

Lubricant Formulation Influences Nanoparticle Emissions From Light- and Heavy-duty Diesels

Results and Measurement Experiences

SCAQMD Conference on Ultrafine Particles:

The Science, Technology and Policy Issues

Wilshire Grand Hotel April 30th - May 2nd 2006

Jon Andersson, Chief Engineer, Ricardo UK

Introduction

- Experiences and results of measuring and discriminating particle emissions from different lubricants on Diesel engines
- Contents
 - Key Elements of the Experimental Approach
 - Light-duty Diesel Results
 - Heavy-duty Diesel Results
 - Conclusions

The Experimental Approach Is Key in Enabling Lube-to-Lube Discrimination

- Assume that you're looking for small effects
 - But you might be surprised!
- Source a suitable particle generator
 - Low soot levels to maximise any nucleation mode production
 - Stable operation to limit variability and enable statistical comparisons
- Experimental design
 - Use previous experience to optimise the experiment
 - Rigorous test protocols to ensure repeatable operation test-to-test
 - Closest possible similarity in oil-to-oil testing required
 - Specially formulate the oils to highlight properties for comparison
- Measurements
 - Employ most sensitive measurement techniques available
 - For particles: CNC based, including SMPS
- Statistical Analyses
 - Determine fundamental variability in the system as reference
 - Engine, sampling and measurement system
 - Compare oils within repeatability framework

Selection of particle generators

- Carbonaceous particles are known to suppress nucleation
 - Low soot conditions are required
- Light-duty Diesel vehicle shows nucleation mode at idle
 - Common rail FIE ensures stable particle production
 - Lower soot mode from common rail vehicle led to higher nucleation mode
- Heavy-duty Diesel with efficient wall-flow DPF shows minimal soot at any conditions
 - Majority of particles likely to be nucleation mode
 - Test-bed engine permits very close control of operation

Test protocols

Light-duty and heavy-duty Testing

- System Conditioning
 - LD: exhaust, oxi-cat, transfer tube, CVS tunnel
 - HD: System Conditioning: exhaust, oxi-cat, DPF, dilution tunnels

Regulatory reference tests

- LD: Cold start NEDC, Hot starts for repeat data, Idle for size distribution discrimination between oils
- LD: Hot idle provides the right mix between limited soot, thermal release of volatiles
- HD: ETC transients for regulatory reference, ESC for 13 mode size distribution discrimination between oils
- HD: Repeat tests split across 2 days
- HD: High temperature conditioning with oil change to purge the measurement system
- Precise timing for repeatable exhaust temperatures for both LD and HD

Heavy-duty test protocol

Protocol - Day 1	Protocol - Day 2		
4 x ESC, 2 x ETC	4 x ETC, 2 x ESC		
Warm-up	Warm-up		
Power curve	Power curve		
ESC	ESC		
Stabilisation: ESC Mode 4	Stabilisation: ESC Mode 4		
Continuity: Modes 1 and 4	Continuity: Modes 1 and 4		
ESC 1	ETC 3		
Continuity: Modes 1 and 4	Continuity: Modes 1 and 4		
ESC 2	ETC 4		
Continuity: Modes 1 and 4	Continuity: Modes 1 and 4		
ESC 3	ETC 5		
Continuity: Modes 1 and 4	Continuity: Modes 1 and 4		
ESC 4	ETC 6		
Continuity: Modes 1 and 4	Continuity: Modes 1 and 4		
Precondition Mode 4	Precondition Mode 4		
Continuity: Modes 1 and 4	Continuity: Modes 1 and 4		
ETC 1	ESC 5		
Continuity: Modes 1 and 4	Continuity: Modes 1 and 4		
ETC 2	ESC 6		
Oil Change (if required)	Oil Change (if required)		

Light-duty Results and Experiences

Three Fuels Evaluated: Nucleation Mode highest with highest S Fuel

- Fuel sulphur effect on nucleation mode expected
 - Three Fuels were tested
 - F10S (EN590, 10ppm S)
 - F50S (EN590, 50ppm S)
 - F10S doped
 - Swedish Class 1
 - High volatility: low T95
 - Low sulphur (~3ppm)

	SWCL1	F10S	F50S
density (kg/m3)	812	824.6	824.6
T10 (°C)	197.8	202	202
T50 (°C)	226.3	250	250
T95 (°C)	280	340	340
S (ppm)	3	10	50
H:C	2	1.79	1.79

- Several experiments were conducted
 - Difference between nucleation modes from F10S and F50S was relatively small when one oil tested
 - Lube tests on 'extreme' oils proved difficult to discriminate on F10S despite 'low sulphur'
 - SWCL1 nucleation and accumulation modes were smaller than F10S; so lube effects appear larger compared to fuel effect
- Sulphur is not the only driver for nucleation mode formation, T95 appears to be important

Swedish Class 1 (SWCL1) fuel selected

- Assumptions that sulphur and lubricant basestock may be major influences on particle production
 - Greatest differential between fuel and lubricant volatility desirable
 - Low sulphur fuel required (<3ppm)

Magnitude of Nucleation Mode Scales With Lubricant Sulphur level

- Highest S lubricants (0.9%, 0.4%) show highest <30nm particle numbers
- Lowest S lubricants (zero, 0.05%) show lowest <30nm particle numbers
- Soot mode differences small and not directly linked with lube properties

Linear Relationship between Sulphur and Integral of Nucleation Mode Particle Numbers

Statistical Analyses Show Reductions in Both Sulphur and **Phosphorous can Reduce Particle Number Emissions**

- Multiple regression analyses showed
 - A reduction in nucleation mode particle numbers of > 40% proved possible with a reduction in lubricant sulphur from 0.9% to 0.02%
 - These data also show that an independent reduction in particle numbers of up to 15% can be achieved by a reduction in lubricant phosphorus from 0.1% to zero
- Data were significant at 99% confidence
- On a mass basis the phosphorus effect was greater than the sulphur effect

Heavy-duty Results and Experiences

Condensation Particle Counter Measurements

Swedish Class 1 Fuel

HD Diesel Engine equipped with a DPF

During latter part of ESC cycles, particle number emissions were in response to catalyst-out temps; cooler ETC did not show this effect

Particle number emissions from ESC show large influence of test protocol

- ESC Cycles which precede ETC cycles have lower emissions levels
- ESC cycles which follow ETC tests emit materials stored during those cooler cycles

- Comparisons between oils omit the high tests and address the weighted ESC Cycle
- Oil B emissions are then shown to be significantly lower than other oils at 95% CI (2-sigma)
 - Oil B is Low SAPS with synthetic base

Simple elemental analyses of oils do not predict tailpipe oil related emissions

- Phosphates were only detected in the particulate phase during operation on Oil D, but this was not the highest phosphorus containing oil
 - Oils C and A both contained substantially more phosphorus

Summary

Light-duty Diesel Vehicles

- Lubricant derived sulphur was found to be a statistically significant influence on nucleation mode particle number at the 99% confidence level.
 - This analogous to the well recognised fuel sulphur effect.
- Unexpectedly, oil derived phosphorus also had an adverse effect on nucleation mode particle production at the 99% confidence level.
 - The phosphorus effect was greater on a mass basis than the sulphur effect.
- Increasing fuel 'back-end' volatility (T95) has an unexpectedly large effect on increasing nucleation mode particle production
 - A lower final boiling point fuel gave the best lubricant discrimination.
 - There are additional lubricant factors present other than S and P which effect nucleation mode particle production

Heavy-duty Engines

- Test cycle impacted significantly on particle production with the hotter ESC conditions appearing to give best conditions for lubricant discrimination for nucleation particles.
 - Running cooler cycles prior to hot ones leads to storage and release phenomena
- A low SAPS oil with a synthetic base was found to give statistically significantly lower nucleation particle numbers than a mineral and other formulations
- Formulation effects leading to the reduction in nucleation particles could not be fully explained by elemental compositional analysis.
- A DPF gave significant reductions in both nucleation and accumulation mode particles.

Acknowledgements

- Hugh Preston and Chris Warrens of BP Castrol, Pangbourne, UK
 - Sponsors
- Diane Lance, Nick McGrath, Roger Savill, Adrian Brown, Ian **Lankester of Ricardo Consulting Engineers**
- **Dick Boddy of Statistics for Industry**
 - Contribution to experimental design and statistical analyses
- The Management of BP and Ricardo UK