in September, 2015
- TransPower trucks use test track for final development work
- Construction would be completed March,
 2016 pending redesign approval
- Volvo truck completed and demonstration begins March 2016
- Demonstration complete February, 2017

OCS Phase II Study

- State agencies have requested cost estimates from Siemens for Phase II
- Siemens task in Phase I to determine costs/mile
- An independent infrastructure cost analysis is being conducted
- An investigation of possible sites for Phase II has started

Siemens Project Costs Breakdown

Infrastructure	Vehicle & Pantographs	Demonstration	Project
\$7,450,000	\$4,280,000	\$2,450,000	\$600,000

- Infrastructure cost includes permitting, design, equipment and construction
- Vehicle cost includes one vehicle, four pantographs and engineering
- Demonstration includes test track and engineering
- Project cost includes project management and decommissioning
- Note: These costs include one time charges and may not be reflective of future costs

Phase II - Possible Sites

Continue existing one mile to connect the ports to rail Terminals...

Or Find new location around the ports and Inland Empire

Existing 1-mile OCS demonstration segment

Proposed extension to OCS

Inland Empire Possible Sites

Route Characteristics

Mission Blvd

- –ID'd as a key route by SCAG/SANBAG
- Includes both Riverside and San Bernardino counties
- –Much of the route is relatively "industrial"
- –Passes by/through major warehousing areas
- Etiwanda Ave
- ID'd as a key route by SCAG/SANBAG
- Adjacent to major warehousing locations
- Route has more commercial developments than Mission Blvd
- Foothill Blvd / SR-66
- Could connect warehousing locations with BNSF intermodal yard
- –Likely requires CalTrans approval
- –Most of route is commercial developments

Phase II - Considerations

Infrastructure

- Construction costs are site dependant
- Permitting and CEQA can impact schedule
- Longer lengths of system are needed to show regional viability

Vehicle

- Pantograph cost and weight need to be reduced
- Supporting components converters, sensors and vehicle interface add complexity and cost and need to be integrated into system

QUESTIONS - DISCUSSION