BOARD MEETING DATE: December 5, 2014 AGENDA NO. 37

PROPOSAL: Clean Fuels Program Draft 2015 Plan Update

SYNOPSIS: Every fall, staff brings the Clean Fuels Program Draft Plan Update before the Board to solicit input on the proposed distribution of potential project funds for the upcoming year before requesting final approval for the Plan Update each year in early spring. Staff proposes continued support for a wide portfolio of technologies, but with particular emphasis in this Draft Plan on hydrogen and fuel cell technologies and infrastructure as well as continued focus on heavy-duty truck technologies with zero and near-zero emissions for goods movement applications to create a pathway towards achieving 2023 attainment. This action is to receive and file the Clean Fuels Program Draft 2015 Plan Update.

COMMITTEE: Technology, November 21, 2014; Reviewed

RECOMMENDED ACTION: Receive and file.

Barry R. Wallerstein, D.Env. Executive Officer

MMM:DAH

Background

Each calendar year, as required by legislation, the Clean Fuels Program Plan Update is revised to reflect technical priorities and proposed project areas for the upcoming year. As part of this process, every fall staff brings the Clean Fuels Program Draft Plan Update before the Board as a separate item to solicit input on the proposed distribution of potential project funds before requesting final approval each year in early spring. This provides an opportunity every October for the Board to provide initial input, then incorporates Board feedback as well as input from advisory groups, technical experts and other stakeholders and finally returns in early spring to seek Board approval of the final Plan Update (concurrent with approval of the Annual Report). For Calendar Year 2015, staff has prepared a Clean Fuels Program Draft 2015 Plan Update which proposes continued support for a wide portfolio of technologies, but with particular emphasis on hydrogen and fuel cell technologies and infrastructure as well as continued focus on heavy-duty truck technologies with zero and near-zero emissions for goods movement applications, including the infrastructure for such technologies. This emphasis not only aligns well with the SCAQMD's FY 2014-15 Goals and Priority Objectives, which includes continued development and demonstration of projects achieving zero tailpipe emissions for container transport, but also begins to lay a pathway towards achieving 2023 attainment.

Proposal

The attached Clean Fuels Program Draft Plan Update identifies potential projects to be considered for funding during 2015. The proposed projects reflect promising low, nearzero and zero emission technologies and applications that are emerging in different source categories. This update includes a number of proposed projects, not all of which are expected to be funded in the current fiscal year given the available budget. Some of the proposed projects for 2015 include but are not limited to: 1) conversion of a sample fleet to zero emission technologies to demonstrate commercial viability of such technologies; 2) the second phase of demonstrations for Zero Emission Container Transport (ZECT II) technology; 3) medium-duty fuel cell truck development; 4) further evaluation of biofuels including dimethyl ether; 5) partnering with the National Renewable Energy Laboratory (NREL) on fleet and technology matching analysis; 6) development and demonstration of advanced natural gas engines and zero emission technologies for high horsepower applications; and 7) lease of fuel cell vehicles (FCVs) for use in Technology Advancement's demonstration fleet to promote marketability and demand of FCVs. Projects not funded in 2015 may be considered for funding in subsequent years.

In addition to identifying proposed projects to be considered for funding, this Draft Plan Update confirms nine key technical areas of highest priority to the SCAQMD. These high priority areas are listed below based on the proposed funding distribution shown in Figure 1:

- Hydrogen and Fuel Cell Technologies and Infrastructure
- Electric and Hybrid Vehicle Technologies (including charging infrastructure)
- Engine Systems (particularly in the heavy-duty vehicle sector)
- Infrastructure and Deployment (compressed and liquid natural gas)
- Fuels and Emission Studies
- Outreach and Technology Transfer
- Health Impacts Studies
- Stationary Clean Fuels Technologies (including renewables)
- Emission Control Technologies

It should be noted that these priorities represent the areas where SCAQMD funding is thought to have the greatest impact. In keeping with the diverse and flexible "technology portfolio" approach, these priorities may shift during the year to: (1) capture opportunities such as cost-sharing by the state government, the federal government, or other entities, or (2) address specific technology issues which affect residents within the SCAQMD's jurisdiction.

Figure 1 graphically depicts the potential distribution of SCAQMD Clean Fuels funds, based on projected program costs of \$16.4 million for the nine project areas discussed previously. The expected actual project expenditures for 2015 will be less than the total projected program cost since not all projects will materialize. The target allocations are based on balancing technology priorities, technical challenges and opportunities discussed previously, and near-term versus long-term benefits with the constraints on available SCAQMD funding. Specific contract awards throughout 2015 will be based on this proposed allocation, the quality of proposals received and evaluation of projects against standardized criteria, and ultimately, the Board's approval. At that time, additional details will be provided about the technology, its application, the specific scope of work, the project team capabilities, and the project cost-sharing.

These technical priorities will necessarily be balanced by funding availability and the availability of qualified projects. Revenues from several sources support the SCAQMD's Technology Advancement program. The principal revenue source is the Clean Fuels Program, which under H&SC Section 40448.5 and Vehicle Code Section 9250.11 establishes mechanisms to collect revenues from mobile and stationary sources to support the program's objectives, albeit with constraints on the use of the funds. Grants and cost-sharing revenue contracts from various government agencies, such as CARB, CEC, NREL, U.S. EPA and DOE, also support technology advancement efforts and may be approached for cost-sharing.



Figure 1: Projected Funding Distribution for Potential Projects in 2015 (\$16.4M)

The proposed update has been the result of a comprehensive planning and review process, which will continue over the next few months as it is further refined before the Board considers adoption in early spring. This process includes consideration of the 2012 AQMP and its control measures, as well as the challenges identified in the "Vision for Clean Air: A Framework for Air Quality and Climate Control Planning"¹. The proposed update also incorporates coordination activities involving outside organizations including consideration of federal, state and local activities and proposed integrated solutions ranging from CARB's Sustainable Freight Strategy to AB 32 requirements which call for sustainable communities and greenhouse gas reductions. As part of this process, staff hosted two advisory group meetings in February 2014 and August 2014 to solicit input from the Clean Fuels Advisory Group, the Technology Advancement Advisory Group and other technical experts. During these advisory meetings, the participants reviewed current and proposed Technology Advancement projects as well as the proposed funding distribution for the Draft 2015 Plan Update and discussed near-term and long-term technologies as potential projects.

Discussions from the review process and advisory meetings, where appropriate, have been and will continue to be fashioned into project areas and included in this year's Plan Update as it is finalized. Additionally, staff regularly interacts with CARB, CEC, DOE, the California Fuel Cell Partnership, and other entities to solicit and incorporate technical areas for potential leveraged funding. Overall, the Draft Plan attempts to

¹ <u>http://www.arb.ca.gov/planning/vision/docs/vision_for_clean_air_public_review_draft.pdf</u>

maintain flexibility to address dynamically evolving technologies and incorporate new research and data, such as the draft findings from the MATES IV study and the white papers under development for the 2016 AQMP which will focus on addressing ozone standards.

The major areas of focus are proposed in the following areas:

- Hydrogen and fuel cell technology and infrastructure
- Electric and hybrid technologies and infrastructure
- Near-zero emission engine systems
- Infrastructure and deployment

The relative changes in funding allocation are a result of the emphasis required on hydrogen and fuel cell vehicles and infrastructure to meet the anticipated auto manufacturer roll out of fuel cell vehicles in 2015-2016, opportunities to partner with other agencies on projects and studies, and awards over the last year to the other technology areas. There remains an urgency, in light of 2023 ambient air quality standards for ozone, on the need to develop and demonstrate heavy-duty all-electric, fuel cell, plug-in hybrid and hybrid technologies with all-electric range for zero and near-zero emission goods movement applications, including the infrastructure for such technologies. Notwithstanding, while this Draft Update reflects a decrease in anticipated funding for electric and hybrid technologies and infrastructure in light of awards over the last couple of years and the primary focus on hydrogen and fuel cells in 2015, it nonetheless continues to lay a pathway towards achieving 2023 attainment. Emphasis will be maintained on engine system development and demonstration and natural gas infrastructure and deployment to ensure a broad portfolio of technologies and leverage state and federal efforts.

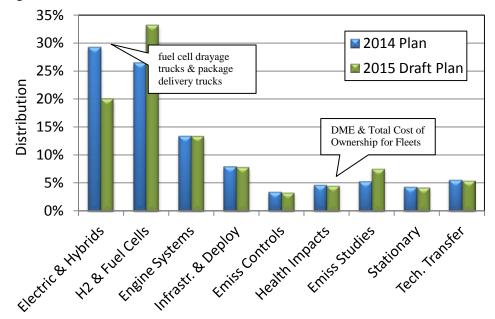


Figure 2: Plan Update Comparison

Based on communications with the organizations specified in H&SC Section 40448.5.1 and review of their programs, the projects proposed in this update do not appear to duplicate any past or present projects. As each individual project is recommended to the Board for funding, staff will continue to coordinate with these organizations to ensure that duplication is avoided and ensure optimal expenditure of Clean Fuels Program funds.

Attachment

Clean Fuels Program Draft 2015 Plan Update

TECHNOLOGY ADVANCEMENT OFFICE CLEAN FUELS PROGRAM DRAFT 2015 PLAN UPDATE

South Coast Air Quality Management District December 2014

CLEAN FUELS PROGRAM 2015 PLAN UPDATE

The Clean Fuels Program (Program) was first created in 1988, along with the SCAQMD's Technology Advancement Office (TAO). Funding for the Program is received through a \$1 motor vehicle registration fee. The Clean Fuels Program continually seeks to support the development and deployment of zero and near-zero emission technologies over a broad array of applications and spanning near- and long-term implementation. Planning has been and remains an ongoing activity for the Program, which must remain flexible to address evolving technologies as well as the latest progress in the state-of-technologies, new research areas and data.

Every year the SCAQMD re-evaluates the Clean Fuels Program based on the region's ongoing need for emissions reductions and develops a Plan Update targeting near-term projects to help achieve those reductions for the upcoming calendar year (CY). This comprehensive document is the Plan Update for 2015.

Overall Strategy

The overall strategy of the SCAQMD's Clean Fuels Program is based primarily on technology needs identified through the Air Quality Management Plan (AQMP) process and the SCAQMD Board's directives to protect the health of residents in Southern California, which encompasses approximately 16.8 million people (nearly half the population of California). The AQMP is the long-term "blueprint" that defines:

- the basin-wide emission reductions needed to achieve federal ambient air quality standards;
- the regulatory measures to achieve those reductions;
- the timeframes to implement these proposed measures; and
- the technologies required to meet these future proposed regulations.

The 2012 AQMP identified the need for 200 tons/day oxides of nitrogen (NO_x) reductions to be adopted by 2020 for full implementation by 2023 and in large part focuses control measures on transportation technologies and cleaner fuels. These emission reduction needs are further identified in a joint SCAQMD, California Air Resources Board (CARB) and San Joaquin Air Pollution Control District effort, "Vision for Clean Air: A Framework for Air Quality and Climate Control Planning."¹ Moreover, the SCAQMD is currently only one of two regions in the nation recognized as an extreme ozone nonattainment area (the other is San Joaquin Valley). This is especially noteworthy because the largest contributor to ozone is NO_x emissions, and mobile sources (on- and off-road as well as aircraft and ships) contribute to more than three-fourths of the NO_x emissions in this region.

The daunting challenge to reduce ozone and NO_x require the Clean Fuels Program to encourage and accelerate advancement of transformative fuel and transportation technologies, leading the way for commercialization of progressively lower-emitting fuels and vehicles. Furthermore, volatile organic compounds (VOCs) and fine particulate matter (PM_{2.5}) produced from mobile sources must also be addressed. The NO_x and VOC emission sources of greatest concern to this region are heavy-duty on-road and off-road vehicles as well as to a lesser extent light- and

¹ <u>http://www.arb.ca.gov/planning/vision/docs/vision_for_clean_air_public_review_draft.pdf</u>

medium-duty on-road vehicles. To underscore this concern, the 2013 Vehicle Technologies Market Report², released in early 2014 by the Oak Ridge National Laboratory for the Department of Energy, and corroborated by EMFAC 2011 projections, notes that Class 8 trucks comprise 41% of the medium- and heavy-duty truck fleet but consume 78% of the fuel use in this sector. This is especially significant since the report also notes that Class 8 truck sales have continued to increase significantly since 2009. Finally, while it is anticipated that attainment of the 2014 standard for $PM_{2.5}$ will be achieved for this region, it remains contingent upon compliance and implementation of existing and proposed rules and regulations.

In recent years, it has become increasingly clear that the effect of containers through the Ports of Los Angeles and Long Beach and the subsequent movement of goods throughout the region not only have a dramatic impact on air quality but also the quality of life to the communities along the major goods movement corridors. In recognition of these impacts, in the last couple of years, the SCAQMD has initiated a concerted effort to actively develop and demonstrate zero and near-zero emissions' goods movement technologies, such as electric trucks, plug-in hybrid trucks with all-electric range, zero emission container transport technologies, trucks operating from wayside power including catenary technology and heavy-duty technologies. The preliminary findings from Multiple Air Toxics Exposure Study (MATES) IV³, which included local scale studies near large sources such as ports and freeways, reinforce these impacts and the need for transformative transportation technologies, especially near the ports and goods movement corridor.

For over 20 years, a key strategy of the Clean Fuels Program is its implementation as a publicprivate partnership in conjunction with private industry, technology developers, academic institutions, research institutions and government agencies. This public-private partnership has allowed the Program to leverage its funding with at least \$3 to every \$1.

As the state and federal governments have turned a great deal of their attention to climate change, the SCAQMD has remained committed to developing, demonstrating and commercializing zero and near-zero emission technologies. Fortunately many, if not the majority, of technology sectors that address our need for NO_x reductions also garner greenhouse gas (GHG) reductions. Due to these "co-benefits," we have been successful in partnering with the state and federal grant.

Funding Scope

This 2015 Plan Update includes projects to develop, demonstrate and commercialize a variety of technologies, from near-term to long-term, that are intended to provide solutions to the emission control measures identified in the 2012 AQMP and to address the increasing challenges this region is facing to meet air quality standards, including new and changing federal requirements such as the newer 2032 ozone standard in addition to the current 2023 standard, implementation of new technology measures, and the continued development of economically sound compliance approaches. The scope of projects in the 2015 Plan Update also needs to remain sufficiently flexible to address new challenges and proposed methodologies that are identified in the 2012 AQMP, to consider dynamically evolving technologies, and to incorporate new research and data, such as the draft findings from the MATES IV study, which was undertaken to update emissions inventory of toxic air contaminants and conduct a regional modeling effort to characterize risk across the Basin, including measuring ultrafine particle and black carbon concentrations, as well as the white papers under development for the 2016 AQMP, which will focus on addressing

² <u>http://cta.ornl.gov/vtmarketreport/index.shtml</u>

³ <u>http://www.aqmd.gov/home/library/air-quality-data-studies/health-studies/mates-iv</u>

ozone standards. Finally, given the increasing call for action by the federal government to reduce carbon and greenhouse gases (e.g., President Obama's Climate Action Plan released in June 2013), coupled with 2014-15 state budget appropriations relative to reducing greenhouse gases (GHGs), the co-benefits of technologies should also be considered.

In addition to providing for specific control measures based on known technologies and control methods, the Clean Air Act has provisions for more general measures based on future, yet-to-bedeveloped technologies. These "black box" measures are provided under Section 182(e)(5) of the Clean Air Act for regions that are extreme non-attainment areas, such as the South Coast Basin. The technologies that are developed and demonstrated in the Clean Fuels Program can serve as control measures for the "black box."

Within each technical area, there exists a range of projects that represent near-term to long-term efforts. The SCAQMD Clean Fuels Program tends to support development, demonstration and technology commercialization efforts, or deployment, rather than fundamental research. The general time-to-product for these efforts, from long-term to near-term, is described below.

- Technology *development* projects are expected to begin during 2015 with durations of about two years. Additional field demonstrations to gain long-term verification of performance, spanning up to two years, may also be needed prior to commercialization. Certification and ultimate commercialization would be expected to follow. Thus, development projects identified in this plan are expected to result in technologies ready for commercial introduction as soon as 2018. Projects are also proposed that may involve the development of emerging technologies that are considered longer term and, perhaps higher risk, but with significant emission reduction potential. Commercial introduction of such long-term technologies would not be expected until 2020 or later.
- More mature technologies, those ready to begin field *demonstration* in 2015, are expected to result in a commercial product in the 2016-2017 timeframe. Technologies being field demonstrated generally are in the process of being certified. The field demonstrations provide a controlled environment for manufacturers to gain real-world experience and address any end-user issues that may arise prior to the commercial introduction of the technology. Field demonstrations provide real-world evidence of a technology's performance to help allay any concerns by potential early adopters.
- *Deployment* or technology commercialization efforts focus on increasing the utilization of clean technologies in conventional applications. It is often difficult to transition users to a non-traditional technology or fuel, even if such a technology or fuel offers significant societal benefits. As a result, one of government's roles is to support and offset any incremental cost to help accelerate the transition and use of the cleaner technology. The increased use and proliferation of these cleaner technologies often depends on this initial support and funding as well as efforts intended to increase confidence of stakeholders that these technologies are real, cost-effective in the long term and will remain applicable.

Core Technologies

As previously noted, the SCAQMD Clean Fuels Program maintains flexibility to address dynamically evolving technologies incorporating the latest state-of-the-technology progress. Over the years, the SCAQMD has provided funding for projects for a wide variety of low and zero emission projects. In order to meet the upcoming 2023 8-hour ozone standard, the areas of zero and near-zero emission technologies need to be emphasized. The working definition of "near-zero" is an order of magnitude lower than the existing 0.2 g/bhp-hr NO_x. This level is 0.02 g/bhp-hr NO_x and close to a combined cycle powerplant emissions rate. This effort can be seen in the

following sections and in the proposed funding distribution in Figure 1. The major core technology areas are identified below with specific project categories discussed in more detail in the following sections. The core technology areas identified reflect the staff's forecast for upcoming projects and needs within the basin but is not intended to be considered a budget.

Not all project categories will be funded, due to cost-share constraints, focus on the control measures identified in the 2012 AQMP and the availability of suitable projects. The technical areas identified below are clearly appropriate within the context of the current air quality challenges and opportunities for technology advancement. Within these areas there is significant opportunity for SCAQMD to leverage its funds with other funding agencies to expedite the implementation of cleaner alternative technologies in the Basin. A concerted effort is continually made to form private partnerships to leverage Clean Fuels funds. For example, there may be an upcoming opportunity to leverage state funding since SB 1204 (Lara and Pavley), which was chaptered last month, designates money from the state's cap-and-trade program for development, demonstration and early commercialization of zero and near-zero emission truck, bus and offroad vehicles.

It should be noted, therefore, that these priorities may shift during the year in keeping with the diverse and flexible "technology portfolio" approach. Changes in priority may occur to (1) capture opportunities such as cost-sharing by the state government, the federal government, or other entities, or (2) address specific technology issues which affect residents within the SCAQMD's jurisdiction.

The following core technology areas are listed by current SCAQMD priorities based on the goals for 2015.

Electric/Hybrid Technologies & Infrastructure

If the region hopes to meet the federal standards for $PM_{2.5}$ and ozone, a primary focus must be on zero and near-zero emission technologies. A leading strategy to achieve these goals is the wide-scale implementation of electric drive systems for all applicable technologies. With that in mind, the SCAQMD seeks to support projects to address the main concerns regarding cost, battery lifetime, travel range, charging station infrastructure and manufacturer commitment. Integrated transportation systems can encourage further reduction of emissions by matching the features of electric vehicles (zero emissions, zero start-up emissions, limited range) to typical consumer demands for mobility by linking them to transit. Additionally, the impact of fast charging on battery life and infrastructure costs is not well understood.

The development and deployment of zero emission goods movement systems remains one of the top priorities for the SCAQMD to support a balanced and sustainable growth in the port complex. The SCAQMD continues to work with our regional partners, in particular the Ports of Los Angeles and Long Beach, the Southern California Association of Governments (SCAG) and Los Angeles County Metropolitan Transportation Association (LACMTA), to identify technologies which could be beneficial to and garner support from all stakeholders. Specific technologies include zero emission trucks (using batteries and/or fuel cells), near-zero emission trucks with allelectric range using wayside power (catenary or roadbed electrification), locomotives with near-zero emissions (e.g., 90% below Tier 4), electric locomotives using battery tender cars and catenary, and linear synchronous motors for locomotives and trucks.

There is a high level of interest from major automobile manufacturers for hybrid-electric technologies in light-, medium- and heavy-duty applications as well as off-road equipment. In particular, there are increasing numbers of diesel- and gasoline-fueled hybrid-electric vehicles and multiple models of light-duty plug-in hybrid and battery electric vehicles (BEVs). Such

vehicles offer the benefits of higher fuel economy and range as well as lower emissions. Hybrid electric technology is not limited to gasoline and diesel engines and can be coupled with natural gas engines, microturbines and fuel cells for further emission benefits. Additionally, continued advancements in the light-duty arena which, while there is commercially available product, is not yet mainstream technology, may have applications for medium- and heavy-duty vehicles. In fact, the goal of SB 1275 (de León), chapered last month, is to bring one million emission electric vehicles to California over the next ten years as well as to ensure that disproportionally impacted communities benefit from this transition toward cleaner transportation.

Opportunities to develop and demonstrate technologies that could enable expedited widespread use of electric and hybrid-electric vehicles in the Basin include the following:

- development and demonstration of hybrid and electric technologies for goods movement, e.g., series hybrids with all electric range and trolley trucks on catenary wayside power;
- evaluation and demonstration of light-, medium- and heavy-duty plug-in hybrid electric vehicles;
- development and demonstration of CNG hybrid vehicle;
- demonstration of full performance and niche application battery electric vehicles;
- demonstration of integrated programs that make best use of electric drive vehicles through interconnectivity between fleets of electric vehicles and mass transit, and web-based reservation systems that allow multiple users;
- demonstration of heavy-duty battery electric vehicles;
- demonstration of heavy-duty hybrid vehicles including hydraulic and series hybrid concepts;
- development of streamlined implementation procedures to prepare and accelerate EV market penetration and commercialization; and
- demonstration and installation of EV infrastructure to support the electric and hybridelectric vehicle fleets currently on the roads or soon entering the market, and to reduce cost, improve convenience and integrate with renewable energy and building demand management strategies (e.g., vehicle-to-grid or vehicle-to-building functionality).

Engine Systems

Natural gas engines are experiencing huge market growth due to the low cost of fuel. In order to achieve the emission reductions required for the South Coast Air Basin, the internal combustion engines (ICEs) used in the heavy-duty sector will require emissions much lower, i.e., 90% than the 2010 standards. Future projects will support the development, demonstration and certification of engines that can achieve these massive emissions reductions using an optimized systems approach. Specifically, these projects are expected to target the following:

- development of ultra-low emissions natural gas engines for heavy-duty vehicles and high horsepower applications;
- continued development and demonstration of alternative fuel medium-duty and heavy-duty engines and vehicles;
- development and demonstration of clean alternative fuel engines for off-road applications;
- evaluation of alternative engine systems such as compressed air propulsion and hydraulic plug-in hybrid vehicles; and
- development and demonstration of engine systems that employ advance fuel or alternative fuels, engine design features, improved exhaust or recirculation systems, and aftertreatment devices.

Hydrogen & Fuel Cell Technologies & Infrastructure

The SCAQMD supports hydrogen infrastructure and fuel cell technologies as one option in our technology portfolio and is dedicated to assisting federal and state government programs to deploy fuel cell vehicles (FCVs) by supporting the required refueling infrastructure.

SCAQMD works closely with the California Fuel Cell Partnership (CaFCP) to further the commercialization of fuel cells for transportation and install the required hydrogen refueling infrastructure. In mid-2014 the CaFCP published Hydrogen Progress, Priorities and Opportunities, a report updating its 2012 roadmap describing the first network of commercial hydrogen stations in California, which initially calling for 68 hydrogen fueling stations in cluster communities at specific destinations by 2016. CEC funding awards over the last two years, along with some smaller cost-share support from SCAQMD, have made significant inroads to creating a growth path to 100 hydrogen stations, the state's current goal for launching a commercially self-sustaining network to support a growing number of fuel cell vehicles to implement the state's ZEV Action Plan. Furthermore, in September 2013 the Governor signed Assembly Bill 8 providing significant funding for hydrogen stations, which will greatly assist in making the inroads necessary toward expanding the hydrogen infrastructure network in California.

Calendar Years 2015-2017 are a critical timeframe for the introduction of FCVs. In fact, several automakers are scheduled to release products in 2015-2016, Hyundai being the first to already offer a FCV for lease in 2014. Since stations need one to two years lead time for permitting and construction, plans for stations need to be initiated now. While coordination efforts with the Division of Measurement Standards to establish standardized measurements for hydrogen refueling started in 2014, additional efforts to offer hydrogen for sale to general consumers is still needed. In addition, new business models and funding besides grants for construction need to be explored to enable the station operations to remain solvent during the early years until vehicle numbers ramp up.

Commencing late 2012, the California Energy Commission (CEC), which based its AB 118 hydrogen funding strategy on CaFCP's roadmap as well as the University of California, Irvine's Advanced Power and Energy Program, has issued multiple Program Opportunity Notices for hydrogen fuel infrastructure and to date has awarded funding for 36 new hydrogen fueling stations. The CEC in mid-2013 awarded the SCAQMD a \$6.7 million to implement the upgrade and refurbishment of existing hydrogen fueling stations to ensure legacy stations continue operation as FCVs become available in the market. The SCAQMD received a subsequent award in 2014 from CEC for to implement a plan for hydrogen readiness in early market communities. The SCAQMD will work closely with state agencies to implement these programs and continue efforts to upgrade and refurbish existing hydrogen infrastructure.

The 2015 Plan Update identifies key opportunities while clearly leading the way for precommercial demonstrations of original equipment manufacturer (OEM) vehicles. Future projects may include the following:

- development and demonstration of hydrogen-natural gas vehicles for medium- and heavyduty applications as well as stationary power applications;
- continued development and demonstration of distributed hydrogen production and refueling stations, including energy stations with electricity and hydrogen co-production and higher pressure (10,000 psi) hydrogen dispensing;
- development and demonstration of cross-cutting fuel cell applications (e.g. plug-in hybrid fuel cell vehicles);
- development and demonstration of fuel cells in off-road, locomotive and marine applications;

- demonstration of fuel cell vehicles in controlled fleet applications in the Basin; and
- develop and implement strategies with government and industry to build participation in the hydrogen market including certification and testing of hydrogen as a commercial fuel to create a business case for investing.

Infrastructure and Deployment (NG)

The importance of natural gas and related refueling infrastructure cannot be overemphasized for the realization of large deployment of alternative fuel technologies. Significant demonstration and commercialization efforts funded by the Clean Fuels Program as well as other local, state and federal agencies are underway to: 1) support the upgrade and buildup of public and private infrastructure projects, 2) expand the network of public-access and fleet fueling stations based on the population of existing and anticipated vehicles, and 3) put in place infrastructure that will ultimately be needed to accommodate transportation fuels with very low gaseous emissions.

Compressed and liquefied natural gas (CNG and LNG) refueling stations are being positioned to support both public and private fleet applications. Upgrades and expansions are also needed to refurbish or increase capacity for some of the stations installed five years ago as well as standardize fueling station design, especially to ensure growth of alternative fuels throughout the South Coast Air Basin and beyond. Funding has been provided at key refueling points for light-, medium- and heavy-duty natural gas vehicle users traveling from the local ports, along I-15 and The Greater Interstate Clean Transportation Corridor (ICTC) Network.

Active participation in the development of NFPA fire and safety codes and standards, cost and economics of the new fuels, public education and training and emergency response capability are just a few areas of the funded efforts that have overcome public resistance to these new technologies. Some of the projects expected to be developed and co-funded for infrastructure development are:

- Development and demonstration of renewable natural gas as a vehicle fuel from renewable feedstocks and biowaste;
- Development and demonstration of advanced, cost effective methods for manufacturing synthesis gas for conversion to renewable natural gas;
- Deployment of natural gas home refueling appliances for light-duty vehicles;
- Enhancement of safety and emissions reduction from LNG refueling equipment;
- Expansion of fuel infrastructure, fueling stations, and equipment; and
- Expansion of infrastructure connected with existing fleets, public transit, and transportation corridors.

Emission Control Technologies

Although engine technology and engine systems research is required to reduce the emissions at the combustion source, post-combustion cleanup methods are also needed to address the current installed base of on-road and off-road technologies. Existing diesel emissions can be greatly reduced with aftertreatment controls such as particulate matter (PM) traps and catalysts, as well as lowering the sulfur content or using additives with diesel fuel. Gas-to-Liquid (GTL) fuels, formed from natural gas or other hydrocarbons rather than petroleum feedstock and emulsified diesel, provide low emission fuels for use in diesel engines. As emissions become increasingly important. The most promising of these technologies will be considered for funding, specifically:

• evaluation and demonstration of new emerging liquid fuels, including alternative and renewable diesel and GTL fuels;

- development and demonstration of advanced aftertreatment technologies for mobile applications (including diesel particulate traps and selective catalytic reduction catalysts);
- development and demonstration of low-VOC and PM lubricants for diesel and natural gas engines; and

Emissions, Fuels and Health Impacts Studies

The monitoring of pollutants in the Basin is extremely important, especially when focused on (1) a particular sector of the emissions inventory (to identify the responsible technology) or (2) exposure to pollution (to assess the potential health risks). Recent studies indicate that smoggy areas can produce irreversible damage to children's lungs. This information highlights the need for further emissions and health studies to identify the emissions from high polluting sectors as well as the health effects resulting from these technologies.

Over the past few years, the SCAQMD has funded emission studies to evaluate the impact of tailpipe emissions of biodiesel and ethanol fueled vehicles mainly focusing on criteria pollutants and greenhouse gas (GHG) emissions. These studies showed that biofuels, especially biodiesel, can contribute to higher NO_x emissions while reducing other criteria pollutant emissions. Furthermore, despite recent advancements in toxicological research related to air pollution, the relationship between particle chemical composition and health effects is still not completely understood, especially for biofuels. Therefore, a couple of years ago the SCAQMD funded studies to investigate the physical and chemical composition and toxicological potential of tailpipe PM emissions from biodiesel and ethanol fueled vehicles to better understand their impact on public health. Studies have continued in 2014 to further investigate the toxicological potential of emissions, such as ultrafines and vapor phase substances, and to determine whether other substances such as volatile or semi-volatile organic compounds are being emitted in lower mass emissions that could pose harmful health effects.

In recent years, there has also been an increased interest both at the state and national level on the use of alternative fuels including biofuels to reduce petroleum oil dependency, GHG emissions and air pollution. In order to sustain and increase biofuel utilization, it is essential to identify feedstocks that can be processed in a more efficient, cost-effective and sustainable manner. One such fuel staff is interested in pursuing is dimethyl ether (DME). This synthetic fuel can be made from renewable natural gas resources and has characteristics similar to gas-to-liquids fuels, i.e., high cetane, zero aromatics and negligible particulate matter. Volvo has announced they will commercialize class 8 trucks using DME in 2015, and staff would like to ensure these trucks have lower NO_x than the existing standard. A study in 2015 on DME is being proposed.

Some areas of focus include:

- demonstration of remote sensing technologies to target different high emission applications and sources;
- studies to identify the health risks associated with ultrafines and ambient particulate matter including their composition to characterize their toxicity and determine specific combustion sources;
- in-use emissions studies using biofuels including DME to evaluate in-use emission composition;
- in-use emissions studies to determine the impact of new technologies, in particular PEVs on local air quality as well as the benefit of telematics on emissions reduction strategies;
- lifecycle energy and emissions analyses to evaluate conventional and alternative fuels; and
- analysis of fleet composition and their associated impacts.

Stationary Clean Fuel Technologies

Although stationary source emissions are small compared to mobile sources in the South Coast Air Basin, there are areas where cleaner fuel technology can be applied to reduce NO_x , VOC and PM emissions. For example, inspections suggest there is a large population of small ICE generators within the Basin that are operating outside their permit limits due to poor maintenance, deliberate tuning for different performance, operation outside equipment design or changes in fuel quality. Cleaner, more robust distributed generation technologies exist that could be applied to not only improve air quality, but enhance power quality and reduce electricity distribution congestion.

The use of renewable feedstocks for energy production is a viable and necessary strategy to provide sustainable power for future needs while reducing greenhouse gas emissions and achieving domestic energy diversity. One of the projects that the SCAQMD recently supported in this effort was a bench scale demonstration project using a steam hydrogasification process to produce natural gas from biomass and biosolid (sewage sludge) feedstocks. Steam Hydrogasification Reaction (SHR) has been developed to produce various forms of energy products from carbonaceous resources. SHR is capable of handling wet feedstocks like sludge, does not require expensive oxygen plants and has been demonstrated to be most efficient and cost-effective compared to other conventional gasification technologies. This project successfully demonstrated that the SHR process coupled with a water-gas shift (WGS) reactor can produce natural gas containing up to 90% methane.

Additionally, alternative energy storage could be achieved through vehicle to grid or vehicle to building technologies. The University of California Riverside's Sustainable Integrated Grid Initiative, funded in part by the SCAQMD and launched in 2014, for example could assist in the evaluation of these technologies. Projects conducted under this category may include:

- development and demonstration of reliable, low emission stationary technologies (e.g., low NO_x burners, fuel cells or microturbines);
- exploration of renewables as a source for cleaner stationary technologies;
- evaluation, development and demonstration of advanced control technologies for stationary sources; and
- vehicle-to-grid or vehicle-to-building demonstration projects to develop sustainable, low emission energy storage alternatives

Target Allocations to Core Technology Areas

Figure 1 below presents the potential allocation of available funding, based on SCAQMD projected program costs of nearly \$16.4 million for all potential projects. The expected actual project expenditures for 2015 will be less than the total SCAQMD projected program cost since not all projects will materialize. The target allocations are based on balancing technology priorities, technical challenges and opportunities discussed previously and near-term versus long-term benefits with the constraints on available SCAQMD funding. Specific contract awards throughout 2015 will be based on this proposed allocation, the quality of proposals received and evaluation of projects against standardized criteria and ultimately SCAQMD Governing Board approval.

Figure 1: Projected Cost Distribution for Potential SCAQMD Projects 2015 & Beyond (\$16.4M)

PROGRAM PLAN UPDATE FOR 2015

This section presents the Clean Fuels Program Plan Update for 2015. The proposed projects are organized by program areas and described in further detail, consistent with the SCAQMD budget, priorities and the best available information on the state-of-the-technology. Although not required, this Plan also includes proposed projects that may be funded by revenue sources other than the Clean Fuels Program, specifically related to VOC and incentive projects.

Table 1 summarizes potential projects for 2015 as well as the redistribution of SCAQMD costs in some areas as compared to 2015. The funding allocation continues the focus toward development and demonstration of zero and near-zero emission technologies including the infrastructure for such technologies. However, while the SCAQMD had over the last couple of years emphasized electric and hybrid-electric technologies, the intent is to continue to allow the projects in this core technology area to achieve some progress while the Program is slightly re-calibrated to focus on the current federal and state activity in hydrogen and fuel cells and the anticipated roll out of fuel cell vehicles in 2015-2016. Some additional funding has also been shifted to Fuels and Emissions Studies in order to further evaluate biofuels including DME and to partner with the National Renewable Energy Laboratory (NREL) on a fleet and technology matching analysis. Like the prior year, the funding allocations again align well with the SCAQMD's FY 2014-15 Goals and Priority Objectives. Overall, the Program is designed ensure a broad portfolio of technologies and leverage state and federal efforts.

Each of the proposed projects described in this Plan, once fully developed, will be presented to the SCAQMD Governing Board for approval prior to contract initiation. This development reflects the maturity of the proposed technology, identification of contractors to perform the projects, host site participation, securing sufficient cost-sharing to complete the project and other necessary factors. Recommendations to the SCAQMD Governing Board will include descriptions of the technology to be demonstrated and in what application, the proposed scope of work of the project and the capabilities of the selected contractor and project team, in addition to the expected costs and expected benefits of the projects as required by H&SC 40448.5.1.(a)(1). Based on communications with all of the organizations specified in H&SC 40448.5.1.(a)(2) and review of their programs, the projects proposed in this Plan do not appear to duplicate any past or present projects.

Funding Summary of Potential Projects

The remainder of this section contains the following information for each of the potential projects summarized in Table 1.

Proposed Project: A descriptive title and a designation for future reference.

Expected SCAQMD Cost: The estimated proposed SCAQMD cost share as required by H&SC 40448.5.1.(a)(1).

Expected Total Cost: The estimated total project cost including the SCAQMD cost share and the cost share of outside organizations expected to be required to complete the proposed project. This is an indication of how much SCAQMD public funds are leveraged through its cooperative efforts.

Description of Technology and Application: A brief summary of the proposed technology to be developed and demonstrated, including the expected vehicles, equipment, fuels, or processes that could benefit.

Potential Air Quality Benefits: A brief discussion of the expected benefits of the proposed project, including the expected contribution towards meeting the goals of the AQMP, as required by H&SC 40448.5.1.(a)(1). In general, the most important benefits of any technology research, development

and demonstration program are not necessarily realized in the near term. Demonstration projects are generally intended to be proof-of-concept for an advanced technology in a real-world application. While emission benefits, for example, will be achieved from the demonstration, the true benefits will be seen over a longer term, as a successfully demonstrated technology is eventually commercialized and implemented on a wide scale.

ed ID S	Expected Total Cost \$
000	2,000,000
000	1,800,000
000	2,000,000
000	2,6000,000
000	\$8,400,000
0,	0,000

Table 1: Summary of Potential Projects for 2014

Develop and Demonstrate Advanced Alternative Fuel Medium- and Heavy-Duty Engines and Vehicles	2,000,000	20,000,000
Develop and Demonstrate Alternative Fuel and Clean Conventional Fueled Light-Duty Vehicles	200,000	1,500,000
Subtotal	\$2,200,000	\$21,500,000

Hydrogen and Fuel Cell Technologies and Infrastructure

Develop and Demonstrate Operation and Maintenance Business Case Strategies for Hydrogen Stations	350,000	4,000,000
Develop and Demonstrate Distributed Hydrogen Production and Fueling Stations	2,000,000	6,000,000
Develop and Demonstrate Medium- and Heavy-Duty Fuel Cell Vehicles	\$3,000,000	\$10,000,000
Demonstrate Light-Duty Fuel Cell Vehicles	100,000	100,000
Subtotal	\$5,450,000	\$20,100,000

Infrastructure and Deployment (NG)

Deploy Natural Gas Vehicles in Various Applications	500,000	2,000,000
Develop, Maintain & Expand Natural Gas Infrastructure	300,000	2,000,000
Demonstrate Natural Gas Manufacturing and Distribution Technologies Including Renewables	500,000	7,000,000
Subtotal	\$1,300,000	\$11,000,000

Emission Control Technologies

Develop and Demonstrate Advanced Aftertreatment Technologies	300,000	5,000,000
Demonstrate On-Road Technologies in Off-Road and Retrofit Applications	250,000	1,000,000
Subtotal	\$550,000	\$6,000,000

Fuels/Emission Studies

In-Use Emissions Studies for Advanced Technology Vehicle Demonstrations	500,000	1,000,000
Conduct Emissions Studies on Biofuels and Alternative Fuels	500,000	1,300,000

Proposed Project	Expected SCAQMD Cost \$	Expected Total Cost \$
Fuels/Emission Studies (cont'd)	θθstψ	
Identify and Demonstrate In-Use Fleet Emissions Reduction Technologies & Opportunities	250,000	2,000,000
Subtotal	\$1,250,000	\$4,300,000
Health Impacts Studies		
Evaluate Ultrafine Particle Health Effects	250,000	3,000,000
Conduct Monitoring to Assess Environmental Impacts	250,000	1,000,000
Assess Sources and Health Impacts of Particulate Matter	250,000	300,000
Subtotal	\$750,000	\$4,300,000
Stationary Clean Fuel Technologies		
Develop and Demonstrate Reliable, Low Emission Monitoring Systems and Test Methods	250,000	500,000
Develop and Demonstrate Clean Stationary Technologies	250,000	750,000
Develop and Demonstrate Renewables-Based Energy Generation Alternatives	200,000	1,000,000
Subtotal	\$700,000	\$2,250,000
Outreach and Technology Transfer		
Assessment and Technical Support of Advanced Technologies and Information Dissemination	500,000	800,000
Support for Implementation of Various Clean Fuels Vehicle Incentive Programs	400,000	400,000
Subtotal	\$900,000	\$1,200,000
TOTALS FOR POTENTIAL PROJECTS	\$16,400,000	\$79,050,000

Table 1: Summary of Potential Projects for 2014 (cont'd)

Technical Summaries of Potential Projects

Electric/Hybrid Technologies & Infrastructure

 Proposed Project:
 Demonstrate Light-Duty Plug-In Hybrid & Battery Electric Vehicles and Infrastructure

Expected SCAQMD Cost: \$1,100,000

Expected Total Cost: \$2,000,000

Description of Technology and Application:

All of the major automobile manufacturers are currently developing and commercializing hybridelectric vehicles, which now come in a variety of fuel economy and performance options. These commercial hybrid EVs integrate a smaller internal combustion engine, battery pack and electric drive motors to improve fuel economy (e.g., Chevy Volt) or performance (e.g., Lexus RX400h).

The SCAQMD has long supported the concept of using increased battery power to allow a portion of the driving cycle to occur in all-electric mode for true zero emission miles. This battery dominant strategy is accomplished by incorporating an advanced battery pack initially recharged from the household grid or EV chargers. This "plug-in" hybrid EV strategy allows reduced emissions and improved fuel economy. In 2009, CARB adopted Plug-In Hybrid Electric Vehicle Test Procedure Amendments and Aftermarket Parts Certification and several automobile manufacturers have announced demonstration or early production plans of "blended" plug-in hybrid electric, extended-range electric vehicles (E-rEV), or highway capable battery electric vehicles (BEVs). Electric utilities refer to PHEVs, E-rEVs and BEVs as plug-in electric drive vehicles (PEVs) and are working with automakers to support PEVs. The recent adoption of revised recommended practice SAE J1772 enables passenger vehicles to charge from 110/120V AC (Level 1), 220/240V AC (Level 2), and faster 440/480V DC charging using a common conductive connector in 30 minutes or less in the U.S. and Europe. The impact of fast charging on battery life and infrastructure costs is not well understood and will be evolving as three fast DC systems (SAE combo, CHAdeMO and Tesla) compete for international market share.

Integrated programs can interconnect fleets of electric drive vehicles with mass transit via webbased reservation systems that allow multiple users. These integrated programs can match the features of EVs (zero emissions, zero start-up emissions, short range) to typical consumer demands for mobility in a way that significantly reduces emissions of pollutants and greenhouse gases.

At recent auto shows, automakers have displayed concept plug-in fuel cell vehicles. Development and demonstration of dual fuel, zero emission vehicles could expand the acceptance of battery electric vehicles and accelerate the introduction of fuel cells in vehicle propulsion.

The SCAQMD has long been a leader in promoting early demonstrations of next generation lightduty vehicle propulsion technologies (and fuels). However, given the current and planned market offerings in this category, priorities have shifted. Nevertheless, the SCAQMD will continue to evaluate market offerings and proposed technologies in light-duty vehicles to determine if any future support is required.

This project category is to develop and demonstrate: 1) various PEV architectures; 2) anticipated costs for such architectures; 3) customer interest and preferences for each alternative; 4) prospective commercialization issues and strategies for various alternatives; 5) integration of the technologies into prototype vehicles and fleets; 6) infrastructure (especially in conjunction with the DOE and the Los Angeles Department of Water & Power) to demonstrate the potential clean

air benefits of these types of vehicles; 7) support for local government outreach and charging installation permit streamlining; and 8) evaluation of any new promising light-duty vehicle propulsion technologies or fuels.

Potential Air Quality Benefits:

The 2012 AQMP identifies zero or near-zero emitting vehicles as a key attainment strategy. HEV technologies have the potential to achieve near-zero emissions but with the range of a conventional gasoline-fueled vehicle, a factor expected to enhance consumer acceptance. Given the variety of PEV systems under development, it is critical to determine the true emissions and performance of PEVs. Demonstration of optimized prototypes would enhance the deployment of near-ZEV and ZEV technologies.

Expected benefits include the establishment of criteria for emissions evaluations, performance requirements, customer acceptability of the technology, etc. This will help both regulatory agencies and OEMs to expedite introduction of zero and near-zero emitting vehicles in the South Coast Basin, which is a high priority of the AQMP.

Proposed Project: Develop and Demonstrate Medium- and Heavy-Duty Hybrid Vehicles and Infrastructure

Expected SCAQMD Cost: \$600,000

Expected Total Cost: \$1,800,000

Description of Technology and Application:

Hybrid technologies have gained momentum in the light-duty sector with commercial offerings by most all of the automobile manufacturers. Unfortunately, the medium- and heavy-duty platforms are where most emissions reductions are required, especially for the in-use fleet due to low turnover. This project category is to investigate the use of hybrid technologies to achieve similar performance as the conventional fueled counterparts while achieving both reduced emissions and improved fuel economy. Development and validation of emission test procedures is needed, but is complicated due to the low volume and variety of medium- and heavy-duty vehicles.

Platforms to be considered include utility trucks, delivery vans, shuttle buses, transit buses, waste haulers, construction equipment, cranes and other off-road vehicles. Innovations that may be considered for demonstration include: advancements in the auxiliary power unit, either ICE or other heat engine; battery-dominant hybrid systems utilizing off-peak re-charging, with advanced battery technologies such as lithium-ion; and hydraulic energy storage technologies where applicable. Alternative fuels are preferred in these projects, e.g., natural gas, LPG, hydrogen, GTL and hydrogen-natural gas blends, but conventional fuels such as gasoline, clean diesel, or even biodiesel may be considered if the emissions benefits can be demonstrated as equivalent or superior to alternative fuels. Both new designs and retrofittable technologies and related charging infrastructure will be considered.

Federal recovery act funding combined with state and local support has accelerated the development and demonstration of medium-duty plug-in hybrid electric truck platforms. Analysis of project data and use profiles will help optimize drive systems, target applications for early commercialization and fill gaps in product offerings.

Potential Air Quality Benefits:

The 2012 AQMP identifies zero- or near-zero emitting vehicles as a key attainment strategy. Hybrid technologies have the potential to redirect previously wasted kinetic energy into useable vehicle power. This proposed project category will evaluate various hybrid systems and fuel combinations to identify their performance and emissions benefits. Given the variety of hybrid systems under development, it is critical to determine the true emissions and performance of these prototypes, especially if both emissions and fuel economy advantages are achieved.

Expected benefits include the establishment of criteria for emissions evaluations, performance requirements and customer acceptability of the technology. This will help both regulatory agencies and OEMs to expedite introduction of near-zero emitting vehicles in the South Coast Basin, which is a high priority of the AQMP.

Proposed Project: <u>Demonstrate Alternative Energy Storage</u>

Expected SCAQMD Cost: \$300,000

Expected Total Cost: \$2,000,000

Description of Technology and Application:

The SCAQMD has been involved in the development and demonstration of energy storage systems for electric and hybrid-electric vehicles, mainly Lithium ion chemistry battery packs. Over the past few years, additional technology consisting of nickel sodium chloride, lithium-ion and lithium iron phosphate batteries have shown robust performance. Other technology manufacturers have also developed energy storage devices including flywheels, hydraulic systems and ultracapacitors. Energy storage systems optimized to combine the advantages of ultracapacitors and advanced batteries could yield further benefits. This project category is to apply these advanced storage technologies in vehicle platforms to identify best fit applications, demonstrate their viability (reliability, maintainability and durability), gauge market preparedness and provide a pathway to commercialization.

The long-term objective of this program is to decrease fuel consumption and resulting emissions without any changes in performance compared to conventional vehicles. This program will support several projects for development and demonstration of different types of low emission hybrid vehicles using advanced energy strategies and conventional or alternative fuels. The overall net emissions and fuel consumption of these types of vehicles are expected to be much lower than traditional engine systems. Both new and retrofit technologies will be considered.

Potential Air Quality Benefits:

Certification of low emission vehicles and engines and their integration into the Basin's transportation sector is a high priority under the 2012 AQMP. This program is expected to develop alternative energy storage technologies that could be implemented in medium- and heavy-duty trucks, buses and other applications. Benefits will include proof of concept for the new technologies, diversification of transportation fuels and lower emissions of criteria, toxic pollutants and greenhouse gases.

 Proposed Project:
 Develop and Demonstrate Electric Container Transport Technologies

Expected SCAQMD Cost: \$3,000,000

Expected Total Cost: \$5,000,000

Description of Technology and Application:

Advanced transportation systems can be used to transfer cargo containers from ports to both local and "distant" intermodal facilities, thereby significantly reducing emissions from on-road trucks and locomotives and also reducing traffic congestion in local transportation corridors. Such systems could be stand-alone systems that use magnetic levitation (maglev), linear synchronous motors or linear induction motors on dedicated guideways. A more near-term design could use existing roadways that are electrified with catenary electric lines or linear electric motors to move containers on modified trucks equipped to run on electricity. In both scenarios, containers are transported relatively quietly and without direct emissions. The footprints for such systems are similar to conventional rail systems but have reduced impact on adjacent property owners including noise and fugitive dust. These systems can even be built above or adjacent to freeways or on elevated guideways. These container freight systems are not designed to carry any operators on the guideways, where the over-the-roadway system may require the operator to actively control the transport of the containers.

One of the container transportation concepts the SCAQMD is actively pursuing is the eHighway catenary hybrid truck system by Siemens Mobility. Siemens and their partners have developed a catenary system and hybrid electric trucks to utilize the catenary for zero emission transport of containers. The hybrid drive system will extend the operating range of the truck beyond the allelectric range of the catenary system, thus enabling the truck to perform regional drayage operations and bridge gaps in catenary infrastructure as it is deployed on a regional level. The proposed Siemens pantograph system will allow for seamless connection and disconnection from the catenary wires. When entering the catenary system corridor, the pantograph system will verify the presence of catenary lines and allow the driver to raise the pantograph from within the cab of the truck. Upon leaving the catenary system, the pantograph automatically retracts and the truck switches to on-board power systems. The on-board power systems could be a range of technologies, including batteries, fuel cells, or internal combustion engines. In addition, SCAQMD is administering a project to develop and demonstrate zero emission drayage trucks for goods movement operations, consisting of three different battery electric truck technologies and a fuel cell hybrid electric truck platform. This project is funded by a \$4.2 million award from Department of Energy to promote the deployment of zero emission cargo transport technologies. These trucks can be also upfitted to connect to wayside power via a catenary or LSM system in the future.

In addition to these technologies, there are other options for electric container applications such as dual-mode locomotives, hybrid electric technologies with battery storage, a battery tender car, magnetic levitation, fuel cell propulsion systems and other wayside power alternatives. This program will evaluate all available technology options to determine whether their systems can be successfully developed and deployed, financially viable, and reliably operated on a long-term basis.

Potential Air Quality Benefits:

On-road heavy-duty diesel truck travel is an integral part of operations at the ports moving cargo containers into the Basin and beyond. The 2012 AQMP proposes to reduce emissions from this activity by modernizing the fleet and retrofitting NO_x and PM emission controls on older trucks. An alternative approach, especially for local drayage to the nearby intermodal facilities, is to use advanced container transport systems that use electric propulsion for the containers on fixed guideways or modified trucks able to operate on electricity which will eliminate local diesel truck emissions. The emission benefits have not yet been estimated because the fate of the displaced trucks has not been determined.

Engine Systems

 Proposed Project:
 Develop and Demonstrate Advanced Alternative Fuel Medium- and Heavy-Duty Engines and Vehicles

Expected SCAQMD Cost: \$2,000,000

Expected Total Cost: \$20,000,000

Description of Technology and Application:

The objective of this proposed program is to support development and certification of near commercial prototype low emission heavy-duty alternative fuel engine technologies and demonstration of these technologies in on-road vehicles. The NO_x emissions target for this program area is 0.2 g/bhp-hr and lower and the PM emissions target is below 0.01 g/bhp-hr. To achieve these targets, an effective emission control strategy must employ advance fuel or alternative fuels, engine design features, improved exhaust or recirculation systems, and aftertreatment devices that are optimized using a system approach. This program is expected to result in several projects, including:

- demonstration of advanced engines in medium- and heavy-duty vehicles and high horsepower applications;
- development of durable and reliable retrofit technologies to convert engines and vehicles from petroleum fuels to alternative fuels; and
- anticipated fuels for these projects include but are not limited to CNG, LNG, LPG, emulsified diesel and GTL fuels. The program proposes to expand field demonstration of these advanced technologies in various vehicle fleets operating with different classes of vehicles.

The use of alternative fuel in heavy-duty trucking applications has been demonstrated in certain local fleets within the Basin. These vehicles typically require 200-300 horsepower engines. Higher horsepower alternative fuel engines are beginning to be introduced. However, vehicle range, lack of experience with alternative fuel engine technologies and limited selection of appropriate alternative fuel engine products have made it difficult for more firms to consider significant use of alternative fuel vehicles. For example, in recent years, several large trucking fleets have expressed interest in using alternative fuels. However, at this time the choice of engines over 350 HP or more is limited. Continued development of cleaner dedicated natural gas or other alternative fuel engines such as natural gas-hydrogen blends over 350 HP would increase availability to end-users and provide additional emission reductions.

Potential Air Quality Benefits:

This program is intended to expedite the commercialization of low emission alternative fuel heavy-duty engine technology in California, both in the Basin and in intrastate operation. The emission reduction benefit of replacing one 4.0 g/bhp-hr heavy-duty engine with a 0.2 g/bhp-hr engine in a vehicle that consumes 10,000 gallons of fuel per year is about 1400 lb/yr of NO_x. Clean alternative fuels, such as natural gas, or natural gas blends with hydrogen can also reduce heavy-duty engine particulate emissions by over 90 percent compared to current diesel technology. This program is expected to lead to increased availability of low emission alternative fuel heavy-duty engines. Fleets can use the engines and vehicles emerging from this program to comply with SCAQMD fleet regulations.

Proposed Project:	Develop and Demonstrate Alternative Fuel and Clean Conventional
	Fueled Light-Duty Vehicles

Expected SCAQMD Cost: \$200,000

Expected Total Cost: \$1,500,000

Description of Technology and Application:

Although new conventional fueled vehicles are much cleaner than their predecessors, not all match the lowest emissions standards often achieved by alternative fuel vehicles. This project would assist in the development, demonstration and certification of both alternative-fueled and conventional-fueled vehicles to meet the strictest emissions requirements by the state, e.g., SULEV for light-duty vehicles. The candidate fuels include CNG, LPG, ethanol, GTL, clean diesel, bio-diesel and ultra low-sulfur diesel, and compressed air technologies. The potential vehicle projects may include:

- certification of CNG light-duty sedans and pickup trucks used in fleet services;
- resolution of higher concentration ethanol (E-85) affect on vehicle fueling system ("permeation issue");
- certification of E85 vehicles to SULEV standards;
- assessment of "clean diesel" vehicles, including hybrids and their ability to attain SULEV standards; and
- assessment of compressed air technologies.

Other fuel and technology combinations may also be considered under this category.

Potential Air Quality Benefits:

The 2012 AQMP identifies the use of alternative clean fuels in mobile sources as a key attainment strategy. Pursuant to AQMP goals, the SCAQMD has in effect several fleet rules that require public and certain private fleets to purchase clean-burning alternative-fueled vehicles when adding or replacing vehicles to their vehicle fleets. This program is expected to lead to increased availability of low emission alternative-and conventional-fueled vehicles for fleets as well as consumer purchase.

Hydrogen and Fuel Cell Technologies & Infrastructure

Proposed Project: Develop and Demonstrate Operation and Maintenance Business Case Strategies for Hydrogen Stations

Expected SCAQMD Cost: \$350,000

Expected Total Cost: \$4,000,000

Description of Technology and Application:

California regulations require automakers to place increasing numbers of zero emission vehicles into service every year. By 2050, CARB projects that 87% of light-duty vehicles on the road will be zero emission battery and fuel cell vehicles with fuel cell electric becoming the dominant powertrain.

In 2013, cash-flow analysis resulting in a Hydrogen Network Investment Plan and fuel cell vehicle development partnership announcements by major automakers enabled the passage of AB 8 which provides \$20 million per year for hydrogen infrastructure cofunding through the CEC. This resulted in limited fuel cell vehicle production announcements by Hyundai, Toyota and Honda for 2014-2015.

In mid-2014 the CaFCP published the *Hydrogen Progress, Priorities and Opportunities* (HyPPO) report, an update of their roadmap describing the first network of commercial hydrogen stations in California.

Additional work in this project category would develop a plan to secure long-term funding to complete the hydrogen fueling network build-out, provide details how funding can be invested, assess alternative revenue streams such as renewable incentives, propose alternative financing structures to leverage/extend CEC funding, and support station operation during the transition to commercial viability.

Potential Air Quality Benefits:

The 2012 AQMP identifies the use of alternative fuels and zero emission transportation technologies as necessary to meet federal air quality standards. One of the major advantages of Fuel Cell vehicles (FCEVs) is the fact that they use hydrogen, a fuel that can be domestically produced from a variety of resources such as natural gas, solar, wind and biomass. The technology and means to produce hydrogen fuel to support FCEVs are available now. The deployment of large numbers of FCEVs, which is an important strategy to attain air quality goals, requires a well planned and robust hydrogen fueling infrastructure. This SCAQMD program with additional funding from other entities will provide the hydrogen fueling infrastructure that is necessary in the South Coast Air Basin. The deployment of FCEVs and the development of the necessary fueling infrastructure will lead to substantial reductions in NOx, VOC, CO, PM and toxic air contaminants from vehicles.

Proposed Project: Develop and Demonstrate Distributed Hydrogen Production and Fueling Stations

Expected SCAQMD Cost: \$2,000,000

Expected Total Cost: \$6,000,000

Description of Technology and Application:

Alternative fuels, such as hydrogen and the use of advanced technologies, such as fuel cell vehicles, are necessary to meet future clean air standards. A key element in the widespread acceptance and resulting increased use of alternative fuel vehicles is the development of an infrastructure to support the refueling of vehicles, cost-effective production and distribution and clean utilization of these new fuels.

A major challenge to the entry and acceptance of direct-hydrogen fuel cell vehicles is the limited number of hydrogen refueling sites. This program would support the development and demonstration of hydrogen refueling technologies. Proposed projects would address:

- *Fleet and Commercial Refueling Stations:* Further expansion of the hydrogen fueling network based on retail models, providing renewable generation, adoption of standardized measurements for hydrogen refueling, other strategic refueling locations and increased dispensing pressure of 10,000 psi and compatibility with existing CNG stations may be considered.
- *Energy Stations*: Multiple-use energy stations that can produce hydrogen for fuel cell vehicles or for stationary power generation are considered an enabling technology with the potential for costs competitive with large-scale reforming. System efficiency, emissions, hydrogen throughput, hydrogen purity and system economics will be monitored to determine the viability of this strategy for hydrogen fueling infrastructure deployment and as a means to produce power and hydrogen from renewable feedstocks (biomass, digester gas, etc.).

Home Refueling Appliances: Home refueling/recharging is an attractive advancement for alternative clean fuels due to the limited conventional refueling infrastructure. Similar to the natural gas home refueling appliance currently commercially available, this project would evaluate a hydrogen home refueler for cost, compactness, performance, durability, emission characteristics, ease of assembly and disassembly, maintenance and operations. Other issues such as building permits, building code compliance and UL ratings for safety would also be evaluated. It is estimated that approximately 50,000 fuel cell vehicles will be deployed by 2017 in California and the majority of these vehicles will be in the South Coast Air Basin. To provide fuel for these vehicles, the hydrogen fueling infrastructure needs to be significantly increased. SCAQMD will seek additional funding from CEC and CARB to construct and operate hydrogen fueling stations.

Potential Air Quality Benefits:

The 2012 AQMP identifies the use of alternative clean fuels in mobile sources as a key attainment strategy. Pursuant to AQMP goals, the SCAQMD has in effect several fleet rules that require public and certain private fleets to purchase clean-burning alternative-fueled vehicles when adding or replacing vehicles to their vehicle fleets. Fuel cell vehicles constitute the cleanest alternative-fuel vehicles today. Since hydrogen is a key fuel for fuel cell vehicles, this program would address some of the barriers faced by hydrogen as a fuel and thus assist in accelerating its acceptance and ultimate commercialization. In addition to supporting the immediate deployment of the demonstration fleet, expanding the hydrogen fuel infrastructure should contribute to the

market acceptance of fuel cell technologies in the long run, leading to substantial reductions in NO_x , VOC, CO, PM and toxic compound emissions from vehicles.

 Proposed Project:
 Develop and Demonstrate Medium- and Heavy-Duty Fuel Cell Vehicles

Expected SCAQMD Cost: \$\$3,000,000

Expected Total Cost: \$\$10,000,000

Description of Technology and Application:

This proposed project would support evaluation including demonstration of promising fuel cell technologies for applications using direct hydrogen with proton exchange membrane (PEM) fuel cell technology. Battery fuel cell hybrids are another potential technology being mentioned by battery experts as a way of reducing costs and enhancing performance of fuel cell vehicles.

The California ZEV Action Plan specifies actions to help deploy an increasing number of zero emission vehicles, including medium- and heavy-duty ZEVs. Fleets are useful demonstration sites because economies of scale exist in central refueling, in training skilled personnel to operate and maintain the vehicles, in the ability to monitor and collect data on vehicle performance and for manufacturer technical and customer support. In some cases, medium- and heavy-duty fuel cell vehicles could leverage the growing network of hydrogen stations, providing an early base load of fuel consumption until the number of passenger vehicles grows. These vehicles could include hybrid-electric vehicles powered by fuel cells and equipped with batteries capable of being charged from the grid and even supplying power to the grid.

In 2012 SCAQMD launched demonstrations of Zero Emission Container Transport (ZECT) technologies. This project included development and demonstration of a fuel cell hybrid electric truck platform. In 2015 staff proposes to launch ZECT II to develop and demonstrate additional fuel cell truck platforms and vehicles.

This category may include projects in the following applications:

On-Road:

- Transit Buses
- Shuttle Buses
- Medium- & Heavy-Duty Trucks

Potential Air Quality Benefits: The 2012 AQMP identifies the need to implement zero emission vehicles. SCAQMD adopted fleet regulations require public and some private fleets within the Basin to acquire alternatively fueled vehicles when making new purchases. In the future, such vehicles could be powered by zero emission fuel cells operating on hydrogen fuel. The proposed projects have the potential to accelerate the commercial viability of fuel cell vehicles. Expected immediate benefits include the establishment of zero- and near-zero emission proof-of-concept vehicles in numerous applications. Over the longer term, the proposed projects could help foster wide-scale implementation of zero emission fuel cell vehicles in the Basin. The proposed projects could also lead to significant fuel economy improvements, manufacturing innovations and the creation of high-tech jobs in Southern California, besides realizing the air quality benefits projected in the

Off-Road:

- Vehicle Auxiliary Power Units
- Construction Equipment
- Lawn and Garden Equipment
- Cargo Handling Equipment

AQMP.

 Proposed Project:
 Demonstrate Light-Duty Fuel Cell Vehicles

Expected SCAQMD Cost: \$100,000

Expected Total Cost: \$100,000

Description of Technology and Application:

This proposed project would support the demonstration of limited production and early commercial fuel cell passenger vehicles using gaseous hydrogen with proton exchange membrane (PEM) fuel cell technology. Recent designs of light-duty fuel cell vehicles include hybrid batteries to recapture regenerative braking and improve overall system efficiency.

With the implementation of the California ZEV Action Plan, supplemented by the existing and planned hydrogen refueling stations in the Southern California area, light-duty fuel cell limited-production vehicles are planned for retail deployment in early commercial markets near hydrogen stations by several automakers. Fleets are useful demonstration sites because economies of scale exist in central refueling, in training skilled personnel to operate and maintain the vehicles, in the ability to monitor and collect data on vehicle performance and for manufacturer technical and customer support. SCAQMD has included fuel cell vehicles as part of its demonstration fleet since our first hydrogen station began operation in 2005; strengthening support, education, and outreach regarding fuel cell vehicle technology on an on-going basis. In addition, demonstration vehicles could include hybrid-electric vehicles powered by fuel cells and equipped with larger batteries capable of being charged from the grid and even supplying power to the grid.

Potential Air Quality Benefits:

The 2012 AQMP identifies the need to implement zero emission vehicles. SCAQMD adopted fleet regulations require public and some private fleets within the Basin to acquire alternatively fueled vehicles when making new purchases. In the future, such vehicles could be powered by zero emission fuel cells operating on hydrogen fuel. The proposed projects have the potential to accelerate the commercial viability of fuel cell vehicles. Expected immediate benefits include the deployment of zero- emission vehicles in SCAQMD's demonstration fleet. Over the longer term, the proposed projects could help foster wide-scale implementation of zero emission fuel cell vehicles in the Basin. The proposed projects could also lead to significant fuel economy improvements, manufacturing innovations and the creation of high-tech jobs in Southern California, besides realizing the air quality benefits projected in the AQMP.

Infrastructure and Deployment (NG)

 Proposed Project:
 Deploy Natural Gas Vehicles in Various Applications

 Expected SCAQMD Cost:
 \$500,000

Expected Total Cost:\$2,000,000

Description of Technology and Application:

Natural gas vehicles (NGVs) have been very successful in reducing emissions in the South Coast Air Basin due to the deployment of fleets and heavy-duty vehicles utilizing this clean fuel. In order to maintain the throughput, utility and commercial potential of the natural gas infrastructure and the corresponding clean air benefits, deploying additional models of NGVs in existing applications are needed. This technology category seeks to support the implementation of earlycommercial vehicles in a wide variety of applications, such as taxis, law enforcement vehicles, shuttle buses, delivery vans, transit buses, waste haulers, class 8 tractors and off-road equipment such as construction vehicles and yard hostlers.

Potential Air Quality Benefits:

Natural gas vehicles have inherently lower engine criteria pollutant emissions than conventional vehicles, especially in the heavy-duty applications where older diesel engines are being replaced. Incentivizing these vehicles in city fleets, goods movement applications and transit bus routes help to reduce the local emissions and exposure to nearby residents. Natural gas vehicles also can have lower greenhouse gas emissions and increase energy diversity depending on the feedstock and vehicle class. Deployment of additional NGVs is in agreement with SCAQMD's AQMP as well as the state's Alternative Fuels Plan as part of AB 1007 (Pavley).

Proposed Project: Develop, Maintain & Expand Natural Gas Infrastructure

Expected SCAQMD Cost: \$300,000

Expected Total Cost: \$2,000,000

Description of Technology and Application:

This program would support the development, maintenance and expansion of natural gas fueling station technologies and incorporate advancing concepts to increase the overall number of such fueling stations in strategic locations throughout the Basin including the Ports, reduce the cost of natural gas equipment, standardize fueling station design and construction and help with the implementation of SCAQMD's fleet rules. As natural gas fueling equipment begins to age or has been placed in demanding usage, components begin to age and deteriorate. This program offers an incentive to facilities to replace worn-out equipment or to upgrade existing fueling and/or garage and maintenance equipment to offer increased fueling capacity to public agencies, private fleets and school districts.

Potential Air Quality Benefits:

The AQMP identifies the use of alternative clean fuels in mobile sources as a key attainment strategy. NGVs have significantly lower emissions than gasoline vehicles and represent the cleanest internal combustion engine powered vehicles available today. The project has the potential to significantly reduce the installation and operating costs of NGV refueling stations, besides improving the refueling time. While new or improved NGV stations have an indirect emissions reduction benefit, they help facilitate the introduction of low emission, NGVs in private and public fleets in the area, which have a direct emissions reduction benefit. The increased exposure and fleet and consumer acceptance of NGVs would lead to significant and direct reductions in NOx, VOC, CO, PM and toxic compound emissions from mobile sources. Such increased penetration of NGVs will provide direct emissions reductions of NO_x, VOC, CO, PM and air toxic compounds throughout the Basin.

Proposed Project:	Demonstrate Natural Gas Manufacturing and Distribution Technologies
	Including Renewables

Expected SCAQMD Cost: \$500,000

Expected Total Cost: \$7,000,000

Description of Technology and Application:

Lack of sufficient statewide LNG production results in increased fuel costs and supply constraints. The cost of transporting LNG from production facilities out-of-state increases the fuel cost anywhere from 15 to 20 cents per gallon of LNG and subjects users to the reliability of a single supply source. High capital costs prevent construction of closer, large scale liquefaction facilities. Small-scale, distributed LNG liquefaction systems may provide 25 percent lower capital costs than conventional technology per gallon of LNG produced. Because these smaller plants can be sited near fleet customers, costs for transporting the LNG to end users are much lower than those for remote larger plants. Beyond these cost reductions, the smaller plants offer key benefits of much smaller initial capital investment and wider network of supply than the larger plant model. Renewable feed stocks including landfill gas, green waste and waste gases can be processed to yield LNG or CNG.

Industry and government agree that LNG promises to capture a significant share of the heavyduty vehicle and engine market. LNG is preferred for long distance trucking as it provides twice the energy per unit volume as CNG. This translates to longer driving ranges and lower-weight vehicle fuel storage.

The main objectives of this project are to investigate, develop and demonstrate:

- commercially viable methods for converting renewable feed stocks into CNG or LNG (e.g., production from biomass);
- economic small-scale natural gas liquefaction technologies;
- utilization of various gaseous feed stocks locally available;
- commercialize incentives for fleets to site, install and use LNG and L/CNG refueling facilities; and
- strategic placement of LNG storage capacity sufficient to provide supply to users in the event of a production outage.

Potential Air Quality Benefits:

The SCAQMD relies on a significant increase in the penetration of zero- and low emission vehicles in the South Coast Basin to attain federal clean air standards by 2014, 2023 and 2032. This project would help develop a number of small-scale liquefaction technologies that can reduce LNG costs to be competitive with diesel fuel. Such advances are expected to lead to greater infrastructure development. This would make LNG fueled heavy-duty vehicles more available to the commercial market leading to direct reductions in NO_x, PM and toxic compound emissions.

Emission Control Technologies

Proposed Project: Develop and Demonstrate Advanced Aftertreatment Technologies

Expected SCAQMD Cost: \$300,000

Expected Total Cost: \$5,000,000

Description of Technology and Application:

There are a number of aftertreatment technologies which have shown substantial emission reductions in diesel engines. These technologies include diesel particulate filters (DPFs), oxidation catalysts, selective catalytic reduction (SCR) systems and NO_x adsorbers. This project category is to develop and demonstrate these aftertreatment technologies alone or in tandem with an alternative fuel to produce the lowest possible PM, ultrafine particles, nanoparticles, NO_x , CO, carbonyl and hydrocarbon emissions in retrofit and new applications. With the increasing focus on zero- and near-zero emission goods movement technologies, this category should examine idle reduction concepts and technologies that can be employed at ports and airports.

Possible projects include advancing the technologies for on-road retrofit applications such as heavy-duty line-haul diesel engines, street sweepers, waste haulers and transit buses. Applications for non-road may include construction equipment, yard hostlers, gantry cranes, locomotives, marine vessels, ground support equipment and other similar industrial applications. Potential fuels to be considered in tandem are low-sulfur diesel, emulsified diesel, biodiesel, gas-to-liquids, hydrogen and natural gas. This project category will also explore the performance, economic feasibility, viability (reliability, maintainability and durability) and ease-of-use to ensure a pathway to commercialization.

Potential Air Quality Benefits:

The transfer of mature emission control technologies, such as DPFs and oxidation catalysts, to the off-road sector is a potentially low-risk endeavor that can have immediate emissions reductions. Further development and demonstration of other technologies, such SCR and NO_x adsorbers, could also have NO_x reductions of up to 90%.

Proposed Project: Demonstrate On-Road Technologies in Off-Road and Retrofit Applications

Expected SCAQMD Cost: \$250,000

Expected Total Cost: \$1,000,000

Description of Technology and Application:

Heavy-duty on-road engines have demonstrated progress in meeting increasingly stringent Federal and state requirements. New heavy-duty engines have progressed from 2 g/bhp-hr NO_x in 2004 to 0.2 g/bhp-hr NO_x in 2010, which is an order of magnitude decrease in just six years. Off-road engines, however, have considerably higher emissions limits depending on the engine size. For example, Tier-3 standards for heavy-duty engines require only 3 g/bhp-hr NO_x. There are apparent opportunities to implement cleaner on-road technologies in off-road applications. There is also an opportunity to replace existing engines in both on-road and off-road applications with the cleanest available technology. Current regulations require a repower (engine exchange) to only meet the same emissions standards as the engine being retired. Unfortunately, this does not take advantage of recently developed clean technologies.

Exhaust gas cleanup strategies, such as SCR, electrostatic precipitators, baghouses and scrubbers, have been used successfully for many years on stationary sources. The exhaust from the combustion source is routed to the cleaning technology, which typically requires a large footprint for implementation. This large footprint has made installation of such technologies on some mobile sources prohibitive. However, in cases where the mobile source is required to idle for long periods of time, it may be more effective to route the emissions from the mobile source to a stationary device to clean the exhaust stream.

Projects in this category will include utilizing proven clean technologies in novel applications, such as:

- demonstrating certified LNG and CNG on-road engines in off-road applications including yard hostlers, switcher locomotives, gantry cranes, waste haulers and construction equipment;
- implementing lower emission engines in repower applications for both on-road and offroad applications; and
- application of stationary best available control technologies, such as SCR, scrubbers, baghouses and electrostatic precipitators, to appropriate on- and off-road applications, such as idling locomotives, marine vessels at dock and heavy-duty line-haul trucks at weigh stations.

Potential Air Quality Benefits:

The transfer of mature emission control technologies, such as certified engines and SCR, to the non-road and retrofit sectors offers high potential for immediate emissions reductions. Further development and demonstration of these technologies will assist in the regulatory efforts which could require such technologies and retrofits.

Fuels/Emission Studies

Expected SCAQMD Cost: \$500,000

Expected Total Cost: \$1,000,000

Description of Technology and Application:

Hybrid electric, hybrid hydraulic, plug-in electric hybrid and pure EVs will all play a unique role in the future of transportation. Each of these transportation technologies has attributes that could provide unique benefits to different transportation sectors. Identifying the optimal placement of each transportation technology will provide the co-benefits of maximizing the environmental benefit and return on investment for the operator.

The environmental benefit for each technology class will be highly duty-cycle and application specific. Identifying the attributes of a specific application or drive cycle that would take best advantage of a specific transportation technology would speed the adoption and make optimal use of financial resources in the demonstration and deployment of a technology. The adoption rates would be accelerated since the intelligent deployment of a certain technology would ensure that a high percentage of the demonstration vehicles showed positive results. These positive results would spur the adoption of this technology in similar applications, as opposed to negative results derailing the further development or deployment of a certain technology.

The proposed project would conduct a characterization of application specific drive cycles to best match different transportation technologies to specific applications. The potential emissions reductions and fossil fuel displacement for each technology in a specific application would be quantified on a full-cycle basis. This information could be used to develop a theoretical database of potential environmental benefits of different transportation technologies when deployed in specific applications.

Potential Air Quality Benefits:

The development of an emissions reduction database, for various application specific transportation technologies, would assist in the targeted deployment of new transportation technologies. This database coupled with application specific vehicle miles traveled and population data would assist in intelligently deploying advanced technology vehicles to attain the maximum environmental benefit. These two data streams would allow vehicle technologies to be matched to an application that is best suited to the specific technology, as well as selecting applications that are substantial enough to provide a significant environmental benefit. The demonstration of a quantifiable reduction in operating cost through the intelligent deployment of vehicles will also accelerate the commercial adoption of the various technologies. The accelerated adoption of lower emitting vehicles will further assist in attaining SCAQMD's air quality goals.

Proposed Project: <u>Conduct Emissions Studies on Biofuels and Alternative Fuels</u>

Expected SCAQMD Cost: \$500,000

Expected Total Cost: \$1,300,000

Description of Technology and Application:

The use of biofuels can be an important strategy to reduce petroleum dependency, air pollution and greenhouse gas emissions. Biofuels are in fact receiving increased attention due to national support and state activities resulting from AB 32, AB 1007 and the Low-Carbon Fuel Standard. It's noteworthy to mention that last year the Low-Carbon Fuel Standard was upheld by the U.S. Court of Appeals for the Ninth Circuit last year and more recently opponents were denied further appeal by the Supreme Court. With an anticipated increase in biofuel use, it is the objective of this program to further analyze these fuels to better understand their benefits and impacts not only on greenhouse gases but also on air pollution and associated health effects.

In various diesel engine studies, replacement of petroleum diesel fuel with biodiesel fuel has demonstrated reduced PM, CO and air toxics emissions. Biodiesel also has the potential to reduce greenhouse gas emissions because it can be made from renewable feedstocks, such as soy and canola. However, certain blends of biodiesel have a tendency to increase NO_x emissions, which exacerbates the ozone and $PM_{2.5}$ challenges faced in the Basin. In addition, despite recent advancements in toxicological research in the air pollution field, the relationship between biodiesel particle composition and associated health effects is still not completely understood.

Ethanol is another biofuel that is gaining increased national media and state regulatory attention. CARB has recently amended the reformulated gasoline regulation to further increase the ethanol content to 10% as a means to increase the amount of renewable fuels in the state. It is projected that the state's ethanol use will increase from 900 million gallons in 2007 to 1.5 billion gallons by 2012 as a result. As in the case of biodiesel, ethanol has demonstrated in various emission studies to reduce PM, CO and toxic emissions; however, the relationship between particle composition and associated health effects from the combustion of ethanol is not well understood either.

DME is another fuel which requires evaluation of in-use emissions, especially NO_x , in light of Volvo's announcement that they will commercialize class 8 trucks using DME in 2015. The impact of natural gas fuel composition on emissions from heavy-duty trucks and transit buses is also being studied.

In order to address these concerns on potential health effects associated with biofuels, namely biodiesel and ethanol blends, this program will investigate the physical and chemical composition and associated health effects of tailpipe PM emissions from light- to heavy-duty vehicles burning biofuels in order to ensure public health is not adversely impacted by broader use of these fuels. This program also supports future studies to identify mitigation measures to reduce NO_x emissions for biofuels. Additionally, a study of emissions from well-to-wheel for the extraction and use of shale gas might be considered.

Potential Air Quality Benefits:

If biodiesel and biodiesel blends can be demonstrated to reduce air pollutant emissions with the ability to mitigate any NO_x impact, this technology will become a viable strategy to assist in meeting air pollutant standards as well as the goals of AB 32 and the Low-Carbon Fuel Standard. The use of biodiesel is an important effort for a sustainable energy future. Emission studies are critical to understanding the emission benefits and any tradeoffs (NO_x impact) that may result from using this alternative fuel. With reliable information on the emissions from using biodiesel and biodiesel blends, the SCAQMD can take actions to ensure the use of biodiesel will obtain air

pollutant reductions without creating additional NO_x emissions that may exacerbate the Basin's ozone problem.

Proposed Project: Identify and Demonstrate In-Use Fleet Emissions Reduction Technologies and Opportunities

Expected SCAQMD Cost: \$250,000

Expected Total Cost: \$2,000,000

Description of Technology and Application:

New technologies, such as alternative fueled heavy-duty engines, are extremely effective at reducing emissions because they are designed to meet the most stringent emissions standards while maintaining vehicle performance. In addition, many new vehicles are now equipped with telematics enabling motorists to obtain transportation information such as road conditions to avoid excessive idling and track information about the vehicle maintenance needs, repair history, tire pressure and fuel economy. Telematics have been shown to reduce emissions from new vehicles. Unfortunately, the in-use fleet lacks telematic systems--particularly heavy-duty engines in trucks, buses, construction equipment, locomotives, marine vessels and cargo handling equipment--have fairly long working lifetimes (up to 20 years due to remanufacturing in some cases). Even light-duty vehicles routinely have lifetimes exceeding 200,000 miles and 10 years. And it is the in-use fleet, especially the oldest vehicles, which are responsible for the majority of emissions.

This project category is to investigate near-term emissions control technologies which can be economically applied to reduce emissions from the in-use fleet. The first part of the project is to identify and conduct proof-of-concept demonstrations of feasible candidate technologies, such as:

- remote sensing for heavy-duty vehicles;
- annual testing for high mileage vehicles (>100,000 miles);
- replace or upgrade emissions control systems at 100,000 mile intervals;
- on-board emission diagnostics with remote notification;
- low-cost test equipment for monitoring and identifying high emitters;
- test cycle development for different class vehicles (e.g. four wheel drive SUVs);
- electrical auxiliary power unit replacements; and
- development, deployment and demonstration of smart vehicle telematic systems

The second phase of the project is to validate the technology or strategy on a larger demonstration project over a longer period of time.

Potential Air Quality Benefits:

Many of the technologies identified can be applied to light-duty and heavy-duty vehicles to identify and subsequently remedy high-emitting vehicles in the current fleet inventory. Estimates suggest that 5 percent of existing fleets account for up to 80 percent of the emissions. Identification of higher emitting vehicles would assist with demand-side strategies, where higher emitting vehicles have correspondingly higher registration charges.

Health Impacts Studies

Proposed Project:Evaluate Ultrafine Particle Health EffectsExpected SCAQMD Cost:\$250,000Expected Total Cost:\$3,000,000

Description of Technology and Application:

Reducing diesel exhaust from vehicles has become a high priority in the South Coast Air Basin since CARB identified the particulate phase of diesel exhaust as a surrogate for all of the toxic air contaminant emitted from diesel exhaust. Additionally, recent health studies indicate that the ultrafine portion of particulate matter may be more toxic on a per-mass basis than other fractions. Several technologies have been introduced and others are under development to reduce diesel emissions. These include among others low-sulfur diesel fuel, particulate matter traps and heavy-duty engines operating on alternative fuel such as CNG and LNG. Recent studies have shown that control technologies applied to mobile sources have been effective in reducing the mass of particulates emitted. However, there is also evidence that the number of ultrafine particles on and near roadways has increased, even while the mass of particulates has decreased. To have a better understanding of changes in ultrafine particulate emissions from the application of the new technologies and the health effects of these emissions, an evaluation and comparison of ultrafine particulate matter and the potential impacts on community exposures are necessary.

In this program, measurements and chemical composition of ultrafine particulates will be done, as well as studies conducted to characterize their toxicity. The composition of the particulates can further be used to determine the contribution from specific combustion sources. Additionally, engine or chassis dynamometer testing may be conducted on heavy-duty vehicles to measure, evaluate and compare ultrafine particulate matter, PAH and other relevant toxic emissions from different types of fuels such as CNG, low-sulfur diesel, etc. These tests may also include comparisons with the application of particulate matter retrofit traps. This program needs to be closely coordinated with the development of technologies for alternative fuels, aftertreatment and new engines in order to determine the health benefits of such technologies.

Potential Air Quality Benefits:

The AQMP for the South Coast Basin relies on significant penetration of low emission vehicles to attain federal clean air standards. Reduction of particulate emissions from the combustion of diesel and other fuels is a major priority in achieving these standards. This project would help to better understand the nature and amount of ultrafine particulates generated by different types of fuels and advanced control technologies as well as provide information on potential health effects of ultrafine particles. Such an understanding is important to assess the emission reduction potentials and health benefits of these technologies. In turn, this will have a direct effect on the policy and regulatory actions for commercial implementation of alternative fuel vehicles in the Basin.

Proposed Project: Conduct Monitoring to Assess Environmental Impacts

Expected SCAQMD Cost: \$250,000

Expected Total Cost: \$1,000,000

Description of Technology and Application:

Facilities, buildings, structures, or highways which attract mobile sources of pollution are considered "indirect" sources. Ambient and saturation air monitoring near sources such as ports, airports, rail yards, distribution centers and freeways is important to identify the emissions exposure to the surrounding communities and provide the data to then conduct the health impacts due to these sources. This project category would identify areas of interest and conduct ambient air monitoring, conduct emissions monitoring, analyze the data and assess the health impacts from mobile sources. The projects would need to be at least one year in duration in order to properly assess the air quality impacts in the area.

Potential Air Quality Benefits:

The proposed project will assist in the evaluation of adverse public health impacts associated with mobile sources. The information will be useful in (a) determining whether indirect sources have a relatively higher impact on residents living in close proximity; and (b) providing guidance to develop some area-specific control strategies in the future should it be necessary.

Proposed Project: Assess Sources and Health Impacts of Particulate Matter

 Expected SCAQMD Cost:
 \$250,000

 Expected Total Cost:
 \$300,000

Description of Technology and Application:

Previous studies of ambient levels of toxic air contaminants, such as the MATES series of studies, have found that diesel exhaust is the major contributor to health risk from air toxics. Analyses of diesel particulate matter in ambient samples have been based on measurements of elemental carbon. While the bulk of particulate elemental carbon in the South Coast Air Basin is thought to be from combustion of diesel fuels, it is not a unique tracer for diesel exhaust.

The MATES III study collected particulate samples at ten locations in the South Coast Air Basin. Analysis of particulate bound organic compounds was utilized as tracers to estimate levels of ambient diesel particulate matter as well as estimate levels of particulate matter from other major sources. Other major sources that were taken into consideration include automobile exhaust, meat charbroiling, road dust, wood smoke and fuel oil combustion. Analyzing for organic compounds and metals in conjunction with elemental carbon upon collected particulate samples was used to determine contributing sources.

The measurement of organic compounds as tracers from specific sources is a technique that has been used in numerous source apportionment studies and published within the scientific literature. The resulting data on levels of tracers can be evaluated using Chemical Mass Balance Models and other source apportionment techniques, such as Positive Matrix Factorization, to estimate source contributions to particulate matter. The resulting estimates of ambient diesel particulate matter can then be used to assess potential health risks.

MATES IV was initiated in mid-2012 and includes an air monitoring program, an updated emissions inventory of toxic air contaminants and a regional modeling effort to characterize risk across the Basin. This follow-on study, for which preliminary results were just released with the formal draft report anticipated in the next few weeks, continued to focus on the carcinogenic risk from exposure to air toxics, but will not estimate mortality or other health effects from particulate exposures, as in previous studies. Instead, MATES IV did measure ultrafine particle concentrations and assess human exposure to ultrafines and back carbon near sources such as airports, freeways, rail yards, busy intersections and warehouse operations. This project category would include other related studies, such as toxicity assessment based on age, source (heavy-duty, light-duty engines) and composition (semi-volatile or non-volatile fractions) to better understand the health effects and potential community exposures.

Potential Air Quality Benefits:

Results of this work will provide a more robust, scientifically sound estimate of ambient levels of diesel particulate matter as well as levels of particulate matter from other significant combustion sources. This will allow a better estimation of potential exposures to and health effects from toxic air contaminants from diesel exhaust in the South Coast Air Basin. This information in turn can be used to determine the health benefits of promoting clean fuel technologies.

Stationary Clean Fuel Technologies

Proposed Project:	Develop and Demonstrate Reliable, Low Emission Monitoring Systems		
	and Test Methods		

Expected SCAQMD Cost: \$250,000

Expected Total Cost: \$500,000

Description of Technology and Application:

Currently, the inability of air/fuel ratio control (AFRC) systems to keep rich-burn engines in compliance contributes significantly to air pollution in the basin. Reliable, low-cost emission monitoring systems are needed for small-to-intermediate size combustion devices, including stationary engines, boilers, heaters, furnaces and ovens that are not large enough to justify a continuous emission monitoring system (CEMS). This class of combustion device is often permitted on the basis of a single demonstration or periodic demonstrations of NO_x and CO emissions meeting SCAQMD rule requirements or a RECLAIM concentration limit. However, SCAQMD-unannounced tests on engines and boilers have found that in many cases NO_x and/or CO levels have increased significantly above levels that have been initially or periodically demonstrated due to equipment malfunction and/or inadequate operator attention. It is suspected that the same may be true of heaters, furnaces and ovens.

Demonstrations of newer technologies in recent years could result in a commercially viable alternative to CEMs that is both reliable and feasible in terms of lower costs. For example, manufacturers of flue gas analyzers have, in recent years, developed low-cost multi-gas analyzers suitable for portable or stack-mounted use. Some preliminary testing of a new type of AFRC, which uses a different type of O2 sensor known as a wide-band O2 sensor, is another alternative that can be analyzed. Another technical approach might be to deploy technology utilizing the O2 signature of a post-catalyst O2 sensor and additional control concepts being developed by manufacturers. Since an underlying problem has been that engine, catalyst and AFRC manufacturers have developed systems independently, a system being co-developed to perform continuous diagnostics to assist operators in keeping rich-burn engines in compliance is possibly another alternative for demonstration.

Potential Air Quality Benefits:

Stationary engines, boilers, heaters, furnaces and ovens account for approximately 11 percent of total NO_x emissions and about 6 percent of total CO emissions. There has been a long-standing compliance problem with rich-burn IC engines in the basin and evidence indicates that many of these devices are operating with NO_x and/or CO emissions above levels required in their permits. Projects could potentially reduce a significant class of NO_x and CO emissions that are in excess of the assumptions in the AQMP and further enhance SCAQMD's ability to enforce full-time compliance.

Proposed Project: Develop and Demonstrate Clean Stationary Technologies

Expected SCAQMD Cost: \$250,000

Expected Total Cost: \$750,000

Description of Technology and Application:

Stationary sources, including VOC sources such as large printing facilities and furniture manufacturers, have become cleaner and cleaner due to the regulatory requirements for low emissions and the advancements in technology to meet those requirements. Best Available Control Technology (BACT) regulations, however, are only required for new, modified, or relocated sources. This project category is to develop and demonstrate new technologies that can provide emissions reductions in new installations or as retrofit modifications. Possible technology examples include:

- low NO_x technologies (burners and ICEs);
- low-Btu gas technologies (e.g., digester, landfill, or diary gases);
- alternative fuels and hydrogen blends;
- alternative diesel fuels (emulsified, gas-to-liquids, biodiesel with aftertreatment);
- low emission refinery flares;
- catalytic combustion;
- cost-effective fuel cell and fuel cell hybrid distributed generation;
- fumes-to-fuel technology to replace thermal oxidizers and capture VOC emissions for electricity generation while ensuring no emission of air toxics; and
- boiler optimization design and strategies to improve efficiencies.

Depending on the technology, a proof-of-concept project, demonstration, or pre-commercial deployment would be considered to garner further information on the technology. Issues to investigate include viability (reliability, maintainability and durability) of the technology, cost-effectiveness and operator ease-of-use in order to assess commercialization.

Potential Air Quality Benefits:

The SCAQMD has a substantial number of older, small, stationary source technologies within its jurisdiction. Since these devices are not subject to continuous emissions monitoring system requirements, evidence suggests that these devices may not be operating at their permitted NO_x , CO, hydrocarbon and PM emissions levels. Replacing these devices with cleaner and more reliable technologies or technology/fuel combinations can have dramatic reductions in all of these criteria pollutants. VOC emission reductions may also be achieved at larger stationary VOC sources to achieve the new federal ozone and $PM_{2.5}$ standards.

Proposed Project: Develop and Demonstrate Renewables-Based Energy Generation Alternatives Alternatives

Expected SCAQMD Cost: \$200,000

Expected Total Cost: \$1,000,000

Description of Technology and Application:

The objective of this proposed program is to support the development and demonstration of clean energy, renewable alternatives in stationary and mobile applications. The technologies to be considered include thermal, photovoltaic and other solar energy technologies; wind energy systems; energy storage and conservation potentially including vehicle to grid or vehicle to building functionalities for alternative energy storage; biomass conversion; and other renewable energy and recycling technologies. Innovative solar technologies, such as solar thermal air conditioning and photovoltaic-integrated roof shingles, are of particular interest. Also, in the agricultural sections of the Basin, wind technologies could potentially be applied to drive large electric motor-driven pumps to replace highly polluting diesel-fired pumps. Besides renewable technologies, electrolyzer technology could be used to generate hydrogen, a clean fuel. Hydrogen, when used in regular engines, can substantially reduce tail-pipe emissions, while in fuel cells the emissions are reduced to zero.

The project is expected to result in pilot-scale production demonstrations, scale-up process design and cost analysis, overall environmental impact analysis and projections for ultimate clean fuel costs and availability. This program is expected to result in several projects addressing technological advancements in these technologies that may improve performance and efficiency, potentially reduce capital and operating costs, enhance the quality of natural gas generated from renewable sources for injection into natural gas pipelines, improve reliability and user friendliness and identify markets that could expedite the implementation of successful technologies.

Potential Air Quality Benefits:

The 2012 AQMP identifies the development and ultimately the implementation of non-polluting power generation. To gain the maximum air quality benefit, polluting fossil fuel-fired electric power generation needs to be replaced with clean renewable energy resources or other advanced zero emission technologies, such as hydrogen fuel cells, particularly in a distributed generation context.

The proposed program is expected to accelerate the implementation of advanced zero emission energy sources. Expected benefits include directly reducing the emissions by the displacement of fossil generation; proof-of-concept and potential viability for such zero emission power generation systems; increased exposure and user acceptance of the new technology; reduced fossil fuel usage; and the potential for increased use, once successfully demonstrated, with resulting emission benefits, through expedited implementation. These technologies would also have a substantial influence in reducing global warming emissions.

Outreach and Technology Transfer

Proposed Project:	Assessment and Technical Support of Advanced Technologies and Information Dissemination		
Expected SCAQMD	Cost:	\$500,000	
Expected Total Cost	:	\$800,000	

Description of Project:

This program supports the assessment of clean fuels and advanced technologies, their progress towards commercialization and the dissemination of information on demonstrated technologies. The objective of this program is to expedite the transfer of technology developed as a result of Technology Advancement Office projects to the public domain, industry, regulatory agencies and the scientific community. This program is a fundamental element in the SCAQMD's outreach efforts to expedite the implementation of low emission and clean fuels technologies and to coordinate these activities with other organizations.

This program may include the following:

- technical review and assessment of technologies, projects and proposals;
- support for alternative fuel refueling and infrastructure;
- advanced technology curriculum development, mentoring and outreach to local schools;
- emissions studies and assessments of zero emission alternatives;
- advanced technology vehicle demonstrations;
- preparation of reports, presentations at conferences, improved public relations and public communications of successful demonstrations of clean technologies;
- participation in and coordination of workshops and various meetings;
- support for training programs related to fleet operation, maintenance and refueling of alternative fuel vehicles;
- publication of technical papers, reports and bulletins; and
- production and dissemination of information, including web sites.

These objectives will be achieved by consulting with industry, scientific, health, medical and regulatory experts and co-sponsoring related conferences and organizations, resulting in multiple contracts. In addition, an ongoing outreach campaign will be conducted to encourage decision-makers to voluntarily switch to alternatively fueled vehicles and train operators to purchase, operate and maintain these vehicles and associated infrastructure.

Potential Air Quality Benefits:

SCAQMD adopted fleet regulations requiring public and private fleets within the Basin to acquire alternatively fueled vehicles when making new purchases. Expected benefits of highlighting success stories in the use of advanced alternatively fueled vehicles could potentially expedite the acceptance and commercialization of advanced technologies by operators seeking to comply with the provisions of the recently adopted SCAQMD fleet rules. The resulting future emissions benefits will contribute to the goals of the AQMP.

Proposed Project:	Support for Implementation of Various Clean Fuels Vehicle Incentive
	Programs

Expected SCAQMD Cost: \$400,000

Expected Total Cost: \$400,000

Description of Project:

This program supports the implementation of zero emission vehicle incentive programs, the Carl Moyer incentives program and the school bus incentives program. Implementation support includes application approval, grant allocation, documentation to the CARB, verification of vehicle registration and other support as needed. Information dissemination is critical to successful implementation of a coordinated and comprehensive package of incentives. Outreach will be directed to vehicle dealers, individuals and fleets.

Potential Air Quality Benefits:

As described earlier, the SCAQMD will provide matching funds to implement several key incentives programs to reduce diesel emissions in the Basin. Furthermore, the SCAQMD recently adopted fleet regulations requiring public and private fleets within the Basin to acquire alternatively fueled vehicles when making new purchases. Expected benefits of highlighting zero emission vehicle incentives could potentially expedite the acceptance and commercialization of advanced technologies by operators seeking to comply with the provisions of the recently adopted SCAQMD fleet rules. The resulting future emissions benefits will contribute to the goals of the AQMP. The school bus program and the Carl Moyer incentives program will also reduce large amounts of NO_x and PM emissions in the basin in addition to reducing toxic air contaminants.