The EV Project

EV 101 Workshop for Local Governments

ECOtality North America

Robert Dickens
Los Angeles Area Manager
rdickens@ecotality.com

December 9, 2010
The leader in clean electric transportation

- Leading EV (Electric Vehicle) Infrastructure Experience
 - Involved in every major N. American EV initiative since 1990’s
- Largest Deployment of EV Infrastructure in the World
 - ECOtality ranks #33 in the White House report on 100 Recovery Act projects changing America
 - Named one of the most Innovative and Effective projects nationwide
- Premier Battery Fast-Charge Systems, Minit-Charger
 - Industrial applications for forklifts and airport ground support equipment
 - 50+ US & International patents since 1990
 - Fortune 500 customer base
 - NASDAQ listed ECTY
- Advanced Transportation R & D, Engineering & Testing
 - Primary Contractor to U.S. Dept. of Energy in EV sector
 - 10+ million miles of testing on 200+ advanced fuel vehicles
$230 million project
 - $115 million grant from US Dept. of Energy
 - $115 million match

Purpose: To build and study mature electric vehicle charging infrastructure in six states plus the District of Columbia

Product: Lessons learned
Over 50 Project Partners
Geographic Areas

- Washington State (greater Seattle area)
- Oregon (Portland, Eugene, Corvallis, Salem)
- California (San Diego, Los Angeles)
- Arizona (Phoenix, Tucson)
- Tennessee (Chattanooga, Knoxville, Nashville)
- Texas (Dallas, Ft Worth, Houston)
- Washington, DC

Transportation Corridors
- I-5 Corridor Eugene to Canadian border
- I-5 San Diego to Los Angeles
- I-10 Phoenix to Tucson
- I-75 Chattanooga to Knoxville
- I-40 Knoxville to Nashville
- I-24 Nashville to Chattanooga
ECOtality’s EV Project Overview

- Plan Infrastructure Placement
 - EV Residential Customer Level 2 Equipment
 - Level 2 Publicly Available
 - DC Fast Charge

- Install Infrastructure
 - Develop Installation Processes
 - Identify Infrastructure Requirements

- Collect and Analyze Usage Data
 - ECOtality
 - Idaho National Lab, UC Davis, The Ohio State University

- Report Lessons Learned
Equipment Deployment
(Vehicle volumes are for The EV Project only and does not represent regional nor national production volumes)

- 5,700 Nissan Leafs in Market Areas included in EV Project
- 2,600 Chevrolet Volts in Market Areas included in EV Project
- 8,300 Level 2 (240 Volt AC, 30 Amp) residential and fleet EVSE
- 6,250 Level 2 Commercial/Public EVSE (Electric Vehicle Supply Equipment) in Market Area
- 125 additional Level 2 in ORNL (Oak Ridge Natl Lab) Solar Project
- 260 DC Fast Chargers (480 Volt AC, 30 – 60 kW) in Market Areas
- 50 DC Fast Charger for Corridors between major cities
ECOtality’s Blink Level 2 EVSE

- **Power**
 - 240 VAC, Single Phase, 40 Amp Circuit
 - 30 Amp Max current

- **Charge Control**
 - Vehicle Battery Management System

- **Communications**
 - Wireless IEEE 802.11g
 - Cellular
 - ZigBee SEP 1.0 capable
 - AMI Interface Capable

- **Connector** – J1772 compliant
- **Color Interactive Touch Screen**
- **Internal Energy Meter**
ECOtality’s Blink DC Fast Charger

- **Input Power**
 - 480 VAC, Three Phase, 60 kW
 - 206 Amp at 208 VAC

- **Charge Control**
 - Vehicle Battery Management System

- **Communications**
 - Wireless IEEE 802.11g
 - Cellular
 - ZigBee SEP 1.0 capable
 - AMI Interface Capable

- **Connector** – CHAdeMO compliant
Electric Vehicle Inlets

- Level 2
- DC Fast Charge
Micro-Climate Plan Approach

EV Micro-Climate

EV Infrastructure Deployment 10-Year Plan

EV Infrastructure Deployment Guidelines
Level 2 EVSE Deployment

- Where should they be installed?
 - Micro-Climate© process
 - Where people shop
 - Where people play
 - Where people gather
 - Target is 1 – 3 hours

- Expand effective operating range of the EV
 - Allows for unscheduled trips
 - Provides ‘comfort’ to new EV users: ‘Range Anxiety’

- Businesses want to install EVSE
 - Draws EV customers—they stay longer
 - Advertising Advantages
 - Revenue Collection Systems
DC Fast Charger Deployment

■ Where do they go?

■ Where energy is needed fast
 • Near highways or cross-town roads
 • Highway corridors between towns
 • Busy fleet locations

■ Where people stay a short time
 • Gasoline stations
 • Rest stops
 • Convenience Stores
 • 10 – 15 minute charge

■ What will it do?
 • Fast energy return— significant fill in 15 minutes
Lessons Learned

- **Charging Stations**
 - Location - did we select the correct locations?
 - Utilization - when and how long are they being used?
 - Electric Utility Impact - home use vs publicly available

- **Vehicles**
 - Utilization – how did vehicle use change over time?
 - Behavior Change – how did the behavior of drivers change?
 - EREV/PHEV vs BEV – what differences were noted between types?

- **Planning**
 - Effectiveness – how did the process work in diverse locations?
 - Structure – did the program deviate significantly between sites?
 - Transferability – how transferable is the process to markets?
Schedule

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th></th>
<th>2011</th>
<th></th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td></td>
<td>Q1</td>
<td></td>
<td>Q1</td>
<td>Q1</td>
</tr>
<tr>
<td>Q2</td>
<td>Q2</td>
<td>Q2</td>
<td>Q2</td>
<td>Q2</td>
<td>Q2</td>
</tr>
<tr>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
<td>Q3</td>
</tr>
<tr>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
<td>Q4</td>
</tr>
</tbody>
</table>

EV Micro-Climate© Planning

EV Infrastructure Build Out

Vehicle Delivery Starts

Evaluation & Research

Project Complete Q2 2013
Thank You

For More Information

- www.TheEVProject.com
- www.ecotalityna.com
- www.blinknetwork.com

- Robert Dickens
 - Los Angeles Area Manager
 - rdickens@ecotality.com