Application of Particulate Filter Technology to a CNG Engine

Jonathan Harris
Westport Innovations Inc.
Introduction

• Project had three main areas of work;
 – Investigation into the effect of the addition of a Particulate Filter (PF) on the emissions from a CNG-fueled Heavy-duty engine.
 – Investigation into the impact of lubricants on emissions from CNG engines.
 – Assess emission-reduction potential, performance, and reliability of the catalyzed particulate filters during a six-month in-use demonstration program.

• Funded by SCAQMD, Sempra Utilities and NREL.
Introduction

• Project was lead by Westport Innovations with support from the following;
 – West Virginia University (WVU)
 • Chassis Dynamometer facilities and regulated emissions
 – University of Wisconsin (UWI)
 • Chemical speciation
 – University of Minnesota (UMN)
 • Aerosol concentrations and size distributions
 – SunLine Transit Agency
 • Field Trial Partner
Contents

• Suitability of Particulate Filters for use with CNG engines
• Aftertreatment Configuration Selection
• Testcell Setup and Investigation
• Vehicle Installation
• Chassis Dynamometer Testing and Results
• Field Trial Results
• Conclusions
PF Suitability for CNG Engines.

• Composition of PM from CNG engines is significantly different to that from Diesel Engines

• CNG PM in general has:
 – Lower engine out PM levels
 – Larger fraction of Ash and VOF
 – Lower elemental carbon levels

• For Lean Burn SI (LBSI) engines
 – Higher NOx to carbon ratio (vs. diesel)
 – Higher minimum exhaust temperatures (vs. diesel)
 – O_2 in exhaust stream

• LBSI engine exhaust conditions should be favorable to PF continuous regeneration
Selected Engine

- Engine selected is the CWI C Gas Plus.
- Launched in 2001
- Lean-burn Spark Ignited (LBSI) engine.
- Turbocharged
- Fuel metered into intake (fumigation)
- Air to Fuel (AFR) control via oxygen sensor in exhaust stream.
- Drive-by-wire throttle.
Selected Engine

• The CWI C Gas Plus is certified to the following emissions levels:
 – US EPA 2004
 – EPA CFFV ULEV
 – CARB Optional Low NOx (1.8 gm/bhp-hr)
 – Euro 3 (with THC specific catalyst)
• Certification PM emissions < 0.01 g/bhp-hr
• Peak Torque 850 lb-ft (1153 Nm) at 1400 rpm
• Rated Power 280 HP (209 kW) at 2400 rpm.
Selection to find best combination for CNG operation.

2 PF’s selected:
- Engelhard DPX™ [Catalyzed Diesel Particulate Filter]
- Engelhard PF [Uncatalyzed Particulate Filter]

2 Oxidation Catalysts selected:
- Standard C Gas Plus formulation
- HEX-1107 [predominantly Palladium]
Testcell Setup

- Testcell located at Westport Innovations in Vancouver, Canada.

- PM emissions measured using Sierra BG-2 Mini-dilution tunnel.
- Horiba emissions bench used for gaseous emissions measurement.
- Modular exhaust system allows for combinations of PF and oxidation catalyst to be tested.
Testcell Investigation

- Engine was base-lined for engine out emissions and with standard OEM Oxidation Catalyst fitted.
- Various aftertreatment configurations fitted and compared by:
 - Measured PM mass emissions.
 - Effect on gaseous emissions.
 - PF mass increase over 100 hours.
- Results allowed selection of configuration for field trial.
Testcell Investigation

- Selected Configuration combined in series:
 - Standard C Gas Plus Oxidation Catalyst + Uncatalyzed Engelhard PF
Vehicle Installation

• SunLine Transit supplied a 40-ft transit bus fitted with a CWI C Gas Plus.
• Aftertreatment system fitted for a 6 Month Field Trial in revenue service.
Vehicle Installation

- Available space for packaging was limited in this chassis.

![Image of vehicle engine with labels:
- Engine
- Oxidation Catalyst
- Particulate Filter]
Chassis Dynamometer Testing

- “Real-world” testing of selected Aftertreatment system completed on WVU portable Chassis Dynamometer.
- “Clean” CVS tunnel (reserved for low-emitting applications) was used for this study.
Chassis Dynamometer Testing

- Test cycles used:
 - 3 steady state modes (idle, 20 mph, 40 mph)
 - Quad Central Business District Cycle (QCBD)

CBD Cycle Profile
Instrumentation

- **UMN (physical characterization)**
 - Condensation Particle Counter (CPC)
 - to measure total particle number concentrations
 - Engine Exhaust Particle Spectrometer (EEPS)
 - Aerosol size distributions
 - Scanning Mobility Particle Sizer (SMPS)
 - 10 to 300 nm for steady state testing only

- **UWI (chemical characterization)**
 - Media was collected on-site and processed once testing was completed.
Chassis Dynamometer Results

- Gaseous emission results

PF does not adversely affect gaseous emissions from engine.
PM Mass Emissions on a g/mile basis from WVU measurements.
Chassis Dynamometer Results

- Particulate Filter reduces particle number.

Plot of CPC number concentration for the average quad-CBD cycle for the end-of-life oil condition, with the OC and with the OC and PF together.
Chassis Dynamometer Results

- Start up spikes removed with addition of PF

Particle number measured during 40 mph tests, not corrected for dilution ratio.
Chassis Dynamometer Results

- Distribution of particles unaffected by addition of PF

40 mph cruise condition SMPS size distribution with and without the particle filter (PF).
Chassis Dyno Results Summary

- The addition of the PF does not produce a statistically significant change in PM mass emissions.
- In many cases and under many conditions, particle number concentrations were not detectable above background.
- The addition of a particulate filter is effective at removing start-up spikes in particle number concentration.
- By adding the particulate filter the size distribution is unchanged but the overall number is reduced.
Field Trial Results

- SunLine Bus 531 covered over 30,000 miles in 6 months.
- No mechanical issues incurred.
- Fuel consumption effect minimal.
Conclusions

• The experience of the 6-month field trial was positive with no serious issues encountered during operation.
• The addition of the Particulate Filter to the Aftertreatment system reduced the particle number emissions from the engine.
• During engine and vehicle dynamometer emissions testing, the addition of the Particulate Filter did not adversely affect the standard engine operation.
• The filter used in the 6-month field trial has been stored and could be examined (for ash content / composition etc.) further if a suitable opportunity arose.