1 2 3 In The Matter Of 4 5 SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT, 6 Petitioner, 7 VS. 8 CHIQUITA CANYON, LLC a Delaware 9 Corporation, [Facility ID No. 119219] 10 Respondent. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28

BEFORE THE HEARING BOARD OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

Case No. 6177-4

EXHIBIT Q TO DECLARATION OF PATRICK SULLIVAN, BCES, CPP, REPA

Health and Safety Code § 41700, and District Rules 402, 431.1, 3002, 203, 1150

Hearing Date: June 4 and 17, 2025

Hearing Time: 9:30 A.M.
Place: Hearing Board

South Coast Air Quality Management District, 21865 Copley Drive Diamond Bar, CA 91765

SOURCE REPORT FOR 2024 LEACHATE AND CONDENSATE VAPOR SAMPLING AT THE CHIQUITA CANYON LANDFILL FACILITY ID: 119219

Prepared For:

SCS Engineers – Chiquita Canyon Landfill 3900 Kilroy Airport Way, Suite 100 Long Beach, California 90806

For Submittal To:

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Pete San Juan

Test Date: October 17, 2024
Production Date: November 15, 2024

Document Number: W002AS-044747-RT-6729

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature: _		_ Date:	11/15/2024
Name: _	Pete SanJuan	_ Title:	Client Project Manager
appropriate wri the presented	itten materials contained herei	n. I herel , and coi	alculations, results, conclusions, and other by certify that, to the best of my knowledge, nforms to the requirements of the Montrose
Signature: _	Michael Many	_ Date:	11/15/2024
Name:	Michael Chowsanitphon	Title:	Reporting Hub Manager

TABLE OF CONTENTS

SEC	CTION	<u> </u>	<u>PAGE</u>
1.0	INTR	ODUCTION	5
2.0	FACII	LITY AND SOURCE INFORMATION	6
	2.1	PROCESS EQUIPMENT INFORMATION	6
3.0	TEST	INFORMATION AND METHODOLOGY	7
	3.1	SCAQMD METHOD 1.1 – SAMPLING AND VELOCITY TRAVERSES FOR STATIONARY SOURCES	7
	3.2	SCAQMD METHOD 2.1 – VELOCITY AND VOLUMETRIC FLOW RATE	8
	3.3	SCAQMD METHOD 3.1 – GAS ANALYSIS FOR DRY MOLECULAR WEIGHT AND EXCESS AIR	
	3.4	SCAQMD METHOD 4.1 – DETERMINATION OF MOISTURE CONTENT IN STACK GASES	8
	3.5	SCAQMD METHOD 307-91 – HYDROGEN SULFIDE AND REDUCED SULFU COMPOUNDS	
	3.6	EPA METHOD TO-15 – VOLATILES AND HYDROCARBON COLLECTED IN SUMMA CANISTER	8
4.0	RESU	JLTS	9
LIS	T OF A	APPENDICES	
Α	TEST	DATA	11
	A.1	Sample Location Data	12
	A.2	Velocity, Moisture and Flow Rate Data	28
	A.3	Organics and Sulfur Field and Laboratory Data	
	A.4	Quality Assurance Data	69
В	GENE	ERAL EMISSIONS CALCULATIONS	80
С	QUAL	LITY ASSURANCE	83
	C.1	Quality Assurance Program Summary	84
	C.2	SCAQMD and STAC Certifications	90
	C.3	Individual QI Certifications	93
	C.4	Statement of No Conflict of Interest	97
D	FACII	LITY PERMIT	99
Е	FLAR	E NO. 1 REPORT	102
LIS	T OF 1	TABLES	
3-1	TES	T PROCEDURES	7
4-1	H ₂ S	AND TOTAL REDUCED SULFUR RESULTS	9
4-2	TRA	CE ORGANICS SPECIES RESULTS	10

1.0 INTRODUCTION

Montrose Air Quality Services, LLC (MAQS) was contacted by SCS Engineers (SCS) to conduct sampling at various locations on the vapor ventilation system located at the Chiquita Canyon Landfill (Chiquita), located in Castaic, California. Testing was conducted to comply with Condition 72 of the Modified Stipulated Order for Abatement (SOFA) issued to Chiquita by the South Coast Air Quality Management District (SCAQMD) on April 24, 2024. The tests were conducted according to the test protocol (MAQS Document Number W002AS-056454-PP-1074) and source test protocol evaluation (S/T ID: P24228). Testing results of the inlet of the flare prior to combustion can be found in the MAQS test report (MAQS Document Number W002AS-040568-RT-6437). The report is included in Appendix E of this report. The Montrose project manager was Mr. Pete San Juan. He was assisted by MAQS technician Jose Iniguez. Pete San Juan was the on-site qualified individual for MAQS. Rodney Davis from SCAQMD witnessed part of the testing. MAQS qualifies as an independent testing laboratory under SCAQMD Rule 304 (no conflict of interest) and is certified by the SCAQMD to conduct testing for criteria pollutants according to District Methods.

Equipment and facility information is provided in Section 2.0. Source test information is detailed in Section 3.0. Test results are provided in Section 4.0. Supplemental information is contained in the Appendices.

2.0 FACILITY AND SOURCE INFORMATION

The facility address is:

Physical Address: Chiquita Canyon Landfill

29201 Henry Mayo Drive Castaic, California 91384

Sampling of leachate and condensate vapors was conducted from the following locations:

- The tank vents or manifolds which are representative of a set of tanks;
- The header/manifold from each leachate tank farm or manifold including Tank Farm #2, Tank Farm #6, Tank Farm #7A, Tank Farm #7B, Tank Farm #9A, and Tank Farm #9B. Testing was performed upstream of the piping connection to the LFG Collection and Conveyance System where landfill gas may affect results.

2.1 PROCESS EQUIPMENT INFORMATION

Vapors created from the volatilization of chemicals in the head space in the leachate tanks at tank farms #2, #6, #7A, #7B, #9A and #9B are transferred under vacuum through the wellhead and into the landfill gas collection system then to the flare station for combustion. The pressure and temperature of the vapors in the piping varies based on ambient temperatures during normal operation. The facility operates 24 hours per day.

3.0 TEST INFORMATION AND METHODOLOGY

The pollutants measured and test methodology are summarized in Table 3-1. Volume flow rate measurements were performed before the sample collection.

The field sampling procedures utilized during the test program are described below. The published reference methods provide greater detailed descriptions than in this section. The purpose of this section is to provide an overview of the sampling methods and any variations. The sampling procedures are based on SCAQMD, and EPA Reference Methods.

TABLE 3-1 TEST PROCEDURES TEST PROGRAM OVERVIEW CHIQUITA CANYON LANDFILL LEACHATE AND CONDENSATE VAPOR SAMPLING

Parameter	Sample Medium	Analytical Technique	Reference Method	Number of Replicates
Flow Rate/Temperature	Pitot Tube / TC	Differential Pressure / Facility Meter	SCAQMD 2.1	1 for each location
Moisture	Wet Bulb/Dry Bulb	Psychrometric Chart	SCAQMD 4.1	1 for each location
H₂S and TRS	Tedlar Bag	GC/SCD	SCAQMD 307-91	1 for each location
TO-15 (Rule 1150.1)	Summa Can	GC/MS	EPA TO-15	1 for each location

3.1 SCAQMD METHOD 1.1 – SAMPLING AND VELOCITY TRAVERSES FOR STATIONARY SOURCES

A preliminary source test site assessment was performed prior to the source test in order to determine applicable sample point traverse locations. The stack diameter, and the distance from sample ports to disturbances (bends, flanges, etc.), both upstream and downstream, were measured. This information is utilized to determine the minimum number of sampling points per traverse, and the distance from the inner stack wall to each sample point location. All sample locations were located according to the minimum requirements of SCAQMD Method 1.1. Additionally, this method considers cyclonic flow patterns and in-situ stratified pollutant concentrations. Cyclonic flow tests were performed at locations where flow was measurable.

3.2 SCAQMD METHOD 2.1 – VELOCITY AND VOLUMETRIC FLOW RATE

The velocity of the gas stream was determined by using an "S" type or standard pitot tube, a low flow electronic manometer, and type "K" thermocouple with a digital temperature measuring device. The calibrated pitot tube is connected to the calibrated electronic Air Data Multimeter (ADM) manometer and leak checked. A temperature and delta P is obtained at each traverse point, and a duct static pressure is measured and recorded. The dry volumetric flow rate is determined from the gas velocity data, stack pressure, stack gas moisture content, stack gas molecular weight, and cross-sectional area of duct.

3.3 SCAQMD METHOD 3.1 – GAS ANALYSIS FOR DRY MOLECULAR WEIGHT AND EXCESS AIR

Leachate and condensate vapor gases were analyzed by GC for O₂ and CO₂.

3.4 SCAQMD METHOD 4.1 – DETERMINATION OF MOISTURE CONTENT IN STACK GASES

Moisture was measured using a wet bulb/dry bulb and calculated with a psychrometric chart.

3.5 SCAQMD METHOD 307-91 – HYDROGEN SULFIDE AND REDUCED SULFUR COMPOUNDS

Samples for determination of hydrogen sulfide and speciated reduced sulfur compounds were collected in Tedlar bags. The samples were analyzed by GC/SCD by Quantum Analytical Service, Inc. in Carson, California, following SCAQMD Method 307-91 protocol. The Tedlar bag samples are analyzed within 24 hours of sampling.

3.6 EPA METHOD TO-15 – VOLATILES AND HYDROCARBON COLLECTED IN SUMMA CANISTER

Samples were collected in glass silicate lined Summa canisters. The samples were analyzed by AtmAA Inc., located in Calabasas, California for volatile organics listed in SCAQMD Rule 1150.1 Table 1 list.

Sampling Procedure:

One summa can per location were filled with sample gas using an evacuated cylinder. The sampling probe was connected to the can with Teflon tubing. The samples were collected at a fixed point halfway into the sampling duct.

4.0 RESULTS

The emission results are presented in Tables 4-1 and 4-2. Site schematics and photographs are presented in Appendix A.1.

Due to extremely low flow rates at Tank Farm 6, 2, and 7B, Reference Method measurements were unable to be performed. Flow rates for these locations were taken from the installed facility meters.

TABLE 4-1
H₂S AND TOTAL REDUCED SULFUR RESULTS
CHIQUITA CANYON LANDFILL
LEACHATE AND CONDENSATE VAPOR SAMPLING
OCTOBER 17, 2024

Parameter/Units	Tank Farm 6	Tank Farm 9A	Tank Farm 9B	Tank Farm 2	Tank Farm 7B	Tank Farm 7A
O ₂ , %	0.28	21.35	21.33	20.30	21.37	21.57
CO ₂ , %	46.82	0.10	0.10	3.43	0.38	0.10
N ₂ , %	0.55	77.45	77.29	73.24	76.82	77.58
H ₂ O, %	3.49	2.80	3.00	3.42	3.60	3.09
Flow Rate, scfm	5.2 ⁽¹⁾	232	268	3.7 ⁽¹⁾	20(1)	99
Temperature, °F	83	83	81	85	84	86
Sulfur Compounds						
H₂S, ppm	37.64	< 0.05	< 0.05	0.34	0.05	< 0.05
Carbonyl Sulfide, ppm	< 0.05	< 0.05	< 0.05	0.38	< 0.05	< 0.05
Methyl Mercaptan, ppm	21.06	< 0.05	0.06	1.23	0.60	< 0.05
Ethyl Mercaptan, ppm	0.59	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethyl Sulfide, ppm	192.40	0.49	3.18	78.49	7.34	2.08
Unidentified S Compounds, ppm	8.8	<0.05	0.14	14.29	0.74	0.63
Total Sulfur Compounds						
Total Reduced Sulfur Inlet, ppm	260.4	0.49	3.38	94.73	8.73	2.71

Notes:

⁽¹⁾ Flow rate was not able to be measured, Flow rate was obtained from the installed meter.

TABLE 4-2 TRACE ORGANICS SPECIES RESULTS CHIQUITA CANYON LANDFILL LEACHATE AND CONDENSATE VAPOR SAMPLING OCTOBER 17, 2024

Sample Location: Test No.: Start Time: Flow Rate, scfm:	Tan	k Farm 6 1 939 5.2*	Tan	k Farm 9A 1 1030 232	Tan	k Farm 9B 1 1030 268		k Farm 2 1 1130 3.7*	Tan	1 1207 20*	Tar	nk Farm 7A 1 1300 99
Species		ppb		ppb		ppb		ppb		ppb		ppb
Hydrogen sulfide:		11,135	<	150	<	150	<	150	<	150	<	150
Benzene:		15,950		1,080		445		11,100		1,130		690
Benzyl Chloride:	<	100	<	100	<	100	<	100	<	100	<	100
Chlorobenzene:		267	<	100	<	100	<	100	<	100	<	100
Dichlorobenzenes:**		2,620		383	<	150		565	<	150	<	150
1,1-dichloroethane:	<	100	<	100	<	100	<	100	<	100	<	100
1,2-dichloroethane:	<	100	<	100	<	100	<	100	<	100	<	100
1,1-dichloroethylene:	<	100	<	100	<	100	<	100	<	100	<	100
Dichloromethane:	<	225	<	225	<	225	<	225	<	225	<	225
1,2-dibromoethane:	<	60	<	60	<	60	<	60	<	60	<	60
Perchloroethylene:	<	60	<	60	<	60	<	60	<	60	<	60
Carbon Tetrachloride:	<	125	<	125	<	125	<	125	<	125	<	125
Toluene:		65,650		7,260		2,350		4,810		1,860		2,750
1,1,1-trichloroethane:		518		809		493		395		439		654
Trichloroethene:	<	75	<	75	<	75	<	75	<	75	<	75
Chloroform:	<	80	<	80	<	80	<	80	<	80	<	80
Vinyl Chloride:	<	80	<	80	<	80	<	80	<	80	<	80
M+P-xylenes:		26,700		3,330		1,200		3,250		1,090		1,780
O-xylene:		7,625		964		344		1,160		330		532
Bromomethane:	<	55	<	55	<	55	<	55	<	55	<	55
1,4-Dioxane:		186	<	125	<	125		820		152		268

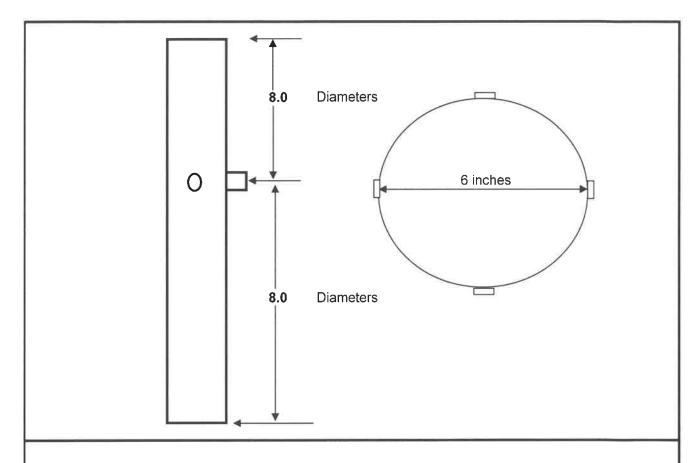
< - indicates that the species was not detected in the sample above the analytical detection limit for this species.

The values reported is the detection limit for the species and the actual concentration is lower.

^{*}Flow rate was not able to be measured, Flow rate was obtained from the installed meter.

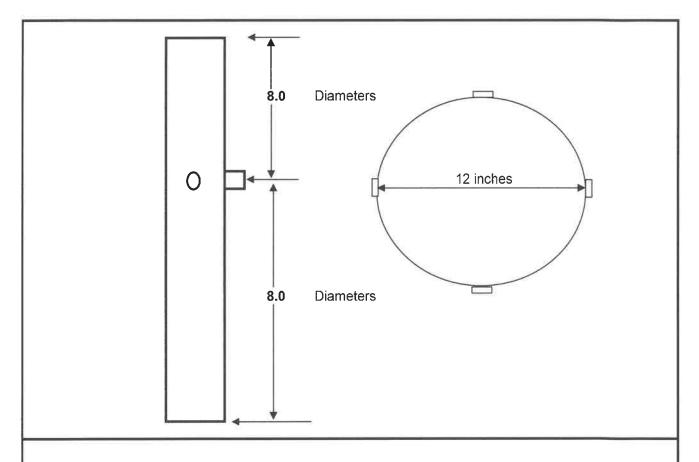
^{**}Total amount containing meta, para, and ortho isomers.

APPENDIX A TEST DATA


Appendix A.1 Sample Location Data

Client: SCS Field Services Date: 10/17/24

Location: Chiquita TF 6 Performed By: SJ, JI

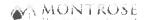


Diameter (inches)	6.00	Sample	% of	Dist from	Dist from
Diameter (inches)	0.00	Point	Diameter	Wall (inches)	Port (inches)
Jpstream (inches)	48.00	1	4.4	0.5	0.5
		2	14.6	0.9	0.9
Downstream (inches)	48.00	3	29.6	1.8	1.8
		4	70.4	4.2	4.2
oupling (in.)	0.00	5	85.4	5.1	5.1
, •		6	95.6	5.7	5.7
Stack Area (ft²)	0.20			=	

Client: SCS Field Services Date: 10/17/24

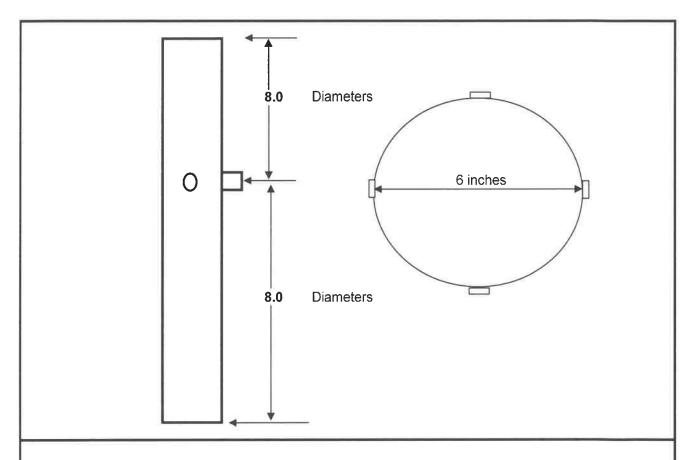
Location: Chiquita TF 9A Performed By: SJ, JI

- :	10.00		0/ 5	D: 11	D: 16
Diameter (inches)	12.00	Sample	% of	Dist from	Dist from
		Point	Diameter	Wall (inches)	Port (inches)
Jpstream (inches)	96.00	1	4.4	0.5	0.5
	-	2	14.6	1.8	1.8
ownstream (inches)	96.00	3	29.6	3.6	3.6
	-	4	70.4	8.4	8.4
oupling (in.)	0.00	5	85.4	10.2	10.2
		6	95.6	11.5	11.5
Stack Area (ft²)	0.79				
()					

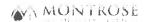


Client: SCS Field Services Date: 10/17/24

Location: Chiquita TF 9B Performed By: SJ, JI

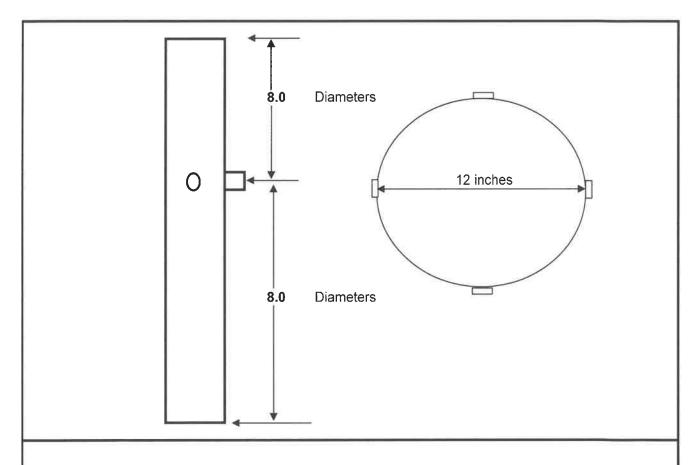


Diameter (inches)	12.00	Sample	% of	Dist from	Dist from
, ,		Point	Diameter	Wall (inches)	Port (inches)
Upstream (inches)	96.00	1	4.4	0.5	0.5
		2	14.6	1.8	1.8
Downstream (inches)	96.00	3	29.6	3.6	3.6
		4	70.4	8.4	8.4
Coupling (in.)	0.00	5	85.4	10.2	10.2
	*	6	95.6	11.5	11.5
Stack Area (ft²)	0.79	<u> </u>			



Client: SCS Field Services Date: 10/17/24

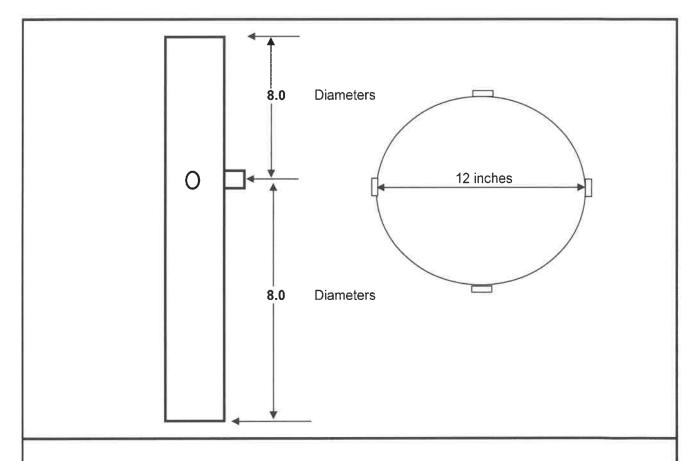
Location: Chiquita TF 2 Performed By: SJ, JI



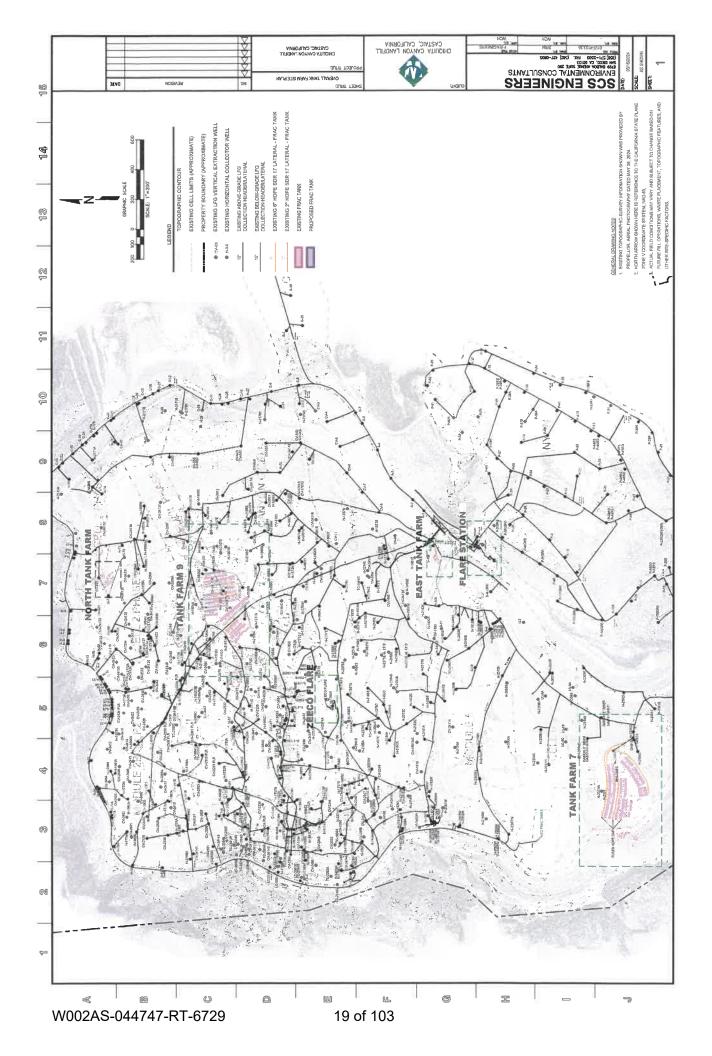
ameter (inches)	6.00	Sample	% of	Dist from	Dist from
		Point	Diameter	Wall (inches)	Port (inches)
ostream (inches)	48.00	1	4.4	0.5	0.5
		2	14.6	0.9	0.9
vnstream (inches)	48.00	3	29.6	1.8	1.8
		4	70.4	4.2	4.2
ng (in.)	0.00	5	85.4	5.1	5.1
		6	95.6	5.7	5.7
Area (ft²)	0.20	1			

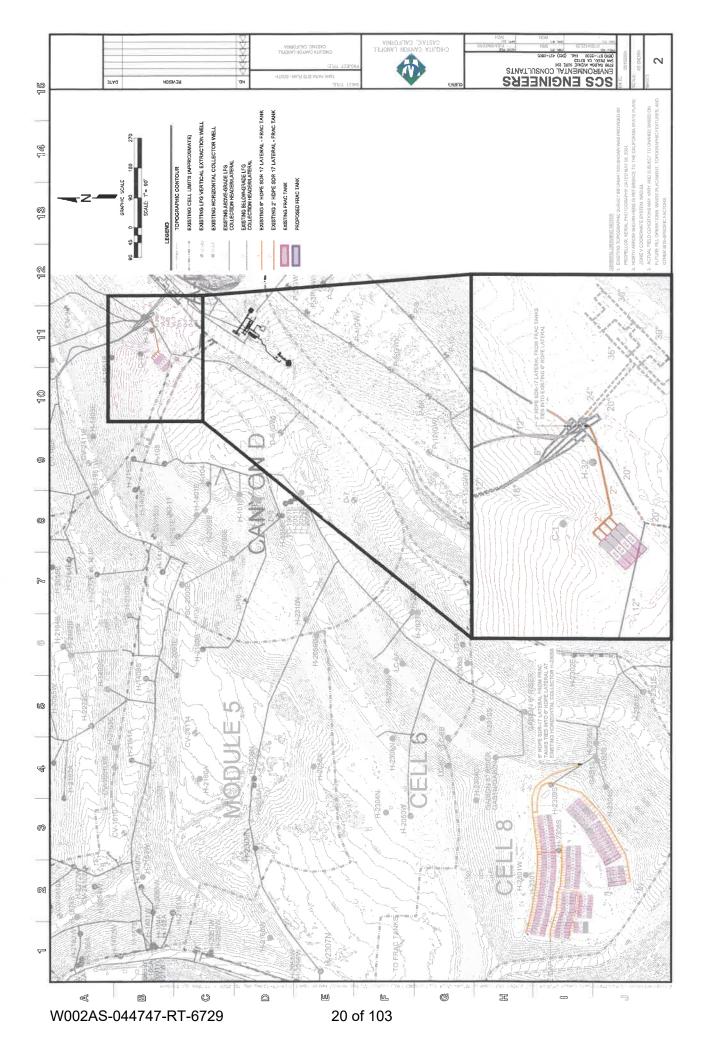
Client: SCS Field Services Date: 10/17/24

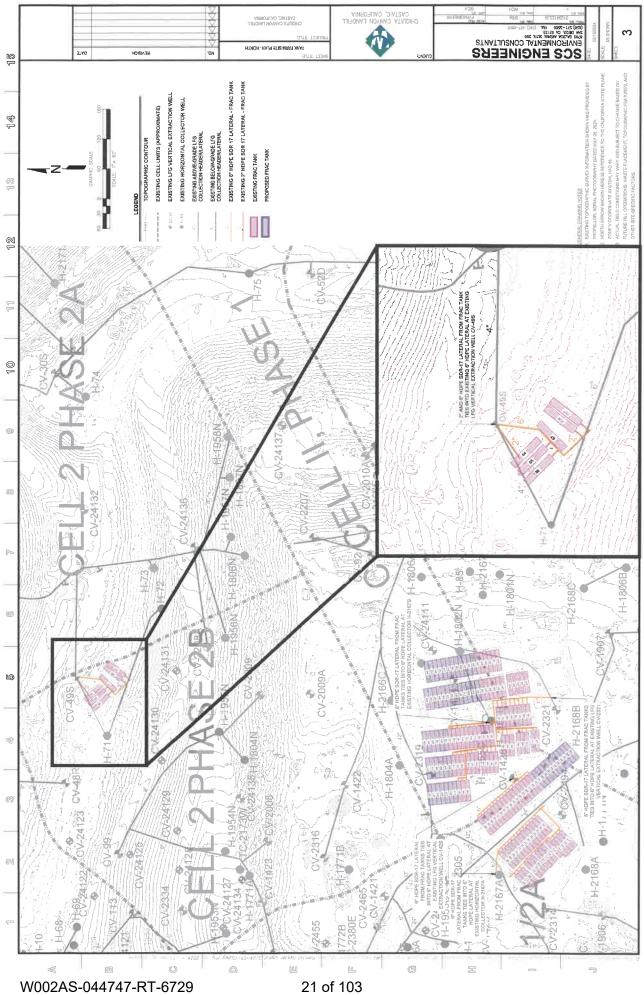
Location: Chiquita TF 7B Performed By: SJ, JI

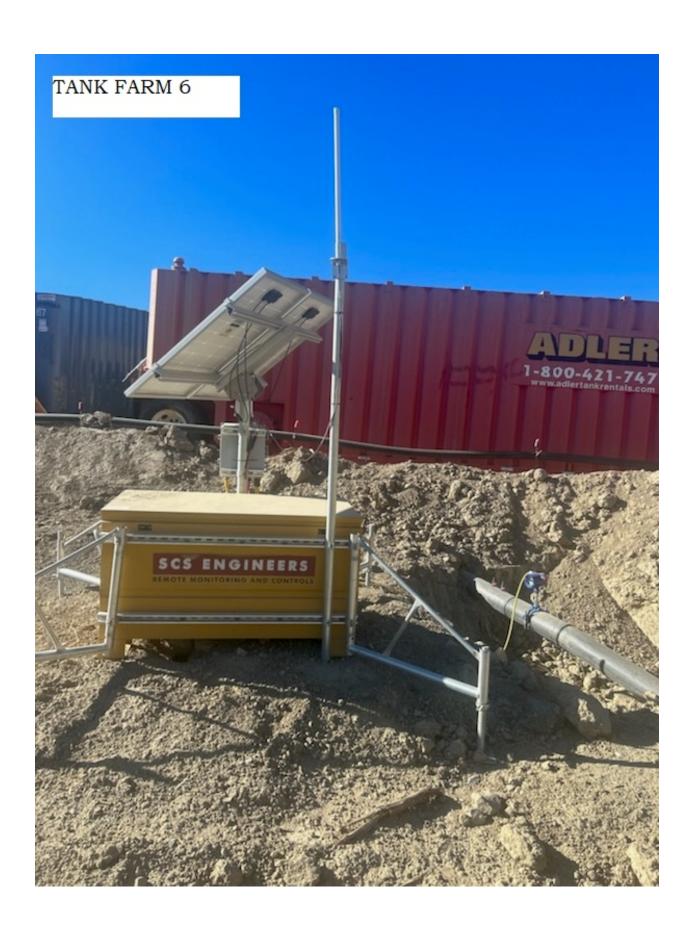


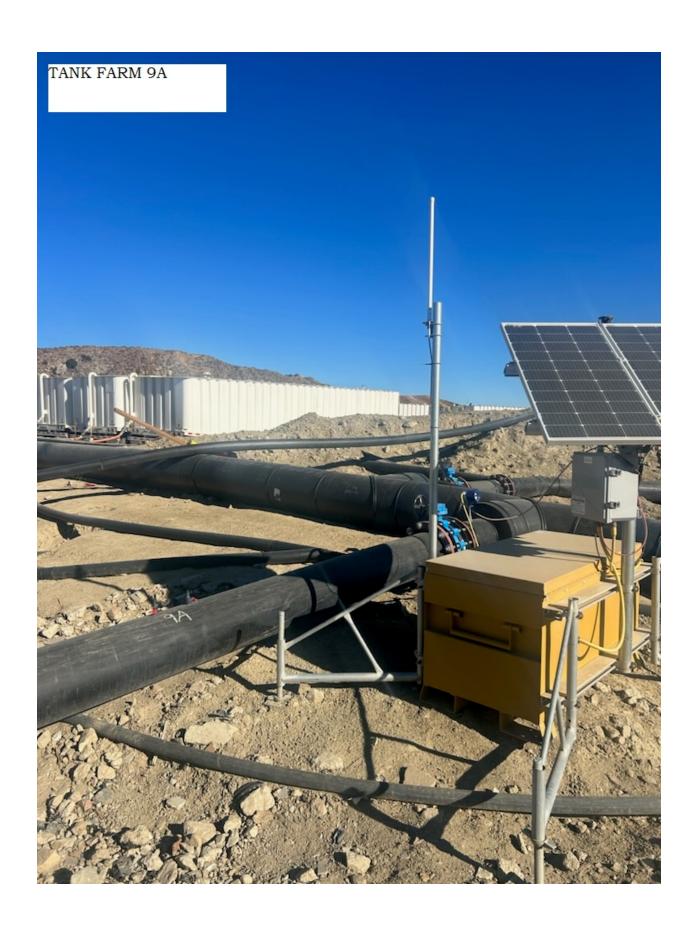
Diameter (inches)	12.00	Sample	% of	Dist from	Dist from
,		Point	Diameter	Wall (inches)	Port (inches)
Upstream (inches)	96.00	1	4.4	0.5	0.5
		2	14.6	1.8	1.8
Downstream (inches)	96.00	3	29.6	3.6	3.6
	-	4	70.4	8.4	8.4
Coupling (in.)	0.00	5	85.4	10.2	10.2
		6	95.6	11.5	11.5
Stack Area (ft²)	0.79	,			

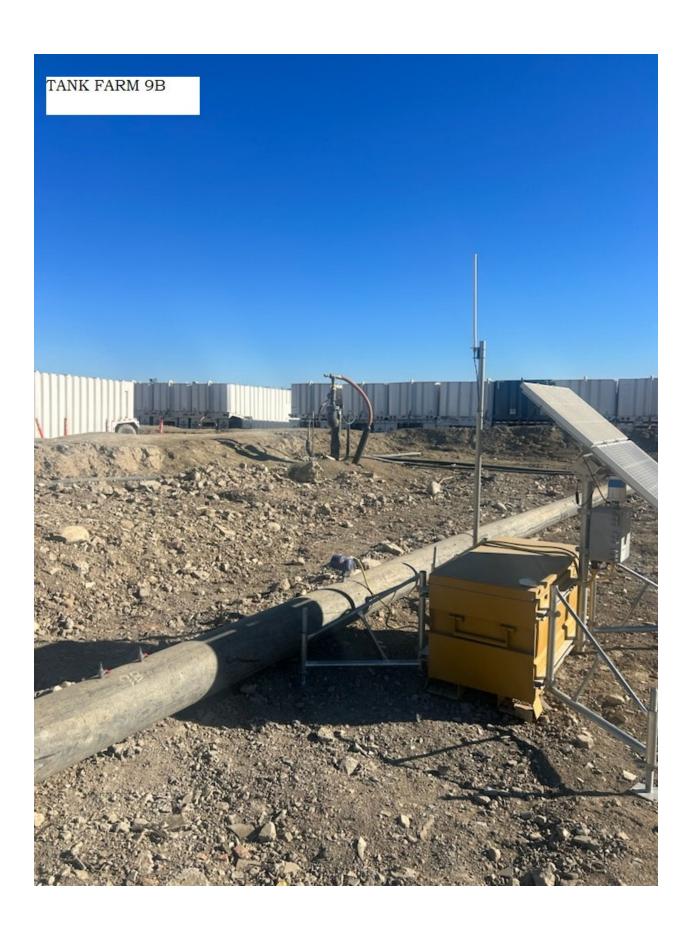


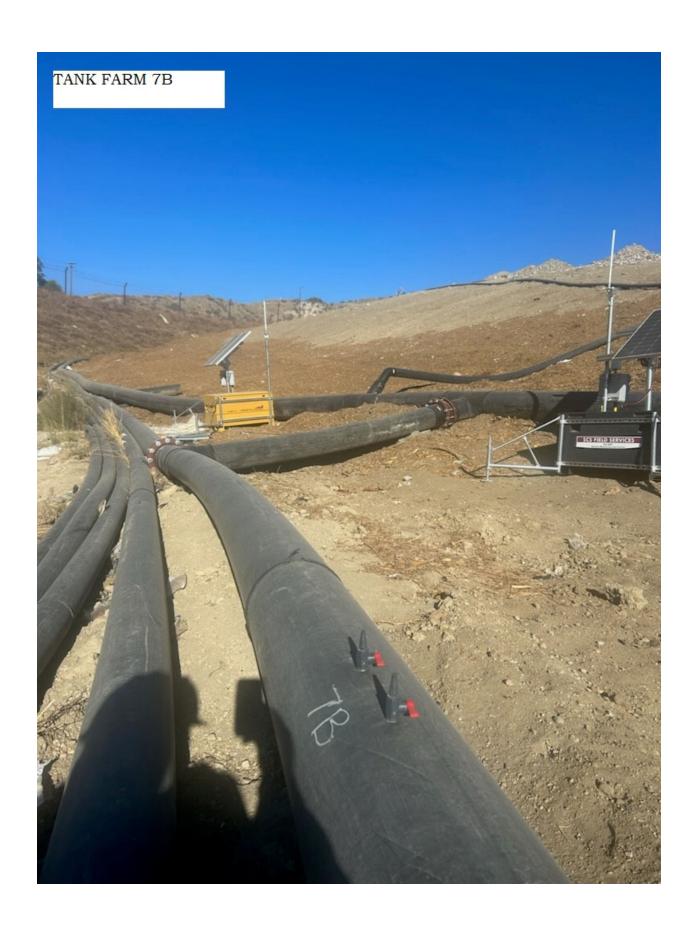

Client: SCS Field Services Date: 10/17/24

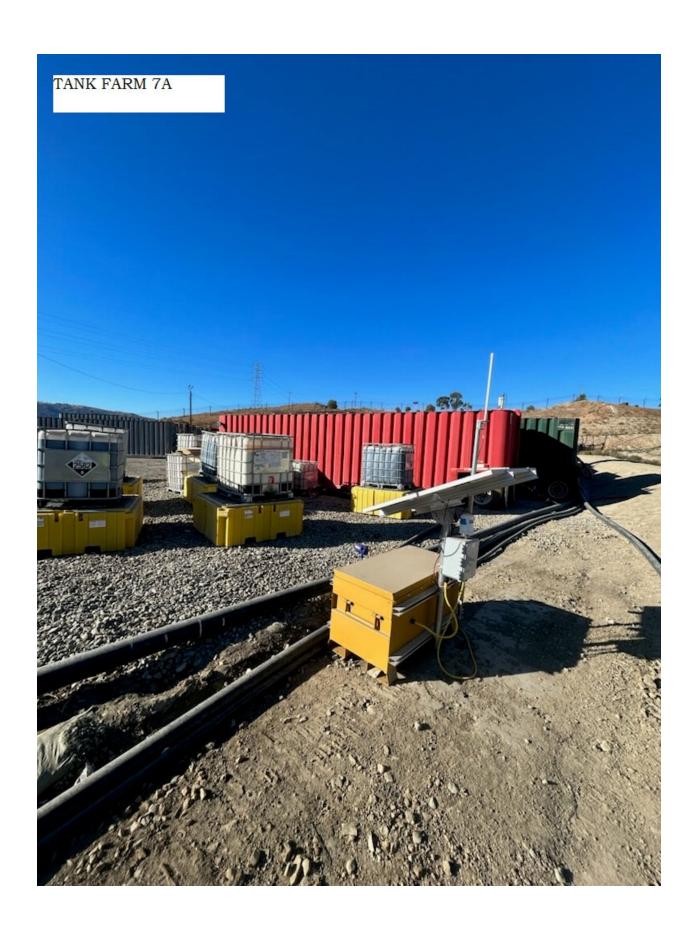

Location: Chiquita TF 7A Performed By: SJ, JI




iameter (inches)	12.00	Sample	% of	Dist from	Dist from
	·	Point	Diameter	Wall (inches)	Port (inches
pstream (inches)	96.00	1	4.4	0.5	0.5
	====	2	14.6	1.8	1.8
ownstream (inches)	96.00	3	29.6	3.6	3.6
		4	70.4	8.4	8.4
oupling (in.)	0.00	5	85.4	10.2	10.2
		6	95.6	11.5	11.5
ack Area (ft²)	0.79				







Appendix A.2 Velocity, Moisture and Flow Rate Data

AND DESIGNATION	TES	T CONSTA	NTS	
				anyon Landfill
			Tank Farn	
	Per	formed By:	SJ, JI	
		Cp:	0.84	
		T _{ref} :		°F
	9	Stack Area:	0.196	ft ²
7.57	TES	T VARIAB	LES	
		Start Date:	10/17/24	
	Start	End Time:	9:39	10:09
	Test	Condition:	Normal	
	Barom	. Pressure:	29.05	
		Pstack:	0.00	iwg
		Pstack:	29.05	"Hg
		MW Wet:	27.39	lb/lb-mole
		MW Dry:	27.73	lb/lb-mole
			Moisture	
Moistur	e Content:	3.49		From WbDb
		Fuel Gas	Composis	tion Data
	O ₂ :	0.28	%	From canister analysis
	CO ₂ :	46.82	%	From canister analysis
	N ₂ :	0.55	%	From canister analysis
	CH₄:	43.05	%	From canister analysis
		MET	HOD 2.1 D.	ATA
	dΡ		Temp	Vel.
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)
1	J. 48 F.		83	
2			83	
3			83	
4			83	
5			83	
6			83	
1	(三) [1]		83	
2			83	
3	B 89 55		83	
4			83	
5			83	
6	POS DE		83	
Average			83	
	Flow Rate:	*5.2	scfm	

^{*}Fuel Flow Rate from facility meter

TEST CONSTANTS						
Station: Chiquita Canyon Landfill						
Unit: Tank Farm 9A						
	Per	formed By:	SJ, JI			
		Cp:	0.84			
		T_{ref} :	60	°F		
	S	Stack Area:	0.785	ft ²		
	TES	T VARIAB	LES			
		Start Date:				
1		End Time:		11:00		
		Condition:				
	Barom.	. Pressure:				
		Pstack:		iwg		
		Pstack:		"Hg		
		MW Wet:		lb/lb-mole		
		MW Dry:		lb/lb-mole		
AA.	0	0.00	Moisture	Farm Mr Dh		
Moisture	e Content:	2.80		From WbDb		
Fuel Gas Composistion Data						
O ₂ : 21.35				From canister analysis		
CO ₂ : 0.10			%	From canister analysis		
N ₂ : 77.45			%	From canister analysis		
CH₄: 0.1			%	From canister analysis		
		MET	HOD 2.1 D			
	dΡ		Temp	Vel.		
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)		
1	0.008	0.0894	83	5.30		
2	2 0.007 0.0837		83	4.95		
	3 0.009 0.0949		83	5.62		
	4 0.006 0.0775		83	4.59		
5	0.008	0.0894	83	5.30		
	6 0.009 0.0949		83	5.62		
1	0.008	0.0894	83	5.30		
2	0.009 0.0949		83	5.62		
3	0.009 0.0949		83	5.62		
4			83	4.95		
5	0.008	0.0894	83	5.30		
6 Average	0.008	0.0894	83	5.30		
Average	0.0080	0.0893	83	5.29		
l r	Flow Rate:	249	wacfm			
	Flow Rate:	232	scfm			
F	Flow Rate:	224	dscfm			

TEST CONSTANTS						
				anyon Landfill		
			Tank Farn			
	Per	formed By:				
		Cp:				
		T _{ref} :		°F		
	C	Stack Area:		ft ²		
all all will	=	T VARIAB				
		Start Date:				
		/End Time:		11:00		
		Condition:		11.00		
		. Pressure:				
	Daloiti	Pstack:		iwg		
		Pstack:		"Hg		
		MW Wet:		lb/lb-mole		
		MW Dry:		lb/lb-mole		
		IVIVV DIY.		ib/ib-mole		
Majotur	e Content:	3.00	Moisture	From WbDb		
Moisture	e Content.					
	0 :		Composis			
O ₂ : 21.33				From canister analysis		
CO ₂ : 0.10				From canister analysis		
N ₂ : 77.29			%	From canister analysis		
CH ₄ : 0.1			%	From canister analysis		
		MET	HOD 2.1 D.			
	dΡ		Temp	Vel.		
Point	(in. H_2O)	sqrt(dP)	°F	(fps)		
1	0.009	0.0949	81	5.61		
2	0.011	0.1049	81	6.20		
3	0.012	0.1095	81	6.48		
4			81	5.61		
5	0.008	0.0894	81	5.29		
6			81	5.91		
1	0.009	0.0949	81	5.61		
2	0.013	0.1140	81	6.74		
3	0.012	0.1095	81	6.48		
4	0.011	0.1049	81	6.20		
5	0.016	0.1265	81	7.48		
6	0.009	0.0949	81	5.61		
Average	0.0106	0.1032	81	6.10		
			_			
	low Rate:	287	wacfm			
	low Rate:	268	scfm			
F	low Rate:	258	dscfm			

TEST CONSTANTS							
Station: Chiquita Canyon Landfill							
Unit: Tank Farm 2							
	Per	formed By:	SJ, JI				
		Cp:					
		T _{ref} :	60	°F			
	5	Stack Area:	0.196	ft ²			
	TES	T VARIABI	LES				
		Start Date:	10/17/24				
	Start	/End Time:	11:30	12:00			
	Test	Condition:	Normal				
	Barom	. Pressure:	29.05				
		Pstack:	0.00	iwg			
		Pstack:		"Hg			
		MW Wet:		lb/lb-mole			
		MW Dry:		lb/lb-mole			
via E.			Moisture				
Moistur	e Content:	3.42		From WbDb			
			Composist				
	O ₂ :	20.30	%	From canister analysis			
CO ₂ : 3.43			%	From canister analysis			
N ₂ : 73.24			%	From canister analysis			
	CH₄:	1.98	%	From canister analysis			
		MET	HOD 2.1 D	ATA			
	dΡ		Temp	Vel.			
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)			
1			85				
2			85				
3			85				
4			85				
5			85				
	6 85						
1							
	2 85 3 85						
3	It's Table						
4							
5			85				
6			85				
Average			85				
	Flow Rate:	*3.7	scfm				

^{*}Fuel Flow Rate from facility meter

TEST CONSTANTS							
Station: Chiquita Canyon Landfill							
Unit: Tank Farm 7B							
	Performed By: SJ, JI						
		Cp:	0.84				
		T_{ref} :	60	°F			
	5	Stack Area:	0.785	ft ²			
5)/12/55	TES	T VARIABI					
		Start Date:					
		/End Time:		12:37			
	Test	Condition:	Normal				
	Barom	. Pressure:	29.05				
		Pstack:	0.00	iwg			
		Pstack:	29.05	"Hg			
		MW Wet:	28.15	lb/lb-mole			
		MW Dry:	28.53	lb/lb-mole			
ALC: U			Moisture				
Moistur	e Content:	3.60		From WbDb			
		Fuel Gas	Composist	tion Data			
	O ₂ :	21.37	%	From canister analysis			
	CO ₂ :	0.38	%	From canister analysis			
	N ₂ :	76.82	%	From canister analysis			
	CH₄:	0.1	%	From canister analysis			
	E.C. in wall	METI	HOD 2.1 D				
dP Temp Vel.							
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)			
1			84				
2			84				
	3 84						
	4 84						
	5 84						
	6 84						
	1 84						
2 84							
	3 84						
4							
	5 84						
	6 84						
Average 84							
Flow Rate: *20 scfm							

^{*}Fuel Flow Rate from facility meter

TEST CONSTANTS								
Station: Chiquita Canyon Landfill								
Unit: Tank Farm 7Å								
	Per	formed By:	SJ, JI					
		Cp:	0.84					
		T _{ref} :	60	°F				
	9	Stack Area:		ft ²				
L ED LOS		T VARIAB						
		Start Date:						
	Start	/End Time:	13:00	13:30				
	Test	Condition:	Normal					
	Barom	. Pressure:	29.05					
		Pstack:		iwg				
		Pstack:		"Hg				
		MW Wet:		lb/lb-mole				
		MW Dry:		lb/lb-mole				
EWE AND	i Likitan		Moisture					
Moistur	e Content:	3.09	%	From WbDb				
		Fuel Gas	Composist	tion Data				
	O ₂ :	21.57	%	From canister analysis				
CO ₂ : 0.10			%	From canister analysis				
N ₂ : 77.58			%	From canister analysis				
	CH ₄ :	0.1	%	From canister analysis				
	METHOD 2.1 DATA							
	dΡ		Temp	Vel.				
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)				
1	0.002	0.0447	86	2.66				
2	0.002	0.0447	86	2.66				
3	0.001	0.0316	86	1.88				
4	0.002	0.0447	86	2.66				
5	0.002	0.0447	86	2.66				
6	0.001	0.0316	86	1.88				
1	0.001 0.0316		86	1.88				
2	0.002	0.0447	86	2.66				
3	0.001	0.0316	86	1.88				
4	0.001	0.0316	86	1.88				
5	0.001	0.0316	86	1.88				
6	0.002	0.0447	86	2.66				
Average	0.0015	0.0382	86	2.27				
Flow Rate: 107 wacfm								
	low Rate:	99	scfm					
	low Rate:	96	dscfm					

MONTROSE AQS Duct Moisture by Wet bulb/Dry bulb Measurements

Facility: Chiquita Canyon Landfill TEST DATE: October 17, 2024

CEM I.D. : T-4

BY: PSJ

$$B_{ws} = \frac{e_a^{"}}{P_a}$$

$$e_a = e'' - \frac{(P_a - e'')[T_{dry} - T_{wet}]}{2800 - 1.3 \times T_{wet}}$$

	P_{bar}	Static Pressure	P_a	T_{dry}	T_{wet}	e _a	B_{ws}	e"
		(in. of H ₂ O)						
Tank Farm 6	29.05	0.0	29.05	83	80	1.0129	3.49	1.044066
Tank Farm 9A	29.05	0.0	29.05	83	75	0.812402	2.80	0.895744
Tank Farm 9B	29.05	0.0	29.05	81	76	0.871738	3.00	0.923801
Tank Farm 2	29.05	0.0	29.05	85	80	0.992126	3.42	1.044066
Tank Farm 7B	29.05	0.0	29.05	84	81	1.045181	3.60	1.076324
Tank Farm 7A	29.05	0.0	29.05	86	78	0.899046	3.09	0.982252

CLIENT: SUS ENGINEERS	PERFORMED BY: SC 57
LOCATION: CHOWITA	BAR. PRESSURE: 29.05
UNIT: TEG	STATIC PRESSURE:
TEST DATE: 10/12/24	TC READOUT ID: Prc 43
TEST NUMBER: 1	TC ID: 30
LEAK CHECK PREPOST	PITOT TUBE ID: 30
ΔP INDICATOR TYPE: KIKETARNIC	PITOT TUBE COEFFICIENT: 0.84
ΔP INDICATOR ID: ADM 550 #9	ZERO: LEVEL:

cycl.	Port	Point	Vel. Head in. H₂O	Temp.,°F	cycl. Time	Port	Point	Vel. Head in. H₂O	Temp, ∘F
NA	7	1	NO-Flee	83	MA	5	ı	NO-Flan	83
	· ·	2			1		2,	1.0 //00	
N		3		1			3		
1		4					4		
0		5			\sqrt{j}		5		
4		6	4	ſ,			4	V	//
			WB=80						
			DB=83						

Comments:		

CLIENT: SCS ENGINEERS	PERFORMED BY: ST, TI
LOCATION: CHIQUITA	BAR. PRESSURE: 29.05
UNIT: TF 94	STATIC PRESSURE: D.@
	TC READOUT ID: Prays
	TC ID: 30
	PITOT TUBE ID: 30
AP INDICATOR TYPE: EIGGROPIC	PITOT TUBE COEFFICIENT: 0.84
ΔP INDICATOR ID: Aom 850 #9	ZERO: LEVEL:

CYcL Time	Port	Point	Vel. Head in. H₂O	Temp.,°F	C/CL Time	Port	Point	Vel. Head in. H₂O	Temp, ºF
0	+	ı	800.0	83	0	5	· ·	0.008	23
1		2	0.067	1			2	0.009	1
		3	0.009				3	0.009	
V		4	0.006	4	1		4	2667	J.
		5	0.008				5	0008	
		6	0.009				6	0.008	
			WB=75						
			DB = 83						

Comments: ANGLO FINDER - A-G- (

CLIENT: SCS ENGINEERS	PERFORMED BY: SJ, JF
LOCATION: CHIQUITA	BAR. PRESSURE: 29.05
UNIT: TF 9B	STATIC PRESSURE: O. O
TEST DATE: 10 117/24	TC READOUT ID: PTC43
TEST NUMBER:	TC ID:
LEAK CHECK PRE- POST-	PITOT TUBE ID: 30
ΔP INDICATOR TYPE: Electronic	PITOT TUBE COEFFICIENT: 0-84
ΔP INDICATOR ID: ADM 850#9	ZERO: LEVEL:

Cyc Time	Port	Point	Vel. Head in. H₂O	Temp.,°F	Cyc Time	Port	Point	Vel. Head in. H₂O	Temp, °F
0		1	0.009	81	0		ŧ	0.009	81
		2	0.011				2	0.013	
		3	0.012		1		3	0.012	
		4	0.009				4	0.0U	
		5	0.00%				5	0.016	
V		6	0.010	4	W		6	0.009	V
			WB-76						
			DB581						

Comments:	ANGLE FINDER-	AF-1	
2			

CLIENT: SCS ENGINEERS	PERFORMED BY: 55 /5±
LOCATION: CHIQUITA	BAR. PRESSURE: 29.05
	STATIC PRESSURE: 6.0
TEST DATE: 10/17/24	TC READOUT ID: PtC 43
TEST NUMBER:	TC ID: 37
LEAK CHECK PRE- POST-	
AP INDICATOR TYPE: ELECTRONIC	PITOT TUBE COEFFICIENT: 3.84
ΔP INDICATOR ID: ΔDM 850 #9	ZERO:LEVEL:

CycL Firme	Port	Point	Vel. Head in. H₂O	Temp.,ºF	CYCL. Time	Port	Point	Vel. Head in. H₂O	Репир «F
N/A	T	1	NO-Flow	85	NA	ى	(NO Flow	Pemp oF
		2			ι		2		1
		3	1)			3		
		4					4		
		5					2		
ı V		6	V	V	V		Ь	V	V
			WB-80						
			WB=80 DB=85						
				3.00					

Comments:_		

CLIENT: SUS ENGINEERS	PERFORMED BY: ST /SI
LOCATION: CHIQUITA	BAR. PRESSURE: 29.05
UNIT: TF 78	STATIC PRESSURE: 0.0
TEST DATE: 10/17 24	TC READOUT ID: PTC 43
TEST NUMBER: 1	TC ID: 30
LEAK CHECK PREPOST	PITOT TUBE ID: 30
AP INDICATOR TYPE: DETRONC	PITOT TUBE COEFFICIENT: 254
AP INDICATOR ID: APU 350 #9	ZERO: LEVEL:

Cycl Time	Port	Point	Vel. Head in. H₂O	Temp.,°F	cycl Time	Port	Point	Vel. Head in. H₂O	Temp, °F
MA	+	1	NO FLOW	84	NA	5	l	NO Flow	84
1		2	1	.,,	1		2	1	1
		3					3		
		7					4		
		5					5		
V		0	V	V	V		6	V	V
			WB > 81					ľ	
			WB > 81						

Comments:			
-			

CLIENT: SLS ENGINEERS	PERFORMED BY: 5丁/J=
LOCATION: CHIROLTA	BAR. PRESSURE: 29.05
UNIT: TF.7A	STATIC PRESSURE: 0.0
TEST DATE: 10 /17/24	TC READOUT ID: PTC 43
TEST NUMBER: \	TC ID: 30
LEAK CHECK PRE- POST-	PITOT TUBE ID: 30
ΔP INDICATOR TYPE: ELECTRICAL	PITOT TUBE COEFFICIENT: P- 84
ΔP INDICATOR ID: Apr \$50 #9	ZERO: LEVEL:

CYC+ Ffme	Port	Point	Vel. Head in. H₂O	Temp.,°F	CYCL:	Port	Point	Vel. Head in. H ₂ O	Temp, °F
0.	Τ	ı	0.002	86	D°	5	1	0.00	86
		2	0.002		,		2	0.002	
		3	0.001				3	0.06(
		Ч	002				4	0.001	
		5	0.002				5	0.001	
		b	0001	C.	1		Ь	0.002	V
			WB = 78	1					10
			08:46						

Comments: ANG/EFINDER - AF-/

Appendix A.3 Organics and Sulfur Field and Laboratory Data

Client/Facility: CHIQUITA	Date: 10/17/24
Unit/Location: TRUK FREM 6	Performed By: 55, 31
Barometric Pressure 29, 05	Ambient Temperature76*

SUMMA CANISTER DATA

	1			
	052	0529		
	Time	Vacuum		
Start	5910	30		
Stop	0920	30		
Start	0939	30		
lo	0949	20		
20	0959	10		
30	1009	6		
Stop				
Start	1015	5		
Stop	1025	5		
	Stop Start ID 20 30 Stop Start	Time Start 6910 Stop 0920 Start 0939 10 0949 30 1009 Stop Start 1015 101		

ΕI	$\cap V$	VR.	ΔTF	DA	ΔΤΔ
1 1	\mathbf{v}	ALA	\neg \vdash \vdash	- Dr	\mathbf{n}

Diameter:	6"	
Upstream:		
Downstream:	>40	
Flow Rate:		SCFM
Flow Rate:		SCFM

TEDLAR BAG DATA

Start: _	0950	
Stop: _	1000	
Bag ID:	TE 60 -1	

Client/Facility: CHIQUITA	Date:Date:		
Unit/Location: TANKFARM 9A	Performed By: 55 / 5‡		
Barometric Pressure 29.05	_Ambient Temperature <i>78</i> *		

SUMMA CANISTER DATA

Test No.		1	
Canister ID	,	088	29
		Time	Vacuum
Pre-Test Leak Check	Start	0910	29
Pre-Test Leak Check	Stop	0920	29
Sample Collection	Start	1030	29
	10	1040	20
	20	1050	10
Grid->	30	1100	5
Sample Collection	Stop		
Post -Test Leak Check	Start	1110	5
Post-Test Leak Check	Stop	1120	5

CIA	$\neg \land \top$.E D	ATA
COVV	KAI	-1	AIA

Diameter:	12"
Upstream:	796
Downstream:	796
Flow Rate:	240 SUFM
Wet bulb:	75
Dry bulb:	ජ 3

TEDLAR BAG DATA

Start: _	1040	
Stop: _	1050	
Bad ID:	TFGA-1	

Client/Facility: CHIQUITA DE			oate:	10/17	124		
Unit/Location: TANK FARM 9B P			erforme	d By:	51,1	Ŧ	
Barometric Pressure 29.05 Ambient Temperature 70°				78°			
SUMMA CANISTER DATA							
Test No.							
Canister ID		05	160				
Pre-Test Leak Check	Start	Time	Vacuum		FLO	WRATE	
CHECK		0910	20	D:		12"	

Canister ID		0516	
		Time	Vacuum
Pre-Test Leak Check	Start	0910	30
Pre-Test Leak Check	Stop	0920	30
Sample Collection	Start	1030	30
	10	1040	21
	20	1050	12
end ->	30	1100	5
Sample Collection	Stop		
Post -Test Leak Check	Start	1110	5
Post-Test Leak Check	Stop	1120	5

FLOWRATE DATA		
Diameter:12"		
Upstream:>q 6		
Downstream:		
Flow Rate: 290 Scrn		
Wet bulb: 76		
Dry bulb: 8 (
TEDLAR BAG DATA		
Start:		
Stop:		
Bag ID: 17-9B - 1		

Client/Facility: CHOUKA D.		Date: 10 17 24			
Unit/Location: TANKFORM 2 Performed By: 55 /JE					
	Barometric Pressure 29.05 Ambient Temperature SUMMA CANISTER DATA				
Test No.		1			
Canister ID		055	3		
		Time	Vacuum		
Pre-Test Leak Check	Start	0110	30	FLOWRATE DATA Diameter:	
Pre-Test Leak Check	Stop	09%	30	Upstream: >48	
Sample Collection	Start	1130	30	Downstream:	
	10	1140	20	Flow Rate: 3.7 SCFM	
	20	1190	11	Wet bulb: 80	
end->	30	1200	5	Dry bulb: 85	
				TEDLAR BAG DATA	

Sample

Check

Check

Collection

Post -Test Leak

Post-Test Leak

Stop

Start

Stop

1215

1225

Start: _________

Stop: 1150

Bag ID: 77-2 - 1

5

5

Client/Facility: CHOO	ita	_Date:10 /17/24	
Unit/Location: Take	FARM 7B	Performed By: <u></u>	7
Barometric Pressure	29.05	Ambient Temperature	810

SUMMA CANISTER DATA

Test No.		1	
Canister ID	0592		
		Time	Vacuum
Pre-Test Leak	Start		
Check		0410	30
Pre-Test Leak Check	Stop	0920	30
Sample Collection	Start	1207	30
	10	1217	21
	20	1227	11
End->	30	1237	5
Sample	Stop		
Collection			
Post -Test Leak Check	Start	1245	5
Post-Test Leak Check	Stop	1255	5

			7	DA.	T A
\vdash	UW	VKA	1 -	I JA	IΑ

Diameter: 12 "
Upstream: 796
Downstream: 796
Flow Rate: 20 SCFM
Wet bulb: 81
Dry bulb:

TEDLAR BAG DATA

Start:	1220	
Stop:	1250	
Bag IE	1: TF78 - 1	

Client/Facility: 4	IQUITA	_Date:lo n 24
Unit/Location: TAN	K FARM 7A	Performed By: ST/JI
Barometric Pressure_	29.05	_Ambient Temperature82°

SUMMA CANISTER DATA

Tool No.		1		
Test No.		-		
Canister ID		058		
		Time	Vacuum	
Pre-Test Leak Check	Start	2410	30	
Pre-Test Leak Check	Stop	0420	30	
Sample Collection	Start	1300	30	
	10	1310	20	
	20	1320	10	
End >>	30	1330	5	
Sample Collection	Stop			
Post -Test Leak Check	Start	1340	5	
Post-Test Leak Check	Stop	1350	5	

FLOWRATE DATA

Diameter:	12"
Upstream:	796
Downstream:	796
Flow Rate:	101 SCFM
Wet bulb:	78
Dry bulb:	86

TEDLAR BAG DATA

Start: _	1310	_
Stop: _	1320	_
Bag ID	TF7A-1	

Atm A Inc.

5107 Douglas Fir Road, Calabasas, CA 91302 • (818) 223-3277

specialized air assessment laboratory atmaa com

LABORATORY ANALYSIS REPORT

Permanent Gases Analysis in Silco Canister Samples by Method ASTM D1946-90

Report Date: November 14, 2024

Client: Montrose AQS

Project Location: Chiquita Landfill

Project No.: PROJ-044747

Date Received: October 23, 2024

Date Analyzed: November 13, 2024

ANALYSIS DESCRIPTION

Permanent gases were measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90.

AtmAA Lab No.:	22974-25	22974-26	22974-27
Sample I.D.:	Tank Farm 6	Tank Farm 9A	Tank Farm 9B
Components		(Concentration in %,\	<i>'</i>)
Nitrogen	0.55	77.45	77.29
Oxygen	0.28	21.35	21.33
Methane	43.05	<0.10	<0.10
Carbon dioxide	46.82	<0.10	<0.10
Hydrogen	5.82	<0.10	<0.10

The reported oxygen concentration includes any argon present in the sample. Calibration is based on a standard atmosphere containing 20.95% oxygen and 0.93% argon. The accuracy of permanent gas analysis by TCD/GC is +/- 2%, actual results are reported. Actual analysis results are reported on a "wet" basis.

Brian W. Furity Laboratory Director

QUALITY ASSURANCE SUMMARY (Repeat Analyses)

Project Location: Chiquita Landfill
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

Components	Sample ID	Repeat / Run #1 (Conc	Analysis Run #2 entration ir	Mean Conc.	% RPD
Nitrogen	Tank Farm 6	0.56	0.54	0.55	4.8
Oxygen	Tank Farm 6	0.27	0.29	0.28	4.7
Methane	Tank Farm 6	43.04	43.06	43.05	0.06
Carbon dioxide	Tank Farm 6	46.81	46.83	46.82	0.06
Hydrogen	Tank Farm 6	7.58	7.59	7.59	0.17

Three Silco canister samples, laboratory number 22974-(25-27), were analyzed for permanent gases. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 5 repeat measurements from three Silco canister samples is 1.9%.

5107 Douglas Fir Road, Calabasas, CA 91302 • (818) 223-3277

specialized air assessment laboratory atmaa com

LABORATORY ANALYSIS REPORT

Speciated Hydrocarbons Analysis in Silco Canister Samples

Report Date: November 14, 2024 Client: Montrose AQS

Project Location: Chiquita Landfill
Project No.: PROJ-044747
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

Laboratory Temp: 74.5 °F Barometric Pressure: 29.85 inHg

ANALYSIS DESCRIPTION

Hydrocarbon speciation analysis was performed by flame ionization detection/gas chromatography (FID/GC), modified EPA-18. Methane was measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90

AtmAA Lab No.:	22974-25	22974-26	22974-27
Sample ID:	Tank Farm 6	Tank Farm 9A	Tank Farm 9B
Component	(Concen	tration in ppmv, com	ponent)
Methane	430500	676	210
Ethene	<0.20	< 0.20	< 0.20
Acetylene	< 0.20	< 0.20	< 0.20
Ethane	11.3	<0.20	<0.20
Non-methane hydrocarbons			
analysis by carbon			
number grouping			
C3	129	0.37	1.38
C4	232	6.38	145
C5	1339	48.3	127
C6	905	32.1	70.2
C7	258	6.86	10.G
C8	388	15.3	7.36
C9	442	23.0	5.41
C10	211	47.0	16.1
C11	30.3	10.6	4.07
C12	7.06	5.85	2.44
C13	0.97	1.22	0.79
C14	< 0.03	0.23	0.07
	(C	oncentration in ppmv	(C)
TNMHC	24882	1514	2066

TNMHC - total non-methane hydrocarbons as ppmvC. Actual analysis results are reported on a "wet" basis.

Brian W. Fung Laboratory Director

QUALITY ASSURANCE SUMMARY

(Repeat Analyses)

Project Location: Chiquita Landfill
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

	Sample ID	Run #1	Analysis Run #2	Mean Conc.	% RPD
Component		(Conc. in	ppmv, con	nponent)	
Methane	Tank Farm 6	430400	430600	430500	0.05
Ethene	Tank Farm 6	<0.20	<0.20	<0.20	VI 45.44
Acetylene	Tank Farm 6	<0.20	<0.20	<0.20	
Ethane	Tank Farm 6	11.3	11.4	11.3	0.97
non-methane hydrocarbons analysis by carbon number grouping					
C3	Tank Farm 6	129	129	129	0.08
C4	Tank Farm 6	234	229	232	1.9
C5	Tank Farm 6	1361	1316	1339	3.4
C6	Tank Farm 6	915	894	905	2.3
C7	Tank Farm 6	259	257	258	0.77
C8	Tank Farm 6	389	388	388	0.33
C9	Tank Farm 6	439	444	442	1.1
C10	Tank Farm 6	208	213	211	2.3
C11	Tank Farm 6	29.4	31.2	30.3	5.9
C12	Tank Farm 6	6.67	7.46	7.06	11
C13	Tank Farm 6	0.96	0.97	0.97	0.62
C14	Tank Farm 6	<0.03	<0.03	<0.03	-0.70p
		(Conce	ntration in p	pmvC)	
TNMHC	Tank Farm 6	25016	24748	24882	1.1

Three Silco canister samples, laboratory numbers 22974-(25-27), were analyzed for hydrocarbon speciation, EPA Method 18. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 14 repeat measurements from three Silco canister samples is 2.3%.

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

Permanent Gases Analysis in Silco Canister Sample by Method ASTM D1946-90

Report Date: November 14, 2024

Client: Montrose AQS

Project Location: Chiquita Landfill Project No.: PROJ-044747

Date Received: October 23, 2024
Date Analyzed: November 13, 2024

ANALYSIS DESCRIPTION

Permanent gases were measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90.

lo.: 22974-28	22974-29	22974-30
D.: Tank Farm 2	Tank Farm 7B	Tank Farm 7A
(Concentration in %,	v)
73.24	76.82	77.58
20.30	21.37	21.57
1.98	<0.10	< 0.10
3.43	0.38	< 0.10
< 0.10	<0.10	<0.10
	D.: Tank Farm 2 73.24 20.30 1.98 3.43	D.: Tank Farm 2 Tank Farm 7B (Concentration in %, 73.24 76.82 20.30 21.37 1.98 <0.10 3.43 0.38

The reported oxygen concentration includes any argon present in the sample. Calibration is based on a standard atmosphere containing 20.95% oxygen and 0.93% argon. The accuracy of permanent gas analysis by TCD/GC is +/- 2%, actual results are reported. Actual analysis results are reported on a "wet" basis.

Brian W. Fung-

Laboratory Director

5107 Douglas Fir Road, Calabasas, CA 91302 • (818) 223-3277

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

Speciated Hydrocarbons Analysis in Silco Canister Samples

Report Date: November 14, 2024

Client: Montrose AQS

Project Location: Chiquita Landfill

Project No.: PROJ-044747

Date Received: October 23, 2024

Date Analyzed: November 13, 2024

Laboratory Temp: 74.5 °F Barometric Pressure: 29.85 inHg

ANALYSIS DESCRIPTION

Hydrocarbon speciation analysis was performed by flame ionization detection/gas chromatography (FID/GC), modified EPA-18. Methane was measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90

AtmAA Lab No.:	22974-28	22974-29	22974-30
Sample ID:	Tank Farm 2	Tank Farm 7B	Tank Farm 7A
Component	(Concer	itration in ppmv, con	nponent)
Methane	9900	2727	1098
Ethene	< 0.20	< 0.20	<0.20
Acetylene	< 0.20	< 0.20	< 0.20
Ethane	<0.20	<0.20	<0.20
Non-methane hydrocarbons			
analysis by carbon			
number grouping			
C3	1.99	0.27	<0.10
C4	230	62.2	82.4
C5	448	105	75.3
C6	441	73.3	56.9
C7	92.6	13.3	9.37
C8	88.4	14.4	10.4
C9	91.1	13.4	10.4
C10	154	50.9	42.3
C11	32.0	22.2	13.57
C12	16.1	10.8	6.09
C13	4.04	4.77	2.12
C14	0.57	0.99	0.74
	(Ce	oncentration in ppm	/C)
TNMHC	10130	2501	1972

TNMHC - total non-methane hydrocarbons as ppmvC. Actual analysis results are reported on a "wet" basis.

Laboratory Director

Report Date: November 14, 2024

Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

AtmAA Lab #: 22974-25 Sample ID: Tank Farm 6

Component	Mole %	Wt %	C,H,O,N,S	6, Wt.%	
Methane Carbon dioxide Nitrogen Oxygen Argon Hydrogen	43.62 47.45 0.56 0.27 0.01 7.69	24.43 72.90 0.54 0.30 0.02 0.54	Carbon Hydrogen Oxygen Nitrogen Argon Sulfur	39.21 6.89 53.31 0.54 0.02 0.00	
Specific Volume BTU/ft3 (Dry @60F, 14.696 psia) BTU/ft3 (Water Saturated @ 0.2563 BTU/lb (Dry @60F, 14.696 psia) F _d (factor) F _w (factor) F _c (factor) Compressibility Factor (@60F, 14.696 Wobbe Index Specific Gravity		1.26 13.247 485.4 477.0 6431 9427 11494 1957 0.9968 488.25 0.9885	(HHV) (HHV) (HHV)	436.2 428.6 5779	(LHV) (LHV) (LHV)

		volume
Component	reference	e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8 62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: November 14, 2024

Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

AtmAA Lab #: 22974-26 Sample ID: Tank Farm 9A

Component	Mole %	Wt %	C,H,O,N,	S, Wt.%	
Methane	0.00	0.00	Carbon	0.06	
Carbon dioxide	0.00	0.00	Hydrogen	0.01	
Nitrogen	78.37	75.79	Oxygen	22.86	
Oxygen	20.69	22.86	Nitrogen	75.79	
Argon	0.92	1.27	Argon	1.27	
Hydrogen	0.00	0.00	Sulfur	0.00	
$(\mathring{C}H_2)_n$	0.020	0.08			
Specific Volume		13.095			
BTU/ft3 (Dry @60F, 14.696 ps	ia)	1.199	(HHV)	1.112	(LH
BTU/ft3 (Water Saturated @ 0		1.178	(HHV)	1.092	(LH
BTU/lb (Dry @60F, 14.696 psi		15.695	(HHV)	14.556	(LH
F _d (factor)	,	14899	,		`
F _w (factor)		16370			
F _c (factor)		1299			
Compressibility Factor (@60F,	14.696 psia)	0.9996			
Wobbe Index	, ,	1.2063			

	Specific	volume
Component	reference	values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8 62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: November 14, 2024

Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

AtmAA Lab #: 22974-27 Sample ID: Tank Farm 9B

Component	Mole %	Wt %	C,H,O,N,	S, Wt.%	
Methane	0.00	0.00	Carbon	0.09	
Carbon dioxide	0.00	0.00	Hydrogen	0.02	
Nitrogen	78.34	75.75	Oxygen	22.88	
Oxygen	20.70	22.88	Nitrogen	75.75	
Argon	0.92	1.27	Argon	1.27	
Hydrogen	0.00	0.00	Sulfur	0.00	
$(CH_2)_n$	0.040	0.10			
Specific Volume		13.093			
BTU/ft3 (Dry @60F, 14.696 psi	a)	1.670	(HHV)	1.545	(LHV)
BTU/ft3 (Water Saturated @ 0.	•	1.641	(HHV)	1.518	(LHV)
BTU/lb (Dry @60F, 14.696 psia		21.87	(HHV)	20.24	(LHV)
F _d (factor)	,	12605	, ,		
F _w (factor)		14122			
F _c (factor)		1274			
Compressibility Factor (@60F,	14,696 psia)	0.9996			
Wobbe Index	1 A	1.6813			
Specific Gravity		0.9872			
opcomo orario					

	Specific	volume
Component	reference	e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188 2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: November 14, 2024

Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

AtmAA Lab #: 22974-28 Sample ID: Tank Farm 2

Component	Mole %	Wt %	C,H,O,N,	5, Wt.%	
Methane	2.00	1.09	Carbon	2.65	
Carbon dioxide	3.46	5.19	Hydrogen	0.36	
Nitrogen	73.90	70.62	Oxygen	25.18	
Oxygen	19.61	21.41	Nitrogen	70.62	
Argon	0.87	1.19	Argon	1.19	
Hydrogen	0.00	0.00	Sulfur	0.00	
(ČH ₂) _n	0.161	0.50			
Specific Volume		12.939			
BTU/ft3 (Dry @60F, 14.696 psia)		28.23	(HHV)	25.63	(LHV)
BTU/ft3 (Water Saturated @ 0.256	36 psia)	27.74	(HHV)	25.18	(LHV)
BTU/lb (Dry @60F, 14.696 psia)	, ,	365.3	(HHV)	331.6	(LHV)
F _d (factor)		10008	, ,		, ,
F _w (factor)		11888			
F _c (factor)		2330			
Compressibility Factor (@60F, 14.	696 psia)	0.9995			
Wobbe Index		28.228			
Specific Gravity		1.0002			

	Specific \	/olume
Component	reference	values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: November 14, 2024

Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

AtmAA Lab #: 22974-29 Sample ID: Tank Farm 7B

Component	Mole %	Wt %	C,H,O,N,	S, Wt.%	
Methane	0.00	0.00	Carbon	0.26	
Carbon dioxide	0.38	0.58	Hydrogen	0.02	
Nitrogen	77.91	75.15	Oxygen	23.30	
Oxygen	20.75	22.88	Nitrogen	75.15	
Argon	0.92	1.27	Argon	1.27	
Hydrogen	0.00	0.00	Sulfur	0.00	
$(CH_2)_n$	0.038	0.12			
Specific Volume		13.062			
BTU/ft3 (Dry @60F, 14.696 psia	1)	1.996	(HHV)	1.850	(LH
BTU/ft3 (Water Saturated @ 0.2		1.961	(HHV)	1.817	(LH
BTU/lb (Dry @60F, 14.696 psia))	26.07	(HHV)	24.16	(LH
F _d (factor)		10693			•
F _w (factor)		12179			
F _c (factor)		3231			
Compressibility Factor (@60F, 1	l4.696 psia)	0.9996			
Wobbe Index	, ,	2.0060			
Specific Gravity		0.9902			

	Specific	volume
Component	reference	e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: November 14, 2024

Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: October 23, 2024
Date Analyzed: November 13, 2024

AtmAA Lab #: 22974-30 Sample ID: Tank Farm 7A

Component	Mole %	Wt %	C,H,O,N,	6, Wt.%	
Methane Carbon dioxide Nitrogen Oxygen Argon Hydrogen	0.00 0.00 78.22 20.83 0.92 0.00 0.031	0.00 0.00 75.62 23.01 1.28 0.00 0.10	Carbon Hydrogen Oxygen Nitrogen Argon Sulfur	0.08 0.02 23.01 75.62 1.28 0.00	
Specific Volume BTU/ft3 (Dry @60F, 14.696 psia) BTU/ft3 (Water Saturated @ 0.25636 BTU/lb (Dry @60F, 14.696 psia) F _d (factor) F _w (factor) F _c (factor) Compressibility Factor (@60F, 14.69 Wobbe Index Specific Gravity	o psia)	13.091 1.569 1.542 20.54 9024 10516 1287 0.9996 1.5790 0.9878	(HHV) (HHV) (HHV)	1.454 1.428 19.03	(LHV) (LHV) (LHV)

		volume
Component	referenc	e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

5107 Douglas Fir Road, Calabasas, CA 91302 • (818) 223-3277

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

SCAQMD Rule 1150.1 Components Analysis in Silco Canisler Samples

Report Date: November 14, 2024
Client: Montrose AQS
Project Name: Chiquita Landfill
Project No.: Proj-044747
Date Received: October 23, 2024
Date Analyzed: October 30, 2024

AtmAA Lab No.:	22974-25	22974-26	22974-27
Sample I.D.:	Tank Farm 6	Tank Farm 9A	Tank Farm 9B
,	(C	oncentration in pp	bv)
Components			
-			
Hydrogen sulfide	11135	<150	<150
Benzene	15950	1080	445
Benzyl chloride	<100	<100	<100
Chlorobenzene	267	<100	<100
Dichlorobenzenes*	2620	383	<150
1,1-dichloroethane	<100	<100	<100
1,2-dichloroethane	<100	<100	<100
1,1-dichloroethylene	<100	<100	<100
Dichloromethane	<225	<225	<225
1,2-dibromoethane	<60	<60	<60
Perchloroethylene	<60	<60	<60
Carbon tetrachloride	<125	<125	<125
Toluene	65650	7260	2350
1,1,1-trichloroethane	518	809	493
Trichloroethene	<75	<75	<75
Chloroform	<80	<80	<80
Vinyl chloride	<80	<80	<80
m+p-xylenes	26700	3330	1200
o-xylene	7625	964	344
Bromomethane	<55	<55	<55
1.4-Dioxane	186	<125	<125

Toxic air contaminants (TAC) compounds were analyzed by GC/MS, EPA TO-15. Hydrogen sulfide was analyzed by SCD/GC, SCAQMD 307.91.

Brian W. Fung Laboratory Director

^{*} total amount containing meta, para, and ortho isomers

5107 Douglas Fir Road, Calabasas, CA 91302 • (818) 223-3277

specialized air assessment laboratory atmaa com

LABORATORY ANALYSIS REPORT

SCAQMD Rule 1150.1 Components Analysis in Silco Canister Samples

Report Date: November 14, 2024
Client: Montrose AQS
Project Name: Chiquita Landfill
Project No.: Proj-044747
Date Received: October 23, 2024
Date Analyzed: October 30, 2024

AtmAA Lab No.:	22974-28	22974-29	22974-30		
Sample I.D.:	Tank Farm 2	Tank Farm 7B	Tank Farm 7A		
,	(Concentration in ppbv)				

	(00	moond allon in pp	3.,
Components			
Hydrogen sulfide	<150	<150	<150
Benzene	11100	1130	690
Benzyl chloride	<100	<100	<100
Chlorobenzene	<100	<100	<100
Dichlorobenzenes*	565	<150	<150
1,1-dichloroethane	<100	<100	<100
1,2-dichloroethane	<100	<100	<100
1,1-dichloroethylene	<100	<100	<100
Dichloromethane	<225	<225	<225
1,2-dibromoethane	<60	<60	<60
Perchloroethylene	<60	<60	<60
Carbon tetrachloride	<125	<125	<125
Toluene	4810	1860	2750
1,1,1-trichloroethane	395	439	654
Trichloroethene	<75	<75	<75
Chloroform	<80	<80	<80
Vinyl chloride	<80	<80	<80
m+p-xylenes	3250	1090	1780
o-xylene	1160	330	532
Bromomethane	<55	<55	<55
1,4-Dioxane	820	152	268

Toxic air contaminants (TAC) compounds were analyzed by GC/MS, EPA TO-15. Hydrogen sulfide was analyzed by SCD/GC, SCAQMD 307.91.

Brian W. Fung Laboratory Director

^{*} total amount containing meta, para, and ortho isomers

QUALITY ASSURANCE SUMMARY (Repeat Analyses)

Project Name: Chiquita Landfill Date Received: October 23, 2024 Date Analyzed: October 30, 2024

	Sample ID	Run #1	Analysis Run #2	Mean Conc.	% RPD
Components		(Conce	entration in	ppbv)	
Hydrogen sulfide	Tank Farm 6 Tank Farm 2	11030 <150	11240 <150	11135 	1.9
Benzene	Tank Farm 6	15700	16200	15950	3.1
Benzyl chloride	Tank Farm 6	<100	<100		
Chlorobenzene	Tank Farm 6	262	272	267	3.7
Dichlorobenzenes	Tank Farm 6	2690	2550	2620	5.3
1,1-dichloroethane	Tank Farm 6	<100	<100		
1,2-dichloroethane	Tank Farm 6	<100	<100		
1,1-dichloroethylene	Tank Farm 6	<100	<100		
Dichloromethane	Tank Farm 6	<225	<225		
1,2-dibromoethane	Tank Farm 6	<60	<60		mil. 600 PM
Perchloroethylene	Tank Farm 6	<60	<60		
Carbon tetrachloride	Tank Farm 6	<125	<125		
Toluene	Tank Farm 6	64700	66600	65650	2.9
1,1,1-trichloroethane	Tank Farm 6	542	493	518	9.5
Trichloroethene	Tank Farm 6	<75	<75		
Chloroform	Tank Farm 6	<80	<80		***
Vinyl chloride	Tank Farm 6	<80	<80		
m+p-xylenes	Tank Farm 6	26600	26800	26700	0.75
o-xylene	Tank Farm 6	7610	7640	7625	0.39
Bromomethane	Tank Farm 6	<55	<55		
1,4-Dioxane	Tank Farm 6	179	192	186	7.0

Six Silco canister samples, laboratory numbers 22974-(25-30), were analyzed for SCAQMD Rule 1150.1 components. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 9 repeat measurements from six Silco canister samples is 3.8%.

					Special Dogs	o deciding the	# 584							Dare Time	Daize Time	Dan Time	- «	1			aa.com
93	S 8	ANALYSES REQUESTED	461 W	7434			×	×	×					re)	re)	aboratory byr (Signature)	Analytical Laboratory	AtmAA Inc.	Calabasas, CA 91302	TEL: (818) 223-3277	Email Address: info@atmaa.com
	ODY RECORD		29/13	0 day	Sampling	00	1030 1	1030 X V	1130 X >	4207 X	X 02%	Y		Received by: (Signature)	Received by: (Signature)	Received for aborato		. A:	o:	10	S:
	CHAIN OF CUSTODY RECORD	Project Location:	se Order Number:	Turnaround Times: Standard 10 day	AA Lab	JOI 35	-36	75,	-2%	-29	7.30 €			Date Time 1	Date Time	Date Time	Send Report to:	Company:	City/State/Zip:	Project Manager:	· Email Address
		Project	Purchase	Turnarour	Type of Sample A		CM-10889	9150-NAS	CAN-0553	CAN-0592	CAN-0585							Company: MON 1 MO4, 6 AUS			
		Client Project Name:	Project Number:	Sampler: (Signature)	Client Sample Identification		<u></u>	That FARM 18	TAUK FORM 2 C	_	Tankeam 14 C		>	Relinquished by: Signature)	Relinquished by: (Signature)	Relinquished by: (Signature)	Company Info:	Company:	7	Telephone No.:	Email Address:

1210 E. 223rd Street, Suite #314 • Carson, California 90745 • 310/830-2226 • Fax 310/830-2227

CLIENT:

Montrose AQS

CLIENT PROJ NO:

Chiquita Leachate

LABORATORY NO: 24-1141 SAMPLING DATE:

10/17/24

RECEIVING DATE: 10/18/24

ANALYSIS DATE:

10/18/24

REPORT DATE:

10/21/24

Laboratory Analysis Report (1 of 2)

Analysis Method	SCAQMD 307-	-91		
Detection Limits	0.05 PPMV		ne	
	Sample ID Sample Date Sample Time Lab ID	Tank Farm 6 10/17/2024 - 29224-1	Tank Farm 9A 10/17/2024 - 29224-2	Tank Farm 9B 10/17/2024 - 29224-3
Analyte	Units	PPMV	PPMV	PPMV
Hydrogen Sulfide		37.64	<0.05	< 0.05
Carbonyl Sulfide		<0.05	< 0.05	< 0.05
Methyl Mercaptan		21.06	<0.05	0.06
Ethyl Mercaptan		0.59	<0.05	<0.05
Dimethyl Sulfide		192.4	0.49	3.18
Unidentified S Compou	nds	8.80	< 0.05	0.14
Total Sulfur as H ₂ S		260.4	0.49	3.38

President

1210 E. 223rd Street, Suite #314 • Carson, California 90745 • 310/830-2226 • Fax 310/830-2227

CLIENT: Montrose AQS
CLIENT PROJ NO: Chiquita Leachate

 LABORATORY NO:
 24-1141

 SAMPLING DATE:
 10/17/24

 RECEIVING DATE:
 10/18/24

 ANALYSIS DATE:
 10/18/24

 REPORT DATE:
 10/21/24

Laboratory Analysis Report (2 of 2)

Analysis Method	SCAQMD 307	-91		
Detection Limits	0.05 PPMV			
	Sample ID Sample Date	Tank Farm 2 10/17/2024	Tank Farm 7A 10/17/2024	Tank Farm 7B 10/17/2024
	Sample Time	-	-	-
	Lab ID	29224-4	29224-5	29224-6
Analyte	Units	PPMV	PPMV	PPMV
Hydrogen Sulfide		0.34	<0.05	0.05
Carbonyl Sulfide		0.38	<0.05	< 0.05
Methyl Mercaptan		1.23	<0.05	0.60
Ethyl Mercaptan		< 0.05	<0.05	< 0.05
Dimethyl Sulfide		78.49	2.08	7.34
Unidentified S Compoun	ds	14.29	0.63	0.74
Total Sulfur as H ₂ S		94.73	2.71	8.73

Dr. Andrew Kitto

President

1210 E. 223rd Street, Suite #314 • Carson, California 90745 • 310/830-2226 • Fax 310/830-2227

Montrose AQS CLIENT: Chiquita Leachate **CLIENT PROJ NO:**

24-1141 LABORATORY NO: SAMPLING DATE: 10/17/24 **RECEIVING DATE:** 10/18/24 ANALYSIS DATE: 10/18/24 REPORT DATE: 10/21/24

Quality Assurance Report

Duplicate Analysis

Sample ID: Tank Farm 7B Lab ID: 29224									
Analysis Method		SCAQMD 307-91							
Detection Limit		0.05 PPMV							
	Aver. Conc.	Dil. Factor	DF*A/CF	% Sample					
Analyte	PPMV	Ambient Air	PPMV	Recovery*					
Hydrogen Sulfide	0.05	1	0.05	104					
Carbonyl Sulfide	<0.05	1	< 0.05	N/A					
Methyl Mercaptan	0.58	1	0.56	97					
Ethyl Mercaptan	< 0.05	111	< 0.05	N/A					
Dimethyl Sulfide	7.31	1	7.27	99					
Unidentified S Compounds	0.73	1	0.72	99					
Total Sulfur as H ₂ S	8.67	1	8.60	99					

N/A: Not Applicable

*Must be $\pm 10\%$

Dr. Andrew Kitto

President

1411-42

Jantum Analytical Services Inc.

Analytical Services Inc.	Services	Inc.		310/830-2226 • Fax	310/830-2226 • Fax 310/830-2227 • www.quantumairlab.com
				1210 E. 223rd St	1210 E. 223rd Street, Suite #314 • Carson, California 90745
ECHAIN OF CUSTODY	DY				Page: — of:
Client: Montads6 Als		roject No.:	Project No.: \$1205-044747	Analysis	Turnaround Time:
729		roject Name:	Project Name: CHIONITA LEACHA	(E)	Same Day
Contact Person: P. SAN Lufol		roject Manag	Project Manager: P. SANJUAN		24 Hours
tel: 626 617 10313		P.O. Number:			48 Hours
fax:				12/10/20	L
Client Sample ID	Tag #	Date	Time Lab ID Number		Remarks
TANK FARM 6		MUD	29224-1	×	
2		٥ -	7,	*	
200			~ ·	*	
AL				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
11 718			9-	×	
		>			
Relinguished by (Signature)	Date/Fime	3:3	Rece	ved by: (signature)	Date/time
Relinguished by (signature)	Date/Time			Received by Gignature)	1
Relinguished by: (signature)	Date/Time		Received by	Received by: (signature)	Date/time

Appendix A.4 **Quality Assurance Data**

Barometric Pressure Determination

Date: 10/17/24	
Time: 9:00	_
Data By: SJ, KT, JI	_
Reference:	https://forecast.weather.gov/MapClick.php?lat=33.6873&l
Lat: 34.42972°NLon: 118.66712°WElev: 1278.0ft.	
Reference Barometer ID	DEL VALLE (DI VC4)
Reference Barometer Location	DEL VALLE (DLVC1)
Reference Barometer Other Info.	
Reference Barometer Indication, corrected to sea level	30.05
Reference Barometer Reference Elevation	1278
Reference Barometer Actual Pressure	28.77
Test Barometer Location/Site	Chiquita Canyon
Location/Site Elevation	997
Location/Site Barometric Pressure	29.05
Sampling Location Height (above/below site elevation)	1
Sampling Location Barometric Pressure	29.05

THERMOCOUPLE CALIBRATION

Thermocouple ID: 30

Date: 7/3/2024

Performed By: JS

Calibrated Digital Temperature Readout ID: PTC-82

T1 Reference Thermometer ID: 2788
T2 Reference Thermometer ID: 2736
T3 Reference Thermometer ID: 2786

T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence
I.D.	Readout		o	F			0				
30	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)
T3 (~ 370 F)	PTC-82	371	371	371	371	370	370	370	370	1.0	0.1%
T2 (~ 212 F)	PTC-82	211	211	211	211	212	212	212	212	1.0	0.1%
T1 (~ 32 F)	PTC-82	34	34	34	34	32	32	32	32	2.0	0.4%

Pass Pass Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

THERMOCOUPLE CALIBRATION

Thermocouple ID: TC-WB

Date: 7/3/2024

Performed By: JS

Calibrated Digital Temperature Readout ID: PTC-82

T1 Reference Thermometer ID: 2788
T2 Reference Thermometer ID: 2736
T3 Reference Thermometer ID: 2786

T/C			T/C - F	Readout			Reference T	hermomete	r	Diffe	erence	
I.D.	Readout		C	F			0	F				
TC-WB	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (~ 370 F)	PTC-82	373	373	373	373	370	370	370	370	3.0	0.4%	Pass
T2 (~ 212 F)	PTC-82	213	213	213	213	212	212	212	212	1.0	0.1%	Pass
T1 (~ 32 F)	PTC-82	33	33	33	33	32	32	32	32	1.0	0.2%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

THERMOCOUPLE CALIBRATION

Thermocouple ID: TC-DB

Date: 7/3/2024

Performed By: JS

Calibrated Digital Temperature Readout ID: PTC-82

T1 Reference Thermometer ID: 2788
T2 Reference Thermometer ID: 2736
T3 Reference Thermometer ID: 2786

ſ	T/C			T/C - F	Readout			Reference T	hermometer	,	Diffe	erence	
ı	I.D.	Readout		O	F			0	F				
L	TC-DB	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
Ī	T3 (~ 370 F)	PTC-82	367	367	367	367	370	370	370	370	3.0	0.4%	Pass
ı	T2 (~ 212 F)	PTC-82	213	213	213	213	212	212	212	212	1.0	0.1%	Pass
L	T1 (~ 32 F)	PTC-82	33	33	33	33	32	32	32	32	1.0	0.2%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: PTC-43

Readout Description: Handheld

Date: 7/3/2024

Performed By: JS

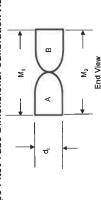
Calibrated Thermocouple ID: TC-Cal T1 Reference Thermometer ID: 313010 T2 Reference Thermometer ID: 2736 T3 Reference Thermometer ID: 2786

T/C			T/C - F	Readout			Reference T	hermometer		Diffe	rence	
I.D.	Readout		C	°F			0	F				l
TC-Cal	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (~ 370 F)	PTC-43	370	370	370	370	375	375	375	375	5.0	0.6%	Pa
T2 (~212 F)	PTC-43	212	212	212	212	212	212	212	212	0.0	0.0%	Pa
T1 (~ 32 F)	PTC-43	29	29	29	29	32	32	32	32	3.0	0.6%	Pa

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

			T/C - F	Readout			T/C S	Source		Diffe	erence	1
	T/C Source		(°F			(°F				l
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	125097	649	649	649	649	650	650	650	650	1.0	0.1%	Pass
T3 (~370 F)	125097	373	373	373	373	375	375	375	375	2.0	0.2%	Pass
T2 (~212 F)	125097	210	210	210	210	212	212	212	212	2.0	0.3%	Pass
T1 (~32 F)	125097	30	30	30	30	32	32	32	32	2.0	0.4%	Pass


¹⁾ Difference % ($^{\circ}$ R) = Difference ($^{\circ}$ F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

S Type Pitot Tube Dimensional Calibration Record

	1		1	-
	×	\asymp	∑ ∑	End View
_	ļ		<u> </u>	-
	-	ΰυ	-	

≥

Top View

	ις.	<u> </u>		
1.05 Dt < P < 1.5 Dt	Ratio of P/Dt	1,1		
5 degrees	Average Face Opening Plane Frontal Angle from parallel to Longitudinal Axis	-4.1		
10 degrees	ace lane set ular rse	1.0		
n/a	MG	0.276		
n/a	MS	0.268		
n/a	M4	0.563		
n/a	M3	0.524		
n/a	M2	0.529		
n/a	M1	0.538		
"3/16" < Dt < 3/8"	Tubing Diameter, dt	0.251		
Yes	Pa = Pb	X		
z < 1/8" w < 1/32"	Side View, Side View, Impact openings openings Properly aligned, z < aligned, w < 1/8" 1/8"	>		
2 < 1/8"	Side View, Impact openings Properly aligned, z < 1/8"	>		
iteria	Calibrated By	JAC		
Acceptability Criteria	Date	7/3/24		
	Pitot ID	030		

Status

Pass

Reference "A Type-S Pitot Tube Calibration Study", Robert F. Vollaro, October 15, 1975
If tube is not visibly deformed it is assumed that Pa = Pb = .5 x avg. of M1 & M2, and that average face opening plane angles represent individual angles to tube axis Notes:

Side View

Semi-annual

Description: Air Data Multimeter (ADM 850) Display ID: ADM 9

Serial Number: M14140 Calibration Date: 7/3/2024

Reference Device ID: Microtector Reference Serial Number: S270 Calibrated By: K. Thomas

Calibration Range	ange	Run 1	11		Individual Run Results	
Scale: (0 - 0.050	Measured Value	Reference Value	Absolute Value	% Difference	Pass/Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.010	0.010	0.010	0.0000	%00.0	Pass
Target 40%	0.020	0.020	0.020	0.0000	%00.0	Pass
Target 60%	0.030	0:030	0.030	0.0000	%00.0	Pass
Target 80%	0.040	0.040	0.040	0.0000	%00.0	Pass
Target 100%	0.050	0.051	0.050	0.0010	2.00%	Pass
Colibration Dong	0000	Cand	0		Individual Dun Doculto	

Pass/ Fail

% Difference

Absolute Value

Reference Value (inches W.C.)

Measured Value (inches W.C.)

0 - 0.050

Scale:

inches H₂O

0.010

0.010

Farget 20%

0.0000

0.00%

Target 40%	0.020	0.020	0.020	0.000	0.00%	Pass
Target 60%	0.030	0:030	0:030	0.0000	0.00%	Pass
Target 80%	0.040	0.040	0.040	0.0000	0.00%	Pass
Target 100%	0:020	0.050	0.050	0.0000	0.00%	Pass
	100					
Calibration Range	ınge	Ru	Run 3		Individual Run Results	
Scale: 0	0 - 0.050	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.010	0.010	0.010	0.000.0	%00.0	Pass
Target 40%	0.020	0.020	0.020	0.0000	%00.0	Pass
Target 60%	0.030	0.030	0.030	0.0000	%00.0	Pass
Target 80%	0.040	0.040	0.040	0.0000	%00.0	Pass
Target 100%	0.050	0.050	0.050	0.000	%00.0	Pass

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

Average results for three runs

Pass/Fail

% Difference

0.13%

Pass

Semi-annual

Description: Air Data Multimeter (ADM 850) Serial Number: M14140 Display ID: ADM 9

Calibration Date: 7/3/2024

Reference Device ID: Microtector Reference Serial Number: \$270 Calibrated By: K. Thomas

Calibration Range	ge	Run	11		Individual Run Results	
Scale: 0 - 0.100	0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.020	0.020	0.020	0.0000	0.00%	Pass
Target 40%	0.040	0.040	0.040	0.0000	0.00%	Pass
Target 60%	090.0	0.061	0.060	0.0010	1.67%	Pass
Target 80%	080.0	0.080	0.080	0.0000	%00.0	Pass
Target 100%	0.100	0.100	0.100	0.0000	0.00%	Pass

Calibration Range	nge	Ru	Run 2		Individual Run Results	
Scale: 0 - 0.100	0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ 0		(inches W.C.)	(inches W.C.)			
Target 20%	0.020	0.020	0.020	0.0000	0.00%	Pass
Target 40%	0.040	0.041	0.040	0.0010	2.50%	Pass
Target 60%	090'0	0.060	0.060	0.0000	0.00%	Pass
Target 80%	080.0	0.081	0.080	0.0010	1.25%	Pass
Target 100%	0.100	0.100	0.100	0.0000	0.00%	Pass

Calibration Range	nge	Ru	Run 3		Individual Run Results	
Scale: 0 - 0.100	0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.020	0.020	0.020	0.0000	%00:0	Pass
Target 40%	0.040	0.040	0.040	0.0000	%00:0	Pass
Target 60%	090.0	0.061	0.060	0.0010	1.67%	Pass
Target 80%	0.080	0.080	0.080	0.0000	%00.0	Pass
Target 100%	0.100	0.100	0.100	0.0000	%00.0	Pass
					Average results for three runs	for three runs

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

Pass/Fail Pass

% Difference 0.47%

Semi-annual

Description: Air Data Multimeter (ADM 850) Display ID: ADM 9

Serial Number: M14140 Calibration Date: 7/3/2024

Reference Device ID: Microtector Reference Serial Number: S270 Calibrated By: K. Thomas

Individual Run Reculte	% Difference Pass/ Fail		.00%				0.00% Pass	Individual Run Results	9/ Difference
lenbivibal	Absolute Value % Diff			0.000.0				Individual	Absolute Value
-	Reference Value	(inches W.C.)	0.200	0.400	0.600	0.800	1.000	n 2	Doforonco Voino
Run	Measured Value	(inches W.C.)	0.200	0.400	0.610	0.800	1.000	Run 2	Moseurod Value
Calibration Range	Scale: 0 - 1.000	inches H ₂ O	Target 20% 0.200	Target 40% 0.400			Target 100% 1.000	Calibration Range	Scale: 0 1000

Calibration Range	nge	Ru	Run 3		Individual Run Results	
Scale: 0 - 1.000	1.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.200	0.200	0.200	0.0000	%00.0	Pass
Target 40%	0.400	0.410	0.400	0.0100	2.50%	Pass
Target 60%	0.600	0.600	0.600	0.0000	%00.0	Pass
Target 80%	008.0	0.800	0.800	0.0000	%00.0	Pass
Target 100%	1.000	1.000	1.000	0.0000	%00.0	Pass
					Average results for three runs	for three runs

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

Pass/Fail

% Difference

0.44%

Pass

Target 40% Target 60% Target 80% Target 100%

Pass Pass Pass Pass

0.00% 2.50% 0.00% 0.00%

0.0000 0.0000 0.0000 0.0000

0.400 0.800 1.000

0.410 0.600 0.800 1.000

0.200 0.400 0.600 0.800 1.000

(inches W.C.) 0.200

(inches W.C.)

inches H₂O

0.200

Semi-annual

Description: Air Data Multimeter (ADM 850) Display ID: ADM 9

Serial Number: M14140 Calibration Date: 7/3/2024

Reference Device ID: Dwyer 0 - 10" Manometer Reference Serial Number: CC-2 Calibrated By: K. Thomas

0 - 10.000 Measured Value Reference Value		Calibration Range	abu	Ru	Run 1		Individual Run Results	
S H ₂ O (inches W.C.) (inches W.C.) 2.000	_	المري المري	4000					
S H ₂ O 2.000 2.005 2.000 4.000 4.000 8.000 8.000 10.000	_	;	10.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
2.000 2.005 2.000 4.000 6.000 8.000 10.000 8.000 10.000 1	_	inches H ₂ O		(inches W.C.)	(inches W.C.)			
A.000 4.000 4.000 6.000 8.000 8.000 8.000 8.000 8.000 10.000 10.000 10.000 8.000 4.000 4.000 8.000 8.000 4.000 8.000 6.000 8.000 8.000 10.050 10.000 10.000 10.050 10.000 8.000 4.000 6.000 8.000 2.005 2.000 8.000 4.000 6.000 8.000 8.000 6.000 8.000 8.000 6.000 8.000 8.000 10.000 10.000 10.000 10.000		Target 20%	2.000	2.005	2.000	0:0020	0.25%	Pass
6.000 6.010 6.000 8.000 8.000 10.000 10.050 10.000 Neasured Value Reference Value 6.000 8.000 10.050 10.000 Run 3 0 - 10.000 10.050 10.000 Run 3 0 - 10.000 (inches W.C.) (inches W.C.) S H₂O S.000 8.000 8.000 S H₂O 10.000 (inches W.C.) (inches W.C.) S H₂O 10.000 8.000 6.000 8.000 8.000 8.000 10.000 10.050 10.000 10.000 10.050 10.000		Target 40%	4.000	4.000	4.000	0.0000	0.00%	Pass
8.000 8.000 8.000 8.000 8.000 8.000 8.000 10.000 10.000 10.000 10.000 10.000 10.000 8.000 8.000 10.000 8.000 10.0000 10.0000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.0		Target 60%	000.9	6.010	6.000	0.0100	0.17%	Pass
10.000		Target 80%	8.000	8.000	8.000	0.0000	0.00%	Pass
Dn Range 0 - 10.000 8 H₂O 2.000 4.000 6.000 8.000 8.000 8.000 10.000	_ 1	Target 100%	10.000	10.050	10.000	0.0500	0.50%	Pass
On Range Run 2 0 - 10.000 Measured Value (inches W.C.) Reference Value (inches W.C.) 2.000 2.005 2.000 4.000 4.000 4.000 6.000 8.000 8.000 8.000 10.050 10.000 9 - 10.000 Measured Value (inches W.C.) 2.000 4.000 4.000 6.000 6.000 8.000 8.000 8.000 8.000 8.000 10.000 10.050 10.000								
s H ₂ O (inches W.C.) (inches		Calibration Ran	nge	Ru	in 2		Individual Run Results	
S H ₂ O 2.000 4.000 6.000 8.000 8.000 10.000 10.000 10.000 8.000 10.000			10.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
2.000 2.005 2.000 4.000 4.000 4.000 6.000 8.000 8.000 8.000 8.000 10.000 10.000 10.000 10.000 8.000 10.000 10.000 8.000 2.005 2.000 4.000 4.000 4.000 6.000 8.000 8.000 10.000 10.000 10.000	- 1	inches H ₂ O		(inches W.C.)	(inches W.C.)			
4.000 4.000 4.000 4.000 6.000 8.000 8.000 8.000 10.000 10.050 10.000 10.000 Run 3 0 - 10.000 Measured Value (inches W.C.) Reference Value (inches W.C.) 2.000 2.005 2.000 4.000 4.000 6.000 6.000 6.000 8.000 8.000 8.000 8.000 10.000 10.000 10.000		Target 20%	2.000	2.005	2.000	0.0050	0.25%	Pass
6.000 6.010 6.000 8.000 8.000 8.000 10.000 10.050 10.000 Run 3 0 - 10.000 Measured Value (inches W.C.) Reference Value (inches W.C.) 2.000 2.000 4.000 4.000 4.000 4.000 6.000 6.000 6.000 8.000 8.000 8.000 10.000 10.000 10.000		Target 40%	4.000	4.000	4.000	0.0000	0.00%	Pass
8.000 8.000 8.000 10.000 10.050 10.000 nr Range Run 3 0 - 10.000 Measured Value (inches W.C.) Reference Value (inches W.C.) 2.000 2.005 2.000 4.000 4.000 4.000 6.000 6.000 6.000 8.000 8.000 8.000 10.000 10.000 10.000		Target 60%	000'9	6.010	6.000	0.0100	0.17%	Pass
Incommendation 10.000 10.000 10.000 Incompanies Run 3 Run 3 Reference Value (inches W.C.) Reference Value (inches W.C.) 2.000 2.000 4.000 4.000 4.000 6.000 6.000 8.000 8.000 10.000 10.000 10.000		Target 80%	8.000	8.000	8.000	0.0000	0.00%	Pass
Dr. Range 0 - 10.000 8.000 8.000 10.000	- 1	Target 100%	10.000	10.050	10.000	0.0500	0.50%	Pass
on Range Run 3 0 - 10.000 Measured Value Reference Value s H ₂ O (inches W.C.) (inches W.C.) 4.000 2.005 2.000 4.000 4.000 4.000 6.000 6.000 8.000 8.000 8.000 10.000								
8 H ₂ O (inches W.C.) (inches W.C.) (inches W.C.) (inches W.C.) (inches W.C.) (inches W.C.) 2.000 4.000 6.000 6.000 8.000 8.000 10.050 10.000		Calibration Ran	nge	Ru	in 3		Individual Run Results	
s H ₂ O (inches W.C.) (inches W.C.) 2.000 2.005 2.000 4.000 4.000 4.000 6.000 6.000 6.000 8.000 8.000 8.000 10.000 10.050 10.000			10.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
2.000 2.005 2.000 4.000 4.000 4.000 6.000 6.000 6.000 8.000 8.000 8.000 10.050 10.050		inches H ₂ O		(inches W.C.)	(inches W.C.)			
4.000 4.000 6.000 6.000 6.000 8.000 8.000 8.000 10.000 10.050 10.000	ll.	Target 20%	2.000	2.005	2.000	0.0050	0.25%	Pass
6.000 6.000 6.000 8.000 8.000 8.000 10.050 10.050 10.000		Target 40%	4.000	4.000	4.000	0.0000	%00.0	Pass
8.000 8.000 8.000 10.000 10.050 10.000		Target 60%	000.9	6.000	6.000	0.0000	%00.0	Pass
10.000 10.050 10.000		Target 80%	8.000	8.000	8.000	0.0000	%00.0	Pass
		Target 100%	10.000	10.050	10.000	0.0500	0.50%	Pass

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

Average results for three runs

Pass/Fail

% Difference 0.17%

Pass

MONTROSE

R OFFIN TO BE BES

APPENDIX B GENERAL EMISSIONS CALCULATIONS

GENERAL EMISSIONS CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$P_s = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528^{\circ}R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Nomenclature:

stack area, ft2 A_s B_{wo} flue gas moisture content, dimensionless particulate grain loading, gr/dscf corrected to 12% CO₂ $C_{12\%CO2}$ particulate grain loading, gr/dscf С C_p pitot calibration factor, dimensionless = nozzle diameter, inches Dn = F fuel F-Factor, dscf/MMBtu @ 0% O₂ = orifice differential pressure, iwg Н % isokinetics 1 M_n mass of collected particulate, mg = mass emission rate of specie i, lb/hr Mi = MW molecular weight of flue gas, lb/lb-mole molecular weight of specie i: M_{wi} = SO₂: 64 NO_x: 46 CO: 28 HC: 16 0 sample time, minutes average velocity head, iwg = $(\sqrt{\Delta P})^2$ ΛР = barometric pressure, inches Hg P_{bar} = stack absolute pressure, inches Hg stack static pressure, iwb P_{sg} = wet stack flow rate at actual conditions, wacfm Q = Q_{sd} dry standard stack flow rate, dscfm SV specific molar volume of an ideal gas at standard conditions, ft³/lb-mole meter temperature, °R T_{m} = reference temperature, °R $\mathsf{T}_{\mathsf{ref}}$ = stack temperature, °R T_{s} = ٧¸ stack gas velocity, ft/sec volume of liquid collected in impingers, ml V_{lc} uncorrected dry meter volume, dcf V_{m} = dry meter volume at standard conditions, dscf V_{mstd} = volume of water vapor at standard conditions, scf V_{wstd} =

meter calibration coefficient

 Y_d

APPENDIX C QUALITY ASSURANCE

Appendix C.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (Montrose) ASTM D7036-04 certification, Montrose is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. Montrose quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: Montrose has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: Montrose has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of Montrose's QA efforts. The manual is revised upon periodic review and as Montrose adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. Montrose training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the Montrose QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of Montrose's emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

Knowledge of Current Test Methods: Montrose maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: Montrose maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to Montrose source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to Montrose office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)
- Flame Resistant Clothing (if required)

The following safety measures are followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling Lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	± 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	± 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	± 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	± 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	± 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	± 1.5%

Note: Calibration requirements that meet applicable regulatory agency requirements are used.

Appendix C.2 SCAQMD and STAC Certifications

SCS Engineers – Chiquita Canyon Landfill 2024 Leachate and Condensate Vapor Sampling

September 26, 2024

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice Reference # 96LA1220

Dear Mr. Peterson:

We have completed our review of Montrose Air Quality Services' revised renewal application, which was submitted as notification of Montrose's recent acquisition of AirKinetics, Inc. under the South Coast AQMD Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2024, and ending September 30, 2025, for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

South Coast AQMD Methods 1-4
South Coast AQMD Methods 10.1 and 100.1
South Coast AQMD Methods 5.1, 5.2, 5.3, 6.1 (Sampling and Analysis)
South Coast AQMD Methods 25.1 and 25.3 (Sampling)
Rule 1121/1146.2 Protocol
Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling
USEPA CTM-030 and ASTM D6522-00

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler Noritz America Corp. Ajax Boiler, Inc.
1510 North Spring Street 11160 Grace Avenue 2701 S. Harbor Blvd.
Los Angeles, CA 90012 Fountain Valley, CA 92708 Santa Ana, CA 92704

VA Laundry Bldg., Greater LA Healthcare Sys. So Cal Gas - Engr Analysis Ctr, Bldg H

508 Constitution Avenue 8101 Rosemead Blvd Los Angeles, CA 90049 Pico Rivera, CA 90660

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Colin Eckerle. He may be reached by telephone at (909) 396-2476, or via e-mail at ceckerle@aqmd.gov.

Sincerely,

D. Sarkar

Dipankar Sarkar Program Supervisor Source Test Engineering

DS:CE Attachment

240926 LapRenewal.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3925.01

Valid to February 28, 2026

Presented this 27th day of February 2024

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix C.3 Individual QI Certifications

Appendix C.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID: 119219

Date(s) Tested: October 17, 2024

Facility Name: Chiquita Canyon Landfill

Equipment Address: 29201 Henry Mayo Drive

Castaic, California 91384

Equipment Tested: Leachate and Condensate Sampling System

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm: Montrose Air Quality Services, LLC

Business Address: 1631 E. St. Andrew Pl.

Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in District Rule 304(k):

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory;
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing, or the source testing information provided to the SCAQMD.

Signature:		Date:	11/15/2024
Pete SanJuan	Field Project Manager	(714) 279-6777	11/15/2024
(Name)	(Title)	(Phone)	(Date)

FORM ST-110 :stevforl.doc (Revised 11/18/98

APPENDIX D FACILITY PERMIT

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

| Section D | Page: 20 | Facility | D | 149214 | Revision # | 11 | Date: September 28, 2023 |

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

PERMIT TO CONSTRUCT/OPERATE

Permit No. G66132 A/N 613131

Equipment Description:

Modification of an existing Landfill Gas Condensate and Leachate Collection/Storage System consisting of:

- Condensate storage tank, 5,000-gallon capacity, at Canyon B.
- Condensate storage tank, 10,000-gallon capacity, at Primary Canyon.
- Condensate storage tanks, three (3), each 6,650-gallon capacity, at flare station.
- Leachate collection tanks, up to (4), each 10.000-gatton capacity, and one 1,600-gallon capacity, with associated sump pump and transfer pumps.

By removal of:

One 1,600-gallon capacity leachate collection tank [under Item 4].

By addition of

1. One 10,000-gallon capacity leachate collection tank [to item 4].

Conditions:

- Operation of this equipment shall be conducted in accordance with all data and specifications submitted with the
 application under which this permit is issued unless otherwise noted below.

 [Rule 204]
- This equipment shall be properly maintained and kept in good operating condition at all times. [Rule 204]
- This equipment shall be operated and maintained by personnel properly trained in its operation.
 [Rule 204]
- This equipment shall be vented to air pollution control equipment which is in full operation and has been issued a valid Permit to Construct or Operate by the South Coast AQMD. [Rule 1303(a)(1)-BACT]
- This equipment shall be used only for the storage of landfill gas condensate and leachate collection.
 IRule 2041
- 6. All connectors, valves and openings shall be properly sealed or closed at all times to prevent landfill gas condensate vapors from entering into the atmosphere unless disposal of the condensate/leachate is taking place or during maintenance or repairs,
 [Rule 204]

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Page: 21 Facility ID: 119249 Revision #: 11 Date: September 28, 2023

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

- 7. Any breakdown or malfunction of the landfill gas condensate/leachate storage system shall be reported to South Coast AQMD within one hour after occurrence, or within one hour of the time personnel knew or reasonably should have known of its occurrence, per Rule 430 requirements, and remedial measures shall be undertaken to correct the problem and prevent further emissions into the atmosphere in a timely manner.
 [Rule 430]
- 8. The operator shall keep and maintain adequate records for this equipment to verify compliance with the conditions of this permit. These records shall be prepared in a format which is acceptable to the South Coast AQMD. Records shall be kept for at least five years and made available to South Coast AQMD personnel upon request.
 [Rule 204]
- This permit shall expire if construction of this equipment is not complete within one year from the date of issuance of this permit unless an extension is granted by the Executive Officer.
 [Rule 204]

APPENDIX E FLARE NO. 1 REPORT

TEST REPORT FOR 2024 SOURCE TEST AT CHIQUITA CANYON LANDFILL GAS FLARE NO. 1 (JOHN ZINK) FACILITY ID: 119219

Prepared For:

SCS Field Services 3900 Kilroy Airport Way, Ste. 100 Long Beach, California 90806

For Submittal To:

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Pete San Juan

Test Date: June 27, 2024
Production Date: August 21, 2024

Report Number: W002AS-040568-RT-6437

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:		Date:	8/21/2024
Name:	Pete San Juan	Title:	Client Project Manager
appropriate writte the presented ma	n materials contained here	ein. I hereby e, and conf	lculations, results, conclusions, and other certify that, to the best of my knowledge, orms to the requirements of the Montrose
Signature:	Sun	Date:	8/21/2024
Name:	Surya Adhikari	Title:	Senior Reporting QC Specialist

TABLE OF CONTENTS

SEC	CTION		!	<u>PAGE</u>
1.0	INTR	ODU	CTION AND SUMMARY	7
2.0	TEST	UNIT	Г DESCRIPTION	9
3.0	TEST	DES	CRIPTION	10
	3.1	TES	T CONDITIONS	10
	3.2	SAM	IPLE LOCATIONS	10
	3.3	TES	T PROCEDURES	10
	3.	.3.1	SCAQMD Method 1.1 – Sampling and Velocity Traverses for Stationary Sources	12
	3.	.3.2	SCAQMD Method 2.1 – Velocity and Volumetric Flow Rate	12
	3.	.3.3	SCAQMD Method 3.1 – Gas Analysis for Dry Molecular Weight and Excess Air	12
	3.	3.4	SCAQMD Method 4.1 – Determination of Moisture Content in Stack Gase	s12
	3.	.3.5	SCAQMD Method 5.1 – Particulate Emissions	12
	3.	3.6	SCAQMD Method 100.1 – Continuous Gaseous Emissions Sampling	14
	3.	.3.7	SCAQMD Method 25.3 and EPA Method 18 – Methane and Total Gaseou Non-Methane Organics	
	3.	.3.8	EPA Method TO-15 – Trace Organic Hydrocarbons	15
	3.	.3.9	SCAQMD Method 307-91 – Hydrogen Sulfide and Reduced Sulfur Compounds	15
	3.	3.10	EPA Method 19 – Calculation of Exhaust Flow Rate from Known F-Factor	15
4.0	RESU	JLTS	AND OVERVIEW	16
	4.1	TES	T RESULTS	16
	4.2	TES	T OVERVIEW	18
LIS	T OF A	APPE	NDICES	
Α	TEST	DAT	A	19
	A.1	Sam	ple Location Data	20
	A.2	RM (CEMS DAS and Strip Chart Data	22
	A.3	Parti	culate Field and Laboratory Data	32
	A.4	Inlet	Flow Rate and Process Data	44
	A.5	Orga	anics and Sulfur Field and Laboratory Data	53
	A.6	Qua	lity Assurance Data	150
В	GENI	ERAL	EMISSIONS CALCULATIONS	172
С	SAMI	PI ING	S AND ANALYTICAL PROCEDURES	176

TABLE OF CONTENTS (CONTINUED)

SEC	CTION	<u>I</u>	<u>PAGE</u>
D	QUA	LITY ASSURANCE	181
	D.1	Quality Assurance Program Summary	182
	D.2	SCAQMD and STAC Certifications	188
	D.3	Individual QI Certifications	
	D.4	Statement of No Conflict of Interest	196
Е	FACI	LITY PERMIT	198
LIS	T OF	TABLES	
1-1	TES	T RESULTS SUMMARY	8
3-1	FLA	RE INLET TEST PROCEDURES	11
3-2	FLA	RE EXHAUST TEST PROCEDURES	11
4-1	GEN	NERAL RESULTS	17
4-2	TRA	CE ORGANIC SPECIES DESTRUCTION EFFICIENTY RESULTS	18

ACRONYMS/ABBREVIATIONS

ASTM American Society for Testing and Materials

BACT Best Available Control Technology

Btu British thermal unit

CEMS continuous emissions monitoring system

CH₄ Methane

CO Carbon Monoxide CO₂ Carbon Dioxide

dscf dry standard cubic feet

dscfm dry standard cubic feet flow rate

DRE destruction efficiency EC Electron Capture

ECD Electron Capture detector
ELCD electronic conductivity detector
EPA Environmental Protection Agency

°F degrees Fahrenheit
FID flame ionization detector
GC gas chromatograph

Gr/dscf grains per dry standard cubic feet

 ${
m gr}$ ${
m gram}$ ${
m H}_2{
m O}$ Moisture

H₂S Hydrogen Sulfide HALL ELCD Hall detector Ib/hr pounds per hour

lb/MMBtu pounds per million British thermal units

Ib/MMCFpounds per million cubic feetMMBtuone million British thermal unitsMMCFone million cubic feet (landfill gas)

NO_x Nitrogen Oxides MS Mass Spectroscopy

N₂ Nitrogen

NDIR Non dispersive infrared

O₂ Oxygen

PID photoionization detector PM Total Particulate Matter

PM₁₀ Total Particulate Matter less than 10 microns

ppm parts per million scf standard cubic feet

scfm standard cubic feet per minute

SCAQMD South Coast Air Quality Management District

SO_x Sulfur Oxides SO₂ Sulfur Dioxides

SWMD San Bernardino County Solid Waste Management Division

TCA Total Combustion Analysis
TCD Thermal Conductivity Detector

TGNMO Total Gaseous Non-Methane Organics
TRS Total Reduced Sulfur Compounds
VOCs Volatile Organic Compounds

1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted to perform the 2024 annual source testing on the landfill gas fired Flare No. 1 (John Zink) located at the Chiquita Canyon Landfill (CCL). The CCL (SCAQMD Facility ID: 119219) is located in Castaic, California. The annual testing was performed to satisfy requirements delineated by the SCAQMD Permit to Operate No. G73696 (A/N 645450) and the site-specific SCAQMD Rule 1150.1 compliance plan.

Measurements of the flare emissions and operating parameters were conducted at the flare exhaust and at the inlet (landfill gas) of the flare. Table 1-1 provides a test matrix of the parameters tested at each sample location. Testing was conducted according to the source test protocol (MAQS Document W002AS-040568-PP-1013) submitted to SCAQMD on April 25, 2024.

The tests were conducted on June 27, 2024 by Pete San Juan, Allen Dusky, and Jose Iniguez of MAQS. Pete San Juan was the on-site Qualified Individual for MAQS. Mr. MAQS qualifies as an independent testing laboratory under SCAQMD Rule 304 (no conflict of interest) and is certified by the SCAQMD to conduct testing for criteria pollutants according to District Methods. Cornelius Fong of SCS Engineers coordinated the source test program.

The results of the emission tests are summarized in Table 1-2. The source tests demonstrate that the flare operates with criteria pollutant and VOC emissions below the SCAQMD permit limits with the exception of the Inlet Total Reduced Sulfur as H_2S and the calculated Exhaust SO_x lb/hr as SO_2 . Detailed test results are presented in Section 4.0. All raw data, laboratory results, calculations, and QA/QC data can be found in the Appendices.

TABLE 1-1 TEST MATRIX CHIQUITA CANYON LANDFILL GAS FLARE 1 JUNE 27, 2024

Parameter	Inlet	Exhaust
Oxygen (O ₂)	X	Х
Carbon Dioxide (CO ₂)	Χ	X
Nitrogen (N ₂)	Χ	X
Carbon Monoxide (CO)		X
Nitrogen Oxides (NO _x)		X
Moisture (H ₂ O)		X
Flow Rate (dscfm)	Χ	X
Temperature (°F)		X
Total Particulate Matter (PM) as PM ₁₀		Χ
Methane (CH ₄)	Χ	Χ
Total Gaseous Non-Methane Organics (TGNMO)	Χ	Χ
Trace Volatile Organics (VOCs)	X	Χ
Hydrogen Sulfide (H ₂ S)	Χ	
Reduced Sulfur Compounds (TRS)	Χ	
Calorific Value (Btu/scf)	X	

TABLE 1-1 TEST RESULTS SUMMARY CHIQUITA CANYON LANDFILL GAS FLARE NO. 1 (JOHN ZINK) JUNE 27, 2024

Parameter/Units	Inlet Result	Exhaust Result	Limit
NOx			
ppm		8.75	
ppm @ 3% O ₂		18.51	
lb/hr (as NO ₂)		1.53	3.9
Ib/day (as NO ₂)		36.75	==
Ib/MMBtu (as NO ₂)		0.025	0.06 (BACT)
lb/MMCF (as NO ₂)		9.35	
CO ⁽²⁾			
ppm		<20.00	2,000 (Rule 407)
ppm @ 3% O ₂		<42.29	
lb/hr		<2.13	5.6
lb/day		<51.12	==
lb/MMBtu		<0.035	0.06 (BACT)
lb/MMCF		<13.01	
Methane			
ppm	350,595	<2.15	
lb/hr	2,420	<0.13	
Destruction Efficiency, % Methane		>99.99	≥99
voc			
ppm (as CH ₄)	41,862	5.23	
lb/hr (as CH₄)	289.0	0.32	0.92 (Exhaust)
lb/day (as CH₄)	6,936	7.65	` ′
lb/MMBtu (as ĆH₄)		0.005	
ppm (as hexane)	6,977	0.87	
ppm @ 3% O ₂ (as hexane) ⁽¹⁾	6,780	1.58	20 (Exhaust)
lb/MMCF (as hexane)	, 	1.75	
lb/MMBtu (as hexane)		0.005	
lb/hr (as hexane)	258.9	0.29	
Destruction Efficiency, % Hexane ⁽¹⁾		99.89	≥98
Particulate Matter			
gr/dscf		0.0029	0.057 (Rule 404)
gr/dscf @ 12 % CO ₂		0.0038	0.1 (Rule 409)
lb/hr		0.59	1.4
lb/day		14.22	
lb/MMBtu		0.010	
lb/MMCF		3.64	
Total Sulfur Compounds			
Total Sulfur as H₂S- Inlet, ppm	778.3		150 (Rule 431.1)
SO _x Exhaust, lb/hr (as SO ₂) ⁽³⁾		21.49	2.5
SO _x Exhaust, lb/day (as SO ₂) ⁽³⁾		515.85	
lb/MMCF		131.27	

⁽¹⁾ SCAQMD Rule 1150.1 and NSPS require that a flare meet the concentration standard or DRE.

⁽²⁾ Values presented reflect 20% of the selected analyzer range.

⁽³⁾ The exhaust SO_x lb/hr and lb/day results are calculated from inlet reduced sulfur concentrations.

2.0 TEST UNIT DESCRIPTION

The mailing address for the facility and the physical location of the flare is:

Chiquita Canyon Landfill 29201 Henry Mayo Drive Castaic, California 91384

The flare is one of the main control devices flaring landfill gas at CCL. The control device (Flare No. 1) installed at CCL is a LFG blower/flare manufactured by the John Zink Company. It is a John Zink Model ZTOF Flare with a 4,000 standard cubic feet per minute (scfm) flow rate capacity and rated at 120 Million British Thermal Units (MMBtu) per hour. The flare receives LFG from two 150 horsepower blowers. The flare is equipped with automatic combustion dampers, three stack thermocouples (lower, middle, and upper), an ultra violet flame scanner, a flame failure detector and automatic shutdown control. The flare also has a condensate injection system. The unit is designed to accommodate inlet and outlet sampling. The flare is described in the permit as 136 inches in diameter and 50 feet in height.

As the refuse in the landfill decomposes, gases are generated in the subsurface, which contain methane, CO₂ and other decomposition products. The landfill gas is collected using vertical and horizontal gas wells located in the landfill.

The ignition burner fires on propane gas. The main burner fires only landfill gas. The flare is equipped with inlet air dampers to control the flow of combustion air to the burners. Thermocouples are installed at various heights to provide temperature indication for control of combustion temperature. Dedicated and calibrated flow meter monitors the flow rate of landfill gas to the flare.

3.0 TEST DESCRIPTION

3.1 TEST CONDITIONS

The flare was operated at the highest possible capacity for available landfill gas throughout the test period without the condensate injection. Temperature and fuel flow rate were monitored and recorded by the automatic operation control system throughout the test period. The landfill gas flow rate averaged 2,713 scfm during the source testing and was below the design capacity of 4,000 scfm.

The flare's temperature set point was set at 1,575°F as monitored from the middle stack thermocouple.

3.2 SAMPLE LOCATIONS

Samples were collected at the flare exhaust and at the inlet (landfill gas fuel) to the flare. The SCAQMD Method 1.1 sample point calculations and a schematic drawing of the exhaust sample locations are included in Appendix A.1. Sample ports were not available for the inlet flow and /or moisture measurements.

At the flare exhaust, a boom lift was used for access to the ports located on the circumference of the flare. The ports are approximately 44 feet above the ground; the stack exit is 50 feet above ground. The flare has an inner diameter of 136 inches. Twenty-four traverse points were used on all particulate, flow rate, and CEMS tests.

3.3 TEST PROCEDURES

The test procedures used for the inlet and flare exhaust measurements are summarized below in Tables 3-1 and 3-2, respectively. The procedures selected are consistent with SCAQMD/EPA source test methods as applicable. Brief discussions of each procedure are given below in Sections 3.3.1 through 3.3.10. A single measurement of each parameter was performed except for exhaust trace organics, which were measured in triplicate.

TABLE 3-1 FLARE INLET TEST PROCEDURES CHIQUITA CANYON LANDFILL GAS FLARE NO. 1 (JOHN ZINK)

Parameter	Sample Medium	Analytical Technique	Reference Method	Number of Replicates
Flow Rate ⁽¹⁾	On-Site Flow Meter	Flow Meter	Facility Meter	1
N ₂ , O ₂ , and CO ₂ Fuel Analysis (F-Factor & Btu/CF)	Tedlar Bag	GC/FID/TCA	SCAQMD 10.1 ASTM D1945/D3588	1-Duplicate
Methane and Total Gaseous Non-Methane Organics	Tedlar Bag	GC/FID/TCA	EPA 18	1-Duplicate
H ₂ S and TRS	Tedlar Bag	GC/SCD	SCAQMD 307-91	1-analyzed in duplicate
Trace Organics (Rule 1150.1 Compounds)	Summa Canister	GC/MS	EPA TO-15	3 / 30 min

⁽¹⁾ Inlet Flow rate was measured by the dedicated facility meter. Facility Fuel Meter calibration is included in this report.

TABLE 3-2
FLARE EXHAUST TEST PROCEDURES
CHIQUITA CANYON LANDFILL
GAS FLARE NO. 1 (JOHN ZINK)

Parameter	Sample Medium	Analytical Technique	Reference Method	Number of Replicates
Flow Rate	Pitot Tube	Differential Pressure	SCAQMD 2.1/ EPA 19	1 / 72 Min
Moisture	Impinger Train	Gravimetric	SCAQMD 4.1	1 / 72 Min
Particulate Matter (PM)	Impinger Train and Filter	Gravimetric	SCAQMD 5.1	1 / 72 Min
Methane and Total Gaseous Non-Methane Organics	Summa Canister and H ₂ O Vial	GC/FID/TCA/TCD	SCAQMD 25.3	1-Duplicate 60 Min
NO_x	CEM	Chemiluminescence	SCAQMD 100.1	1 / 72 Min
O ₂	CEM	Paramagnetic	SCAQMD 100.1	1 / 72 Min
CO ₂	CEM	NDIR	SCAQMD 100.1	1 / 72 Min
со	CEM	NDIR/GFC	SCAQMD 100.1	1 / 72 Min
Trace Organics (Rule 1150.1 Compounds)	Summa Canister	GC/MS	EPA TO-15	3 / 30 Min

3.3.1 SCAQMD Method 1.1 – Sampling and Velocity Traverses for Stationary Sources

A preliminary source test site assessment was performed prior to the source test in order to determine applicable sample point traverse locations. The stack diameter, and the distance from sample ports to disturbances, i.e. bends, flanges, etc., both upstream and downstream, were measured. This information was utilized to determine the minimum number of sampling points per traverse, and the distance from the inner stack wall to each sample point location. Additionally, cyclonic flow patterns and in-situ stratified pollutant concentrations were taken into account.

3.3.2 SCAQMD Method 2.1 – Velocity and Volumetric Flow Rate

The velocity of the gas stream is determined by using an "S" type or standard pitot tube, a low flow electronic manometer, and type "K" thermocouple with a digital temperature measuring device. The calibrated pitot tube is connected to the electronic Air Data Multimeter (ADM) manometer and leak checked. A temperature and delta P are obtained at each traverse point, and a duct static pressure is measured and recorded. The dry volumetric flow rate is determined from the gas velocity data, stack pressure, stack gas moisture content, stack gas molecular weight, and cross-sectional area of duct. The outlet gas flow rate was measured in conjunction with the particulate test using a combined pitot/probe system following SCAQMD Method 2.1 and 5.1. The exhaust flow rate was also calculated using EPA Method 19 and landfill gas analysis data and compared with the measured flow rate. A cyclonic flow test was conducted. The inlet landfill gas flow rate was measured by the calibrated facility fuel meter.

3.3.3 SCAQMD Method 3.1 – Gas Analysis for Dry Molecular Weight and Excess Air

A gas sample is extracted from the stack using the Montrose AQS continuous emissions monitoring system. The system is operated in accordance with SCAQMD 100.1. Molecular weight of the stack gas is calculated from the percentages of carbon dioxide (CO_2), oxygen (O_2) and nitrogen (O_2). Inlet O_2 , and O_2 measurements were acquired from the D-1945 samples of the landfill gas following SCAQMD Method 10.1 and ASTM D-1945/3588. Quantum Analytical analyzed these inlet samples by GC/TCD.

3.3.4 SCAQMD Method 4.1 – Determination of Moisture Content in Stack Gases

Moisture content was determined with the Method 5.1 sampling system. Prior to sampling a leak check of the sampling train is performed to ensure system integrity. Tare weights of the charged individual impingers are recorded prior to the start of the sampling run using a top loading digital balance capable of weighing to the nearest 0.1 gram or less. After sampling, the final weights of each impinger are determined and recorded. Percent moisture content is calculated from the weight of water collected and the dry gas volume sampled.

3.3.5 SCAQMD Method 5.1 – Particulate Emissions

A series of preliminary measurements were made prior to conducting the test. SCAQMD Methods 1.1, 2.1, and 3.1 were performed to determine location and number of traverse points, average gas velocity, and gas molecular weight, respectively. Percent moisture content was estimated using a psychometric chart or combustion analysis of the fixed gases. The results of these measurements were used to determine the appropriate nozzle size for isokinetic sampling.

The apparatus is prepared on-site in our mobile emissions laboratory. The absorption train is charged with freshly prepared chemicals, weighed on a calibrated top loading digital balance to the nearest 0.1 grams, and assembled. The first two impingers contain 100 ml of deionized distilled water (DI H₂O), impinger three is empty, and impinger four contains approximately 300 grams of indicating silica gel. An ambient temperature filter is located between the third and fourth impinger. The probe is brushed out and rinsed with distilled water and acetone.

The sampling apparatus is sealed and transported to the sampling site where it is assembled and leak tested at 15 inches of mercury vacuum. The probe is positioned into the duct at the first traverse point with the nozzle out of the flow.

The nozzle is positioned into the gas flow and the vacuum pump is started immediately and adjusted to obtain an isokinetic sample rate. A complete traverse is performed while sampling for three minutes per sample point. Upon completion of the traverse the vacuum pump is turned off and the probe is transferred into the next sample port where an identical traverse is performed. Duct conditions (temperature, ΔP) and sampling conditions (meter temperature, meter volume, meter pressure, impinger temperature, and absorption train vacuum) are monitored and recorded regularly for each sample point.

Upon completion of the sampling run, the apparatus is leak checked at a vacuum greater than the highest observed vacuum. Any leak is recorded and the apparatus is sealed and transported to the mobile laboratory. The filter-to-impinger Teflon line is rinsed with a known amount of distilled water into the first impinger.

Particulate Analysis

The filter and any loose particulate are carefully removed from the filter holder with tweezers. The filter is then placed into a labeled petri dish and transported to the MAQS laboratory. The nozzle and probe are rinsed and brushed three times with DI H₂O. The sample fractions are combined, bottled, labeled, and fluid levels marked for transportation to MAQS laboratory for analysis. An aliquot of the DI H₂O is similarly treated for blank analysis.

The absorption train is inspected for abnormalities and disassembled. The impingers are weighed on a top loading digital balance for a percent moisture determination. The contents of impingers 1 and 2, and impinger 3 are quantitatively transferred into the probe/nozzle bottle, sealed, labeled, and fluid level marked for transportation to the MAQS laboratory for analysis.

The filter is transferred to an oven and heated at 105°C for 2-3 hours and then placed in a desiccator for 24 hours. The filter is weighed on a digital balance to the nearest 0.1 mg or one percent of the total filtrate weight (weighed to a constant weight).

The contents of the nozzle, probe and impingers are diluted volumetrically to a known volume. Organic extraction was performed on the combined probe and impinger catch. The aqueous fractions are evaporated, desiccated, and weighed to a constant weight.

The net weight of particulate is calculated from all the fractions. Concentrations (gr/dscf) and emissions (lb/hr) are calculated and reported based on the sampling data and the net weight of particulate matter. The particulate matter results are reported as total particulate or PM₁₀ since all the particulate matter emitting from the flare is assumed to be less than 10 microns.

3.3.6 SCAQMD Method 100.1 – Continuous Gaseous Emissions Sampling

Measurements of NO_x, O₂, CO₂, and CO at the exhaust were conducted using SCAQMD Method 100.1 sampling with a continuous emission monitoring system (CEMS).

A continuous sample is extracted from the stack through a stainless-steel probe, heated Teflon line, filter, sample conditioner (moisture removal system), sample pump and then delivered to the analyzers through an unheated Teflon line, sample manifold and dedicated flow meters.

Prior to beginning the test, a system leak check is performed. The leak check is accomplished by plugging the probe tip and drawing >25" Hg vacuum on the entire sampling system. When all flow meters indicate 0.000 scfh flow, the system is proven to be free of all leaks.

An analyzer calibration error (CE) check is performed at the beginning of each sampling day. The CE is performed as follows: After zeroing all analyzers with nitrogen, EPA Protocol 1 gases are used to calibrate each analyzer within 80-95% full scale of the selected range. Each analyzer, individually, is then spanned within 40-60% of the selected range by introducing a second EPA Protocol 1 gas.

A system bias check is performed before and after each sampling run by delivering zero and calibration gases to the three-way valve, located between the probe and sample line, and drawing the gases through the sampling system. The bias for each analyzer will not exceed 5% of the high spanned calibration gas value or the sampling run is repeated.

All concentrations from the NO_x , O_2 , CO_2 , and CO analyzers are recorded on a Johnson Yokogawa Model DR240 recorder. The data is continuously recorded by a strip chart and an onsite data acquisition system (DAS). The DAS is reduced by computer in the Montrose AQS Laboratory.

A single emissions measurement was performed to determine the concentration of NO_x , O_2 , CO_2 , and CO. The average concentrations were determined during a test for a period of 72 minutes using a 24-point traverse. This test average was then corrected for measured system bias and drift. Exhaust N_2 data was calculated by the difference from the concentration of the other major exhaust gas components. The NO_x analyzer was on the NO_x mode of operation. A NO_2 converter check was performed on-site and met 90% efficiency criteria.

3.3.7 SCAQMD Method 25.3 and EPA Method 18 – Methane and Total Gaseous Non-Methane Organics

Methane and total gaseous non-methane organics were measured at the inlet and exhaust following EPA Method 18 and Method 25.3, respectively. Quantum Analytical, based in Carson, California and Enthalpy Analytical in Orange, California analyzed the Method 18 and 25.3 samples, respectively, following EPA and SCAQMD Method Procedures.

The exhaust gas measurements were conducted using SCAQMD Method 25.3. The sample is collected using a stainless-steel probe connected by Teflon tubing to a glass impinger containing 2-3 ml of purified H₂O. The condensable organics are captured in the water impinger. Noncondensable organics travel through the water fraction and are collected in an evacuated stainless-steel tank. The probe and sample lines are purged with flue gas continuously for 5 minutes before sampling. The exhaust sampling was conducted simultaneously with the collection of the EPA Method 18 inlet samples for the determination of destruction efficiency. The EPA Bias factor (1.086) is used to correct the SCAQMD 25.3 sample results. Single point sampling was conducted.

3.3.8 EPA Method TO-15 - Trace Organic Hydrocarbons

Trace organic species were collected in triplicate in summa canisters at the inlet and exhaust. The samples were analyzed by Gas Chromatography/Mass Spectroscopy (GC/MS) by Enthalpy Analytical in Orange, California, following EPA Method TO-15 protocol. The flare inlet and exhaust were sampled simultaneously for a thirty-minute period. The flow rate used to calculate the emission rates (lb/hr) are the inlet and outlet measured flows. Single point sampling was conducted.

3.3.9 SCAQMD Method 307-91 - Hydrogen Sulfide and Reduced Sulfur Compounds

A sample for determination of hydrogen sulfide and speciated reduced sulfur compounds was collected in a Tedlar bag. The sample was analyzed by GC/SCD by Quantum Analytical Services, Inc. in Carson, California, following SCAQMD Method 307-91 protocol. The Tedlar bag sample was analyzed in duplicate within 24 hours of sampling. The inlet total sulfur concentration was used along with inlet landfill gas flow rate to calculate the SOx emissions.

3.3.10 EPA Method 19 - Calculation of Exhaust Flow Rate from Known F-Factor

Landfill gas flow rate was measured using the calibrated facility fuel meter. Inlet landfill gas samples were collected in a Tedlar bag and analyzed for F-Factor (dscf/MMBtu) and high heating valve (HHV) Btu/scf by ASTM D1945/3588. Lab result values are used for the calculation of volumetric flow rate. The equation below shows the equation used to calculate volumetric flow rate.

Equations:

$$Q_{sd} = \left(\frac{F_d \times GCV \times FF}{1 \times 10^6}\right) \left(\frac{20.9 - O_2}{20.9}\right)$$

4.0 RESULTS AND OVERVIEW

4.1 TEST RESULTS

The results of the Chiquita Canyon Landfill Flare No. 1 (John Zink) source test program demonstrate that the criteria pollutant and VOC emissions are below the SCAQMD Permit to Operate No. G73696 (A/N 645450) limits, with the exception of the Inlet Total Reduced Sulfur as H_2S and the Exhaust SO_x lbs/hr as SO_2 . Table 1-1 presents the summarized test results and applicable permit limits. Table 4-1 presents detailed test results of each parameter. Table 4-2 presents the test results of the trace organics. The TGNMO destruction efficiency was 99.89% and the average TGNMO exhaust concentration (ppm @ 3% O_2 as hexane) was 1.58 ppm, well below the requirement of 20 ppm @3% O_2 as hexane.

TABLE 4-1 GENERAL RESULTS CHIQUITA CANYON LANDFILL GAS FLARE NO. 1 (JOHN ZINK) JUNE 27, 2024

	JUNE 27, 2024		
Parameter/Units	Inlet Result	Exhaust Result	Limit
O ₂ , %	2.48	12.43	
CO ₂ , %	45.63	8.97	
N ₂ , %	16.52	78.59	
H ₂ O, %		10.4	
Flow Rate, wscfm		26,860	
Flow Rate, dscfm	2,729	24,055	4,000 (inlet)
Temperature, °F ⁽³⁾		1,473	4,000 (inici)
Temperature, °F ⁽⁴⁾		1,575	>1400
Btu/scf	374.5		
NO _x			
ppm	<u></u>	8.75	
ppm @ 3% O ₂	<u></u>	18.51	
lb/hr (as NO ₂)		1.53	3.9
Ib/day (as NO ₂)		36.75	
Ib/MMBtu (as NO ₂)		0.025	0.06 (BACT)
Ib/MMCF (as NO ₂)		9.35	
CO ⁽⁵⁾			
ppm		<20.00	2,000 (Rule 407)
ppm @ 3% O₂		<42.29	
lb/hr		<2.13	5.6
lb/day		<51.12	
lb/MMBtu		<0.035	0.06 (BACT)
lb/MMCF		<13.01	
Methane			
ppm	350,595	<2.15	
lb/hr	2,420	<0.13	
Destruction Efficiency, % Methane		>99.99	≥99
voc			
ppm (as CH₄)	41,862	5.23	
lb/hr (as CH₄)	289.0	0.32	0.92 (Exhaust)
lb/day (as CH₄)	6,936	7.65	
Ib/MMBtu (as CH ₄)		0.005	
ppm (as hexane)	6,977	0.87	
ppm @ 3% O ₂ (as hexane) ⁽¹⁾	6,780	1.58	20 (Exhaust)
Ib/MMCF (as hexane)		1.75	
Ib/MMBtu (as hexane)		0.005	
lb/hr (as hexane)	258.9	0.29	
Destruction Efficiency, % Hexane ⁽¹⁾		99.89	≥98
Particulate Matter			
gr/dscf		0.0029	0.057 (Rule 404)
gr/dscf @ 12% CO ₂		0.0038	0.1 (Rule 409)
lb/hr		0.59	1.4
lb/day		14.22	
lb/MMBtu		0.010	
lb/MMCF		3.64	
Sulfur Compounds			
H₂S, ppm	67.64		
Carbonyl Sulfide, ppm	2.20		
Methyl Mercaptan, ppm	82.91		
Ethyl Mercaptan, ppm	1.97		
Dimethyl Sulfide	466.7		
Unidentified Sulfur Compounds, ppm	156.9		
Total Sulfur Compounds,			
Total Sulfur as H₂S- Inlet, ppm	778.3		150 (Rule 431.1)
SO _x Exhaust, lb/hr (as SO ₂) ⁽²⁾		21.49	2.5
SO _x Exhaust, Ib/day (as SO ₂) ⁽²⁾		515.85	
lb/MMCF		131.27	

⁽¹⁾ SCAQMD Rule 1150.1 and NSPS require that a flare meet the concentration standard or DRE.
(2) The exhaust SO_x lb/hr and lb/day results are calculated from inlet reduced sulfur concentrations.
(3) Temperatures taken from the sampling ports.
(4) Temperatures taken from the facility.
(5) Values presented reflect 20% of the selected analyzer range.

TABLE 4-2 TRACE ORGANIC SPECIES DESTRUCTION EFFICIENTY RESULTS CHIQUITA CANYON LANDFILL GAS FLARE NO. 1 (JOHN ZINK) JUNE 27, 2024

Sample Location: Test No.: Start Time: Flow Rate, dscfm:		VOC - AV 0920, 09 2,7		Exhaust VOC - AVG 1, 2 & 3 0920, 0955, 1030 24,055				Destruction Efficiency		
Species	ppb			lb/hr	ppb		lb/hr		%	
Benzene:		83,383		2.81		4.40		1.31 x 10 ⁻³		99.95%
Benzyl Chloride:	ND<	78	<	4.28 x 10 ⁻³	ND<	0.36	<	1.74 x 10 ⁻⁴		N/A
Chlorobenzene:		440		2.14 x 10 ⁻²	ND<	0.36	<	1.54 x 10 ⁻⁴	>	99.28%
1,2-Dichlorobenzene:	ND<	78	<	4.97 x 10 ⁻³	ND<	0.36	<	2.02 x 10 ⁻⁴		N/A
1,4-Dichlorobenzene:		783		4.97 x 10 ⁻²	ND<	0.36	<	2.02 x 10 ⁻⁴	>	99.59%
1,1-Dichloroethane:	ND<	78	<	3.35 x 10 ⁻³	ND<	0.36	<	1.36 x 10 ⁻⁴		N/A
1,2-Dichloroethane:		767		3.28 x 10 ⁻²	ND<	0.36	<	1.36 x 10 ⁻⁴	>	99.59%
1,1 Dichloroethene:	ND<	78	<	3.28 x 10 ⁻³	ND<	0.36	<	1.33 x 10 ⁻⁴		N/A
Dichloromethane:		367		1.35 x 10 ⁻²	ND<	0.36	<	1.16 x 10 ⁻⁴	>	99.13%
1,2-dibromoethane:	ND<	78	<	6.36 x 10 ⁻³	ND<	0.36	<	2.58 x 10 ⁻⁴		N/A
Perchloroethylene:		287		2.05 x 10 ⁻²	ND<	0.36	<	2.27 x 10 ⁻⁴	>	98.89%
Carbon Tetrachloride:	ND<	78	<	5.21 x 10 ⁻³	ND<	0.36	<	2.11 x 10 ⁻⁴		N/A
Toluene:		25,667		1.02	<	1.14	<	4.00 x 10 ⁻⁴	>	99.96%
1,1,1-Trichloroethane:	ND<	78	<	4.51 x 10 ⁻³	ND<	0.36	<	1.83 x 10 ⁻⁴		N/A
Trichloroethene:		143		8.14 x 10 ⁻³	ND<	0.36	<	1.80 x 10 ⁻⁴	>	97.79%
Chloroform:	ND<	78	<	4.04 x 10 ⁻³	ND<	0.36	<	1.64 x 10 ⁻⁴		N/A
Vinyl Chloride:	ND<	78	<	2.12 x 10 ⁻³	ND<	0.36	<	8.57 x 10 ⁻⁵		N/A
m+p-Xylene:		14,667		6.73 x 10 ⁻¹	ND<	0.72	<	2.91 x 10 ⁻⁴	>	99.96%
o-Xylene:		5,200		2.38 x 10 ⁻¹	ND<	0.36	<	1.46 x 10 ⁻⁴	>	99.94%
Total Trace Organics:			<	4.93			<	4.70 x 10 ⁻³	>	99.90%

<- indicates that the species was detected in the sample above the analytical detection limit for the species in one of the test runs.

4.2 TEST OVERVIEW

Testing was conducted according to the source test protocol (MAQS Document W002AS-040568-PP-1013) submitted to SCAQMD on April 25, 2024 with exception of the metal testing. The test protocol was later approved by the SCAQMD (Ref: S/T ID: P24145). All emissions are below the applicable permit limits with exception of the Inlet Total Reduced Sulfur as H_2S and the Exhaust SO_x lbs/hr as SO_2 .

Sample ports were not available at the inlet location for the flow rate and moisture measurements; therefore, the landfill gas inlet flow rate was recorded from the calibrated facility fuel meter. The particulate isokinetic rate was within the allowable range of 100%±10% as defined in the method. All calibration error, system bias, and drift checks were below their allowed tolerance of 2%, 5%, and 3%, respectively. The on-site NO₂ converter check efficiency was 95%, meeting the greater than 90% efficiency criterion. The precision between the two SCAQMD 25.3 samples met the 20% method QA requirement. The results were therefore the average value of the two samples.

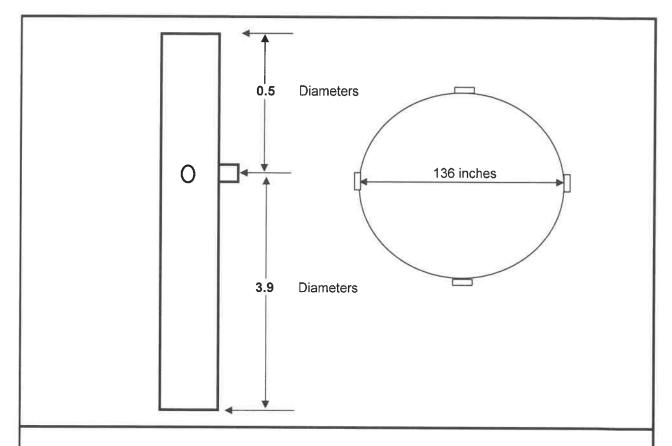
ND< - indicates that the species was not detected in the sample above the analytical detection limit for this species.

The values reported is the detection limit for the species and the actual concentration is lower.

N/A - indicates that the destruction efficiency cannot be calculated because the inlet concentration is below the detection limit.

APPENDIX A TEST DATA

Appendix A.1 Sample Location Data



METHOD 1 DATA SHEET EXHAUST SAMPLE LOCATION

Client: Waste Connections Date: 6/27/24

Location: Flare 1 Performed By: SJ, AD, JI

Diameter (inches)	136.00	Sample	% of	Dist from	Dist from
		Point	Diameter	Wall (inches)	Port (inches)
Upstream (inches)	530.00	1	2.1	2.9	6.9
		2	6.7	9.1	13.1
Downstream (inches)	70.00	3	11.8	16.0	20.0
		4	17.7	24.1	28.1
Coupling (in.)	4.00	5	25.0	34.0	38.0
		6	35.6	48.4	52.4
Stack Area (ft²)	100.88	7	64.4	87.6	91.6
		8	75.0	102.0	106.0
		9	82.3	111.9	115.9
		10	88.2	120.0	124.0
		11	93.3	126.9	130.9
		12	97.9	133.1	137.1

Appendix A.2 RM CEMS DAS and Strip Chart Data

DATA AND WORKSHEET RUN NUMBER 1

		TEST C	CONSTANT	S			TES	T VARIABL	ES		
	Station:	Chiquita Ca						Start Date:			
		Flare 1	<i>,</i> -					End Time:	9:20	10:36	
Per	formed By:	SJ, AD, JI					Test (Condition:	1,575	degrees F	
	Cp:						Barom.	Pressure:	28.81	-	
	T _{ref} :	60	°F					Pstack:	-0.02	iwg	
5	Stack Area:	100.88	ft ²					Pstack:	28.81	"Hg	
	Meter Y _d :	0.994						MW:	28.69	lb/lb-mole	
	<u> </u>		DD 2.1 DAT	4			MI	ETHOD 100).1 DATA		
	dΡ		Temp	Vel.				O ₂	CO ₂	NO _x	CO
Point	(in. H ₂ O)	sgrt(dP)	°F	(fps)		Ana	alyzer Range	20	20	25	100
		- 1 - (- /		(1-7			al Gas Value	9.09	8.97	11.06	44.95
							t Direct Zero	-0.05	0.00	0.01	-0.08
						Pre-Test	Direct Span	9.09	9.12	10.97	45.26
							System Zero	-0.05	0.15	0.07	-0.03
						Pre-Test S	System Span	9.07	9.06	11.05	45.22
						Post-Tost	System Zero	-0.07	-0.01	0.03	0.08
							System Span	9.07	9.05	11.07	45.26
							t Direct Zero	-0.08	0.00	0.03	-0.10
						Post-Test	Direct Span	9.06	9.04	11.04	44.88
							est Average	12.43	9.05	8.76	4.30
						Cal Correc	ted Average	12.43	8.97	8.75	4.24
						_					
Average	0.0244	0.1562	1472.7	17.13			est zero bias	0.0%	0.8%	0.2%	0.1%
							est span bias est zero bias	-0.1%	-0.3%	0.3%	0.0%
							est zero bias est span bias	0.1% 0.1%	0.0% 0.0%	0.0% 0.1%	0.2% 0.4%
Stack	Flow Rate:	103,679	wacfm			F 051-16	Zero drift	-0.1%	-0.8%	-0.2%	0.4%
	Flow Rate:	24,055	dscfm				Span drift	0.0%	0.0%	0.1%	0.1%
		,			METHO	D 4.1 DATA		0.070			0.07.0
	Dry G	as Meter			Impi	ngers					
Time	Vol.	$T_m(in)$	$T_{m}(out)$	#/Matl.	End	Start	Diff.				
Start				H ₂ O			0.0	Meter	Pressure:	0.9	iwg
				H ₂ O			0.0	Sampl	e Volume:	38.630	dscf
End				Empty			0.0		Volume :		scf
Liiu				SG			0.0		e Content:		%
Total	41.606		77.3	Total			96.9	woodult	o oonient.	10.4	70
· otal						RESULTS	55.0				
				Ref. Meth	Defaulted	As Found					
			O ₂	%		12.43					
				ppm		8.75					
				@ 3% O2		18.51					
				lb/hr		1.53					
				lb/day		36.75					
				lb/MMBtu		0.025					
				lb/MMCF		9.35					
				ppm	<20.00	4.24					
				@ 3% O2	<42.29	8.97					
				lb/hr	<2.13	0.45					
				lb/day lb/MMBtu	<51.12 <0.035	10.84 0.007					
				lb/MMCF	<13.01	2.76					
			00	,	10.01	2.10					

Note: Moisture and Flow data is from the PM run "<"- CO concentrations below 20% of the analyzer range. Using 20% of range per Method 100.1.

	REFERENCE N	METHOD 1-	MINUTE AVER	AGE DATA	
Date	Time	O ₂	CO ₂	NO _x	co
6/27/2024	9:21:00 AM	12.53	8.909	8.703	3.527
6/27/2024	9:22:00 AM	12.66	8.862	8.822	3.918
6/27/2024	9:23:00 AM	12.429	9.063	8.846	3.931
6/27/2024	9:24:00 AM	12.449	8.999	8.704	3.275
6/27/2024	9:25:00 AM	12.445	9.01	8.756	3.032
6/27/2024	9:26:00 AM	12.512	9.022	8.749	3.048
6/27/2024	9:27:00 AM	12.338	9.094	8.878	2.996
6/27/2024	9:28:00 AM	12.371	9.149	8.944	2.924
6/27/2024	9:29:00 AM	12.39	9.08	8.964	3.001
6/27/2024	9:30:00 AM	12.31	9.146	9.041	3.142
6/27/2024	9:31:00 AM	12.281	9.22	9.109	3.273
6/27/2024	9:32:00 AM	12.522	8.92	8.635	3.565
6/27/2024	9:33:00 AM	12.842	8.597	8.25	4.268
6/27/2024	9:34:00 AM	12.779	8.717	8.328	5.187
3/27/2024	9:35:00 AM	12.816	8.602	8.253	5.132
3/27/2024	9:36:00 AM	12.796	8.617	8.331	5.092
6/27/2024	9:37:00 AM	12.726	8.699	8.425	4.946
6/27/2024	9:38:00 AM	12.332	9.107	8.99	4.578
6/27/2024 6/27/2024	9:39:00 AM	12.172	9.256	9.238	3.347
6/27/2024	9:40:00 AM 9:41:00 AM	12.272	9.109	8.948	2.998
5/27/2024	9:41:00 AM 9:42:00 AM	12.314	9.099	8.974	3.281
3/27/2024	9:42:00 AM 9:43:00 AM	12,206 12,318	9.214 9.143	9.111	3.644
1/27/2024	9:44:00 AM	12.563	9.143 8.867	8.977 8.467	3.593 4.514
6/27/2024	9:45:00 AM	12.563	9.064	8.781	5.336
3/27/2024	9:46:00 AM	12.43			
			8.921	8.59	5.632
5/27/2024	9:47:00 AM	12.299	9.155	8.97	4.896
3/27/2024	9:48:00 AM	12.382	9.034	8.784	4.043
3/27/2024	9:49:00 AM	12.283	9.235	9.06	4.16
6/27/2024	9:50:00 AM	12.16	9.29	9.235	4.406
3/27/2024	9:51:00 AM	12.061	9.381	9.387	4.227
5/27/2024	9:52:00 AM	12.226	9.28	9.155	4.028
3/27/2024	9:53:00 AM	12.322	9.155	8.961	4.207
3/27/2024	9:54:00 AM	12.333	9.162	8.982	4.41
3/27/2024	9:55:00 AM	12.777	8.694	8.254	5.546
5/27/2024	9:56:00 AM	12.76	8.729	8.319	9.03
/27/2024	10:01:00 AM	12.439	9.022	8.771	4.027
/27/2024	10:02:00 AM	12.36	9.107	8.909	4.428
/27/2024	10:03:00 AM	12.411	9.07	8.705	4.17
/27/2024	10:04:00 AM	12.337	9.123	8.934	4.384
/27/2024	10:05:00 AM	12.408	9.167	8.901	4.637
3/27/2024	10:06:00 AM	12.412	9.119	8.848	4.222
/27/2024	10:07:00 AM	12.298	9.191	8.921	4.154
5/27/2024	10:08:00 AM	12.35	9.206	8.855	4.064
3/27/2024	10:09:00 AM	12.399	9.085	8.765	4.237
/27/2024	10:10:00 AM	12.547	8.943	8.485	4.33
/27/2024	10:11:00 AM	12.564	8.933	8.507	4.493
/27/2024	10:12:00 AM	12.544	8.908	8.502	4.754
/27/2024	10:13:00 AM	12.511	9.031	8.593	4.715
/27/2024	10:14:00 AM	12.546	8.929	8.494	4.478
/27/2024	10:15:00 AM	12.431	9.07	8.644	4.757
/27/2024	10:16:00 AM	12.508	8.98	8.565	4.221
/27/2024	10:17:00 AM	12.219	9.309	9.029	4.077
/27/2024	10:18:00 AM	12.427	9.104	8.705	3.776
/27/2024	10:19:00 AM	12.296	9.247	8.798	4.071
/27/2024	10:20:00 AM	12.343	9.181	8.724	4.15
/27/2024	10:21:00 AM	12.521	9.051	8.635	4.51
/27/2024	10:22:00 AM	12.459	9.031	8.62	4.68
/27/2024	10:23:00 AM	12.589	8.926	8.538	5.017
27/2024	10:24:00 AM	12.4	9.126	8.697	4.552
/27/2024	10:25:00 AM	12.507	8.991	8.6	4.551
/27/2024	10:26:00 AM	12.641	8.852	8.405	5.291
/27/2024	10:27:00 AM	12.328	9.182	8.854	5.334
/27/2024	10:28:00 AM	12.316	9.21	8.832	4.834
/27/2024	10:29:00 AM	12.334	9,224	8.855	4.579
/27/2024	10:30:00 AM	12.405	9.093	8.685	4.104
/27/2024	10:31:00 AM	12.393	9.122	8.736	4.263
/27/2024	10:32:00 AM	12.285	9.252	8.904	4.26
/27/2024	10:33:00 AM	12.151	9.38	9.025	4.042
	10:34:00 AM	12.601	8.962	8.561	4.159
/27/2024					
/27/2024	10:35:00 AM	12.482	9.021	8.591	4.356
		12.482 12.563	9.021 9.03	8.591 8.515	4.356 4.527
27/2024	10:35:00 AM				

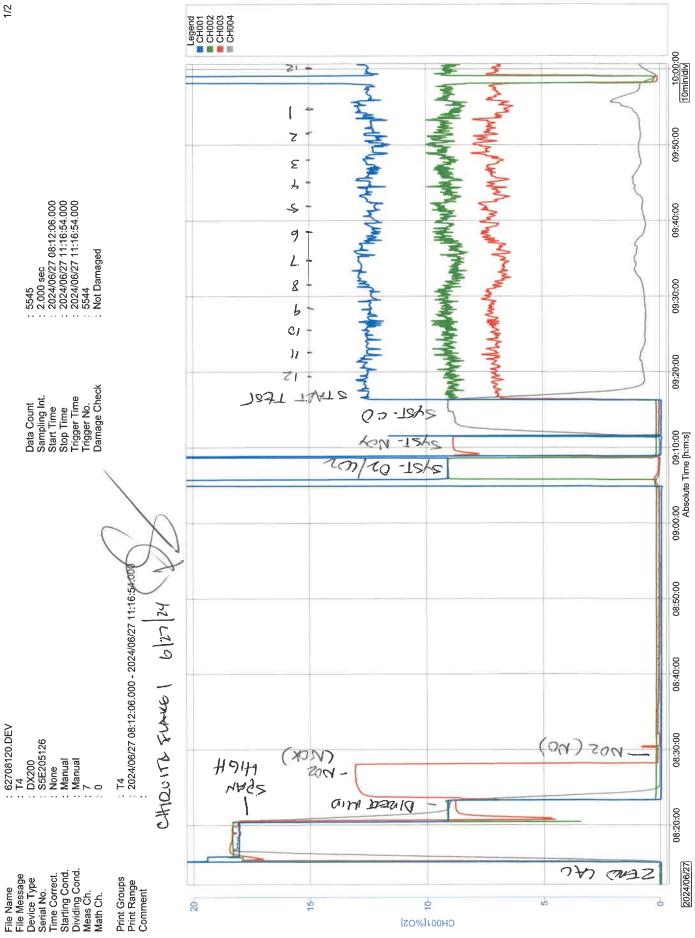
		O_2	CO_2	NO_x	CO		
Date	Time	%	%	PPM	PPM		
6/27/2024	8:10:00	-0.043	-0.002	0.026	-0.293		
6/27/2024	8:11:00	-0.045	-0.005	0.011	-0.264		
6/27/2024	8:12:00	-0.046	-0.002	0.011	-0.288		
6/27/2024	8:13:00	-0.047	0.001	0.014	-0.081	<	Zero Cal
6/27/2024	8:14:00	-0.049	0.002	0.014	-0.013		
6/27/2024	8:15:00	-0.05	0	0.015	-0.029	<	NO
6/27/2024	8:16:00	16.856	14.69	16.479	22.007		
6/27/2024	8:17:00_	18.053	18.293	22.962	82.162		
6/27/2024	8:18:00	18.041	18.311	22.802	90.528	<	Span High
6/27/2024	8:19:00	18.04	18.315	22.895	90.253		
6/27/2024	8:20:00	18.039	18.307	22.843	90.129	<	NO
6/27/2024	8:21:00	12.81	12.739	16.925	85.569		
6/27/2024	8:22:00	9.098	9.118	10.139	54.995		
6/27/2024	8:23:00	9.09	9.123	10.97	45.255	<	Direct Mid
6/27/2024	8:24:00	3.009	2.881	12.039	35.787		
6/27/2024	8:25:00	-0.05	0.173	16.049	6.393		
6/27/2024	8:26:00	-0.053	0.163	16.253	0.09		
6/27/2024	8:27:00	-0.053	0.164	16.303	-0.033		
6/27/2024	8:28:00	-0.054	0.163	16.318	-0.03	<	NO2 Audit NOx
6/27/2024	8:29:00	-0.055	0.164	2.754	-0.065		
6/27/2024	8:30:00	-0.057	0.161	0.104	-0.074	<	NO2 Audit NO
6/27/2024	8:31:00	-0.056	0.158	0.204	-0.081		
6/27/2024	8:32:00	-0.055	0.158	0.015	-0.077		
6/27/2024	8:33:00	-0.055	0.163	0.107	-0.106		
6/27/2024	8:34:00	-0.057	0.162	0.111	-0.135		
6/27/2024	8:35:00	-0.057	0.158	0.108	-0.14		
6/27/2024	8:36:00	-0.058	0.153	0.105	-0.142		
6/27/2024	8:37:00	-0.059	0.152	0.083	-0.109		
6/27/2024	8:38:00	-0.059	0.155	0.076	-0.093		
6/27/2024	8:39:00	-0.06	0.155	0.07	-0.059		
6/27/2024	8:40:00	-0.061	0.151	0.069	0.03		
6/27/2024	8:41:00	-0.062	0.146	0.055	0.153		
6/27/2024	8:42:00	-0.062	0.145	0.059	0.132		
6/27/2024	8:43:00	-0.063	0.141	0.056	0.035		
6/27/2024	8:44:00	-0.062	0.14	0.059	-0.065		
6/27/2024	8:45:00	-0.063	0.14	0.048	-0.063		
6/27/2024	8:46:00	-0.064	0.14	0.049	-0.064		
6/27/2024	8:47:00	-0.064	0.14	0.053	-0.114		
6/27/2024	8:48:00	-0.063	0.142	0.046	-0.116		
6/27/2024	8:49:00	-0.063	0.147	0.046	-0.082		
6/27/2024	8:50:00	-0.063	0.152	0.04	-0.061		
6/27/2024	8:51:00	-0.064	0.15	0.044	-0.016		
6/27/2024	8:52:00	-0.064	0.146	0.044	-0.04		
6/27/2024	8:53:00	-0.063	0.146	0.042	-0.079		
6/27/2024	8:54:00	-0.063	0.148	0.045	-0.09		

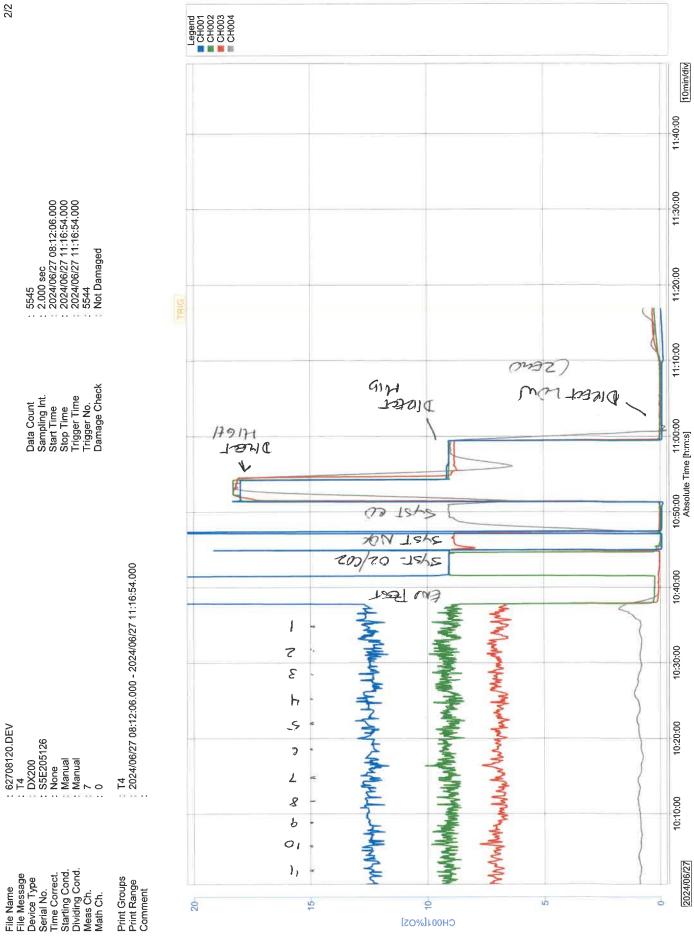
		O_2	CO_2	NO_x	CO		
Date	Time	%	%	PPM	PPM		
6/27/2024	8:55:00	-0.064	0.152	0.036	-0.065		
6/27/2024	8:56:00	-0.064	0.153	0.042	0		
6/27/2024	8:57:00	-0.065	0.15	0.033	0.048		
6/27/2024	8:58:00	-0.065	0.146	0.036	0.063		
6/27/2024	8:59:00	-0.066	0.146	0.035	0.072		
6/27/2024	9:00:00	-0.066	0.146	0.035	0.086		
6/27/2024	9:01:00	-0.065	0.146	0.03	0.115		
6/27/2024	9:02:00	-0.065	0.146	0.039	0.142		
6/27/2024	9:03:00	-0.064	0.143	0.036	0.161		
6/27/2024	9:04:00	-0.065	0.14	0.035	0.045		
6/27/2024	9:05:00	1.95	0.149	0.051	0.283		
6/27/2024	9:06:00	17.995	1.958	0.21	0.895		
6/27/2024	9:07:00	9.078	9.045	0.163	0.192		
6/27/2024	9:08:00	9.074	9.055	0.073	-0.025	<	System O2, CO2
6/27/2024	9:09:00	10.656	5.757	1.796	-0.045		
6/27/2024	9:10:00	-0.046	0.157	10.561	0.064		
6/27/2024	9:11:00	-0.053	0.152	11.045	0.019	<	System NOx
6/27/2024	9:12:00	0.668	0.771	6.107	6.136		
6/27/2024	9:13:00	-0.057	0.152	0.053	35.389		
6/27/2024	9:14:00	-0.058	0.15	0.043	43.561		
6/27/2024	9:15:00	-0.059	0.15	0.042_	44.235		
6/27/2024	9:16:00	-0.058	0.15	0.035	45.223	<	System CO
6/27/2024	9:17:00	8.515	6.339	5.129	38.045		
6/27/2024	9:18:00	12.566	8.883	8.654	12.014		
6/27/2024	9:19:00	12.652	8.778	8.725	3.653		
6/27/2024	9:20:00	12.548	8.926	8.748	3.262	<	Start Test
6/27/2024	9:21:00	12.53	8.909	8.703	3.527		12
6/27/2024	9:22:00	12.66	8.862	8.822	3.918		12
6/27/2024	9:23:00	12.429	9.063	8.846	3.931		12
6/27/2024	9:24:00	12.449	8.999	8.704	3.275		11
6/27/2024	9:25:00	12.445	9.01	8.756	3.032		11
6/27/2024	9:26:00	12.512	9.022	8.749	3.048		, 11
6/27/2024	9:27:00	12.338	9.094	8.878	2.996		10
6/27/2024	9:28:00	12.371	9.149	8.944	2.924		10
6/27/2024	9:29:00	12.39	9.08	8.964	3.001		10
6/27/2024	9:30:00	12.31	9.146	9.041	3.142		9
6/27/2024 6/27/2024	9:31:00	12.281	9.22	9.109	3.273		9
	9:32:00	12.522	8.92	8.635	3.565		9
6/27/2024 6/27/2024	9:33:00	12.842 12.779	8.597	8.25	4.268		8
6/27/2024	9:34:00		8.717	8.328	5.187		8
6/27/2024	9:35:00	12.816	8.602	8.253	5.132		8
6/27/2024	9:36:00	12.796	8.617	8.331	5.092		7
6/27/2024	9:37:00	12.726	8.699	8.425	4.946		7
6/27/2024	9:38:00 9:39:00	12.332	9.107	8.99	4.578		7
012112024	9,39.00	12.172	9.256	9.238	3.347		6

-				NO			
5 .	 -	O ₂	CO ₂	NO _x	CO		
Date	Time	%	%	PPM	PPM		
6/27/2024	9:40:00	12.272	9.109	8.948	2.998		6
6/27/2024	9:41:00	12.314	9.099	8.974	3.281		6
6/27/2024	9:42:00	12.206	9.214	9.111	3.644		5
6/27/2024	9:43:00	12.318	9.143	8.977	3.593		5
6/27/2024	9:44:00	12.563	8.867	8.467	4.514		5
6/27/2024	9:45:00	12.43	9.064	8.781	5.336		4
6/27/2024	9:46:00	12.575	8.921	8.59	5.632		4
6/27/2024	9:47:00	12.299	9.155	8.97	4.896		4
6/27/2024	9:48:00	12.382	9.034	8.784	4.043		3
6/27/2024	9:49:00	12.283	9.235	9.06	4.16		3
6/27/2024	9:50:00	12.16	9.29	9.235	4.406		3
6/27/2024	9:51:00	12.061	9.381	9.387	4.227		2
6/27/2024	9:52:00	12.226	9.28	9.155	4.028		2
6/27/2024	9:53:00	12.322	9.155	8.961	4.207		2
6/27/2024	9:54:00	12.333	9.162	8.982	4.41		1
6/27/2024	9:55:00	12.777	8.694	8.254	5.546		1
6/27/2024	9:56:00	12.76	8.729	8.319	9.03		1
6/27/2024	9:57:00	12.403	9.079	8.712	7.482		
6/27/2024	9:58:00	12.413	9.086	8.773	4.345		
6/27/2024	9:59:00	19.746	1.517	1.749	2.61		
6/27/2024	10:00:00	13.301	8.12	7.454	1.691	< Resume	
6/27/2024	10:01:00	12.439	9.022	8.771	4.027		12
6/27/2024	10:02:00	12.36	9.107	8.909	4.428		12
6/27/2024	10:03:00	12.411	9.07	8.705	4.17		12
6/27/2024	10:04:00	12.337	9.123	8.934	4.384		11
6/27/2024	10:05:00	12.408	9.167	8.901	4.637		11
6/27/2024	10:06:00	12.412	9.119	8.848	4.222		11
6/27/2024	10:07:00	12.298	9.191	8.921	4.154		10
6/27/2024	10:08:00	12.35	9.206	8.855	4.064		10
6/27/2024	10:09:00	12.399	9.085	8.765	4.237		10
6/27/2024	10:10:00	12.547	8.943	8.485	4.33		9
6/27/2024	10:11:00	12.564	8.933	8.507	4.493		9
6/27/2024	10:12:00	12.544	8.908	8.502	4.754		9
6/27/2024	10:13:00	12.511	9.031	8.593	4.715		8
6/27/2024	10:14:00	12.546	8.929	8.494	4.478		8
6/27/2024	10:15:00	12.431	9.07	8.644	4.757		8
6/27/2024	10:16:00	12.508	8.98	8.565	4.221		7
6/27/2024	10:17:00	12.219	9.309	9.029	4.077		7
6/27/2024	10:18:00	12.427	9.104	8.705	3.776		7
6/27/2024	10:19:00	12.296	9.247	8.798	4.071		6
6/27/2024	10:20:00	12.343	9.181	8.724	4.15		6
6/27/2024	10:21:00	12.521	9.051	8.635	4.51		6
6/27/2024	10:22:00	12.459	9.031	8.62	4.68		5
6/27/2024	10:23:00	12.589	8.926	8.538	5.017		5
6/27/2024	10:24:00	12.4	9.126	8.697	4.552		5
6/27/2024	10:25:00	12.507	8.991	8.6	4.551		4

_			O ₂	CO ₂	NO _x	CO		
	Date	Time	%	%	PPM	PPM		
()=	6/27/2024	10:26:00	12.641	8.852	8.405	5.291		4
	6/27/2024	10:27:00	12.328	9.182	8.854	5.334		4
	6/27/2024	10:28:00	12.316	9.21	8.832	4.834		3
	6/27/2024	10:29:00	12.334	9.224	8.855	4.579		3
	6/27/2024	10:30:00	12.405	9.093	8.685	4.104		3
	6/27/2024	10:31:00	12.393	9.122	8.736	4.263		2
	6/27/2024	10:32:00	12.285	9.252	8.904	4.26		2
	6/27/2024	10:33:00	12.151	9.38	9.025	4.042		2
	6/27/2024	10:34:00	12.601	8.962	8.561	4.159		1
	6/27/2024	10:35:00	12.482	9.021	8.591	4.356		1
	6/27/2024	10:36:00	12.563	9.03	8.515	4.527		1
	6/27/2024	10:37:00	12.636	8.933	8.756	6.495	End	d Run
	6/27/2024	10:38:00	13.944	7.586	7.581	8.009		
	6/27/2024	10:39:00	20.828	0.282	0.14	2.504		
	6/27/2024	10:40:00	20.839	0.254	0.093	0.361		
	6/27/2024	10:41:00	20.84	0.245	0.089	0.304		
	6/27/2024	10:42:00	15.162	4.114	0.082	0.345		
	6/27/2024	10:43:00	9.081	9.045	0.048	0.256		
	6/27/2024	10:44:00	9.074	9.048	0.034	0.083	<	System O2, CO2
	6/27/2024	10:45:00	9.36	6.086	0.883	0.157		
	6/27/2024	10:46:00	-0.05	0.079	10.714	0.281		
	6/27/2024	10:47:00	-0.066	-0.011	11.065	-0.088	<	System NOx
	6/27/2024	10:48:00	5.698	0.002	3.802	9.692		
	6/27/2024	10:49:00	-0.063	-0.018	0.037	38.832		
	6/27/2024	10:50:00	-0.066	-0.019	0.027_	44.898	4	
	6/27/2024	10:51:00	-0.072	-0.014	0.028	45.255	<	System CO
	6/27/2024	10:52:00	11.79	10.995	11.933	39.949		
	6/27/2024	10:53:00	17.996	18.218	22.815	77.107	27	
	6/27/2024	10:54:00	17.998	18.3	22.74	90.703	<	Direct High
	6/27/2024	10:55:00	11.34	11.746	18.8	83.668		
	6/27/2024	10:56:00	9.148	9.055	11.029	44.744		
	6/27/2024	10:57:00	9.082	9.046	11.029	35.75		
	6/27/2024	10:58:00	9.059	9.041	11.031	43.937		
	6/27/2024	10:59:00	9.058	9.039	11.035	44.884	<	Direct Mid
	6/27/2024	11:00:00	4.121	3.923	5.599	39.509		
	6/27/2024	11:01:00	-0.072	0.009	0.032	8.412		
	6/27/2024	11:02:00	-0.075	0.001	0.025	-0.397		
	6/27/2024	11:03:00	-0.076	-0.004	0.026	-0.104	<	Direct Zero
	6/27/2024	11:04:00	-0.076	-0.007	0.024	-0.159	=	

SPAN GAS RECORD


CLIENT/LOCATION: Waste Connections Flare 1


TRUCK/CEM I.D.: T4

DATE: 6/27/24

BY: SJ, AD, JI

				Exp.	Vendor	% of
	Gas	Cylinder #	Value	Date	ID	Range
ZERO	Low	EB0153454	0.0	1/19/32	B32024	
O ₂	Mid	CC203715	9.09	11/20/31	B32023	45.5%
O ₂	High	CC505326	18.05	11/15/31	B32023	90.3%
CO2	Mid	CC203715	8.97	11/20/31	B32023	44.9%
CO2	High	CC505326	18.28	11/15/31	B32023	91.4%
NO _x	Mid	EB0108976	11.06	8/16/26	B32023	44.2%
NO _x	High	CC755218	22.60	9/7/25	F22022	90.4%
NO ₂	NO_2	CC504061	17.04	8/17/26	B32023	
со	Mid	CC146055	44.95	3/25/32	B32024	45.0%
co	High	CC1442	90.18	9/13/30	B32023	90.2%

Appendix A.3 Particulate Field and Laboratory Data

PARTICULATE DATA AND CALCULATIONS

Client/Location	Waste Connections	Reference Temp (F)	60
Unit		Flare 1 Fuel	
Sample Location	Stack	Data By	
Operating Condition, deg F	1,575		00, 712, 01
operating containent, acg :	1,070		
Test No	F1-1-PM		
Date	6/27/2024		
Test Method	SCAQMD 5.1		
Sample Train	48-WCS		
Pitot Factor	0.84		
Meter Cal Factor	0.994		
Stack Area (ft ²)	100.88		
Sample Time (Minutes)	72		
Bar Press ("Hg)	28.81		
Nozzle Diam (inches)	0.648		
Fuel Flow Rate (sdcfm)	2,729	From Fuel Flow Inlet	
F-Factor (dscf/MMBtu)	9,971		
Start/Stop Time	0920/1036		
Stack Press (iwg)	-0.017		
Stack Temp (°F)	1472.7		
Velocity Head (iwg)	0.0244		
Stack O ₂ (%)	12.43		
Stack CO ₂ (%)	8.97		
Meter Vol (acf)	41.606		
Meter Temp (°F)	77.3		
Meter Press (iwg)	0.9		
Liquid Vol (ml)	96.9		
		•	
Std Sample Vol (SCF)	38.630		
Std Sample Vol (Nm³)	1.019		
Moisture Fraction	0.104		
Stack Gas Mol Wt	28.69		
Stack Gas Velocity (ft/sec)	17.13		
Stack Flow Rate (wacfm)	103,679		
Stack Flow Rate (dscfm)	24,055		
Isokinetic Ratio (%)	98.2		
			Limit
Particulate Catch, mg	7.2		0.057 (5.1.46.0)
Grain Loading, gr/dscf	0.0029		0.057 (Rule 404)
Grain Loading @ 3% O ₂	0.0061		
Grain Loading @ 12% CO₂	0.0038		0.1 (Rule 409)
Mass Emissions, lb/hr	0.59		1.4
Emission rate, lb/day	14.22		
Emission factor, lb/MMBTu	0.010		
Emission factor, lb/MMSCF	3.62		

	Vm	Ts	dP	dP^0.5	dH	Tmi	Tmo
12	587.280	1477	0.023	0.1517	0.9	SEC. 1923	70
11		1472	0.020	0.1414	0.8		70
10		1476	0.026	0.1612	1.0		71
9		1475	0.021	0.1449	0.8		71
8		1471	0.019	0.1378	0.7		71
7		1469	0.022	0.1483	0.8		74
6		1466	0.018	0.1342	0.7		75
5		1475	0.021	0.1449	0.8		75
4		1463	0.025	0.1581	1.0		76
3		1468	0.027	0.1643	1.0		77
2		1469	0.029	0.1703	1.1		77
1		1472	0.025	0.1581	1.0		78
12		1471	0.029	0.1703	1.1		78
11		1477	0.031	0.1761	1.2		78
10		1476	0.019	0.1378	0.7		79
9		1474	0.026	0.1612	1.0		80
8		1473	0.024	0.1549	0.9		81
7		1478	0.028	0.1673	1.1		81
6		1471	0.019	0.1378	0.7		81
5		1477	0.022	0.1483	0.8		81
4		1472	0.026	0.1612	1.0		82
3		1476	0.027	0.1643	1.0		83
2		1475	0.033	0.1817	1.3		83
I	628.886	1471	0.030	0.1732	1.1		83
	41.606	1472.7	0.0244	0.1562	0.94	77.	3

	Impingers	
Post	Pre	Diff
0	100	-100
904.2	735.4	168.8
724.4	719.4	5.0
643.6	641.9	1.7
896.6	875.2	21.4
	3071.9	96.9

Waste Connections Flare 1 June 27, 2024

SUMMARY OF EPA M-19 SOURCE TEST DATA AND CALCULATIONS

PARAMETER	UNITS	Run 1A	Run 1B	Average	
DATE		6/27/2024	6/27/2024	6/27/2024	
FUEL FLOW	SCFM			2,729	from facility meter
CALORIFIC VALUE	BTU/CF	376.0	373.0	374.5	from fuel analysis
F FACTOR (Fd)	DSCF/MMBTU	9,965	9,977	9,971	from fuel analysis
EXHAUST O2 CONCENTRATION	%VD			12.43	
HEAT INPUT - LANDFILL GAS	MMBTU/MIN			1.0220	
EXHAUST VOLUME FLOW RATE	DSCFM			25,160	

-4.59

Values stated based on a standard temperature of:

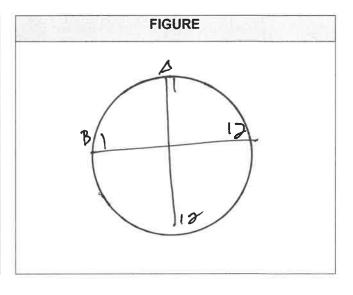
60 °F

RAA compared to measured flow rate:

% <20%

WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET

	AMBIENT TEMPERATURE: 75 BAROMETRIC PRESSURE: 26.61 BAROM	$egin{array}{c c c c c c c c c c c c c c c c c c c $	0 587.280 0.023 0.9 1477 NIP 01/0 S4 NIA 70 3 NIA .	584:0% 0:020 0:8 14.75 540:3 0:026 1:0 14.76	S42.74 CO 21 0.8 1475	17 12 00 1910 03 1711	5951 20 720.0 22: 565	579.30 000 000 000 000 000 000 000 000 000	601.42 00526 1.0 1463	602.95 6.027 1.0 1.468	1004.03 0.08 1.1 144.09	5 606 68 0.025 (. C) 472	64.89 403 1.2 1.77	00 19 0.7 1476 S2 79	61303 0026 1.0 1474	615.17 6.024 0.9 1473	86-1 1.000 7.000	60.00 6.00 1422	+ 621 +0 0.026 1.0 1472 SH	1523. 11 12 12 12 VI V 2520	(225.3) (0.03) (1.3 14.75)	
CLIENT: See W LOCATION: CLOCATION: CLOCATION	CLIENT: SES WIC CHIDOL LOCATION: CLORE - DATE: (-/27/24 RUN NO: CLORE - OPERATOR: AC TE METER BOX NO: 450-65 METER AH@: L &C METER Yd: COAH STACK AREA, FT? TRAVERSE POINTS, MIN/POIN AH= 21 f2. X AP: Probe Condition, pre/post test: Probe Condition after Test: Check Weight: Check Weight: And		0		\Box		+	\top	44	40	50	7/2	3	و			+	7	24 621	12	200	1 24 / 27


	Difference	P. static	
	Post-Test - Pre-Test = 176.6 178.4	% 0	
	Imp. # Contents Post-Test - Pre-Test = Difference DI	in. Hg.	
NDARD	DIH2	emp, °F	
r - STA	Total: Cotal: # 1 1 1 1 1 1 1 1 1 1	Meter Temp,	
ORKSHEET	H. F. F. J. G.	Imp. Out	
TA AND WO	Post:	Filter Temp, °F	
SYSTEM DA	EMPERATURE: WOISTURE: E COEFF, Cp: WO/MATERIAL: NO/ MATERIAL: TYPE: TYPE: LEAK RATE: \$\alpha\cusus \colon \	Probe Temp, °F	
WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET – STANDARD		Stack Temp, °F	
CHEMICAL (AMBIENT T BAROMETF ASSUMED I PITOT TUBB PROBE LEN NOZZLE ID NOZZLE ID FILTER NO/ PRE-TEST I POST-TEST PITOT LEAP CHAIN OF C	in. H ₂ O	
WET (\$300 L	AP in. H ₂ O	
	CLIENT: WC CHILDUITA LOCATION: FINAL CONTROL DATE: DATE RUN NO: PROTE METER AHØ: PROTE METER Yd: PROKEN FT2: AND CONTROL AH X AP: AP: Probe Condition, pre/post test: Check Weight: Check Weight: ADD STORY Check Weight: ADD STORY CLIENT CONTROL CLIENT CONTROL CLIENT CONTROL CO	Meter Volume, ft ³ G2名、1022 C2名・473	
	CLIENT: WC LAND LAND LAND LAND LAND LAND LAND LAND	Time - C Time	ıts:
w	CLIENT: UCATION: DATE: DATE: RUN NO: OPERATOR: METER BOX N METER YG: METER YG: AH= X Probe Condition Silica Gel Exper Filter Condition Check Weight:	37 of 204	Comments:

MONTROSE AQS 1631 E. ST ANDREW PLACE SANTA ANA, CA 92705

CYCLONIC FLOW VERIFICATION DATA SHEET

FACILITY	CHIRUTTA
SOURCE	FLANE!
DATE	6/27/24
PROJECT NUMBER	040568
STACK DIAMETER/DIMENSION	1364
BAROMETRIC PRESSURE	28.8
STATIC PRESSURE	-0.017
RUN NUMBER	Pron
TOTAL TRAVERSE POINTS	24
OPERATOR	ITIGA

		NULL POINT ROTATION AN					
SAMPLE POINT	DISTANCE FROM SAMPLE PORT (INCHES)	NORTH/SOUTH	PAST/WEST				
1	6.9	7 "	5,				
2	13.(3	2				
3	20.0	4°	}				
+	25.1	2	3				
5	38.0	2	\mathcal{O}				
6	52.4	l	4				
7	91.6	φ	2_				
4	106.0	٦	l				
4	115.9	5	U				
(0)	124.0)	7				
11	130.9	2					
12	137.	3	2				
		AVERAGE					

PARTICULATE SCAQMD 5.1, WET IMPINGEMENT

PROJ-040568		
Waste Connections	Sample Date:	6/27/2024
Flare 1 Exhaust	Analysis Date:	7/2/2024
1-PM	Analyst:	PR
	Waste Connections Flare 1 Exhaust	Waste Connections Flare 1 Exhaust Sample Date: Analysis Date:

Item	Item Number	Final Weight (g)	Tare Weight (g)	Gain Weight (mg)	Aliquot Correction (ml/ml)	Net Gain (mg/sample)	Blank Based on Total Volume (mg)
1. Glass Fiber Filter	55-8010	0.1703	0.1679	2.4		2.4	
2. Insoluble Particulate Filter	55-8209	0.1670	0.1669	0.1		0.1	
3. Impingers and Probe Catches a. Water Fraction	1069	29.3940	29.3904	3.6	355 355	3.6	1.0
b. Organic Fraction 125 ml MeCl ₂ (5x25mL)	1070	29.0415	29.0404	1.1	355 355	1.1	0.2

Tot	tal Particulate =	7.2
Method of Sample Prep/Analy	ysis Notes	
		Total Particulate = Method of Sample Prep/Analysis Notes

PARTICULATE SCAQMD 5.1, WET IMPINGEMENT

Project #	PROJ-040568	_			
Client/Location:	Waste Connections	_		Sample Date:	6/27/2024
Sample Location:	Flare 1 Exhaust	DI H ₂ O Blank (mg/ml)	0.0027	Analysis Date:	7/2/2024
Test #	FB	MeCl ₂ Blank (mg/ml)	0.0013	Analyst:	PR

Item	Item Number	Final Weight (g)	Tare Weight (g)	Gain Weight (mg)	Aliquot Correction (ml/ml)	Net Gain (mg/sample)	Blank Based on Total Volume (mg)
1. Glass Fiber Filter	55-8014	0.1679	0.1679	0.0		0.0	
2. Insoluble Particulate Filter	55-8208	0.1661	0.1660	0.1		0.1	
3. Impingers and Probe Catches a. Water Fraction	1067	29.2986	29.2981	0.5	285 285	0.5	0.8
b. Organic Fraction 125 ml MeCl ₂ (5x25mL)	1068	29.5718	29.5716	0.2	285 285	0.2	0.2
DI H₂O Blank	1051	29.7657	29.7653	0.4	150 150		
MeCl₂ Blank	1052	30.2496	30.2494	0.2	150 150		

	Total Particulate = _	0.8
Me	thod of Sample Prep/Analysis Notes	

PARTICULATE SCAQMD 5.1, WET IMPINGEMENT

७५०५८७

Project # ______PROJ-040458 Ph 07/07/04

Client/Location: Waste Connections
Sample Location: Flare 1 Exhaust

Test # 1-PM

 Sample Date:
 6/27/2024

 Analysis Date:
 7/2/2024

 Analyst:
 PR

Item	Item Number	Final Weight (g)	Tare Weight (g)	Gain Weight (mg)	Aliquot Correction (ml/ml)	Net Gain (mg/sample)	Blank Based on Total Volume (mg)
1. Glass Fiber Filter	5 5-8010	0.1703	0.1679	2.4		2.4	
2. Insoluble Solids Filter	55-8209	0.1676	0.1669	0.1		0.1	
3. Impingers and Probe Catches a. Water Fraction	1069	29.3940	29.3904	3.6	355 355	3.6	1.6
b. Organic Fraction 125 ml MeCl ₂ (5x25mL)	1070	29.0415	29.0464	1.1	355 355	1. i	0.2

Total Particulate = 7.2	
Method of Sample Prep/Analysis Notes	

PARTICULATE SCAQMD 5.1, WET IMPINGEMENT

040568

Project #	PROJ- 040458 PF	07/02/24		
Client/Location:	Waste Connections	_	Sample Date:	6/27/2024
Sample Location:	Flare 1 Exhaust	DI H ₂ O Blank (mg/ml) 0.0027	Analysis Date:	7/2/2024
Test #	FB	MeCl ₂ Blank (mg/ml) 6.0013	Analyst:	PR

Item	Item Number	Final Weight (g)	Tare Weight (g)	Gain Weight (mg)	Aliquot Correction (ml/ml)	Net Gain (mg/sample)	Blank Based on Total Volume (mg)
1. Glass Fiber Filter	55-8014	0.1679	0.1679	0,0		0.6	
2. Insoluble Solids Filter	55-8208	0.1661	0.1060	0.1		0.1	
3. Impingers and	1	2000010	22 24 9 1	0 -	285	^ F	Λ Δ
a. Water Fraction	e Catches 1067 29.2980 29.2981 0.5 ater Fraction	0.5	285	0,5	8.0		
b. Organic Fraction 125 ml MeCl ₂	1068	00 5718	29.5716	^	285	۸ ء	0 =
(5x25mL)	1000	29,3110	21.01.0	0.2	285	0.2	0.2
DI H₂O Blank	1051	29.7657	29.7653	0.4	150		
		2	- / / / - 0 3	0,9	150		
MeCl ₂ Blank	1052	30.2496	30.2494	0.2	150	******	
2	100 2 50,24-16 20	0,0	0,0	150			

Total Particulate =	
Method of Sample Prep/Analysis Notes	

CHAIN OF CUSTODY

0000 COMMENTS DATE/TIME 07/02/24 PROJECT MANAGER: Pete San Juan 040568 PROJECT # 040458 PR 0702 WITEST DATE(S): 6/27/2024 DATE DUE: 7/12/2024 SAMPLER(S): AD, JI COMPLIANCE TEST?: Yes SAMPLER AD, JI AD, JI RECEIVED BY KNOW CONTAINERS Stake N SAMPLE DESCRIPTION Chiquita Flare 1 Exhaust DATE/TIME Field Blank SCAQMD 5.1 with Organics extraction CLIENT: Waste Connections LOCATION: Chiquita Landfill SAMPLE LOCATION: Flare 1 Exhaust TEST# TEST METHOD(S): SCAQMD 5.1 1-PM 9 OUTSIDE LAB REQUIRED?: No RELEASED BY TIME ļ ANALYSIS REQUIRED: 6/27/2024 DATE

Master Document Storage\Forms\Datasheets\Lab Forms

Date of Last Revision 9/1/2017

NONTROSE

Chain of Custody - DS834001 - Excel

Appendix A.4 Inlet Flow Rate and Process Data

DATA AND WORKSHEET RUN NUMBER 1

TEST CONSTANTS				
	Station:	Chiquita Can	yon	
	Unit:	Flare 1		
Per	formed By:	SJ, AD, JI		
	T _{ref} :	60	°F	
TES	T VARIABL	.ES		
	Start Date:	6/27/24		
Start	/End Time:	9:20	10:36	
Test	Test Condition:		degrees F	
Barom	. Pressure:	28.81		
F	uel Gas C	omposistion	Data	
O ₂ :	2.48	%	From Inlet Fuel	
CO ₂ :	45.63	%	From Inlet Fuel	
N ₂ :	16.52	%	From Inlet Fuel	
CH₄:	34.90	%	From Inlet Fuel	
Fuel Flow Rate:	2,729	dscfm	From Facility Meter	

Fuel Gas Inputs

	F1 Inlet 1A	F1 Inlet 1B
O ₂ :	2.48	2.48
CO ₂ :	45.62	45.64
N ₂ :	16.47	16.57
CH ₄ :	34.93	34.86

CHIQUITA CANYON LANDFILL FLARE NO. 1 (FL-1995, formerly FL-150)

DAQSTANDARDR9.03.06Data ViewerR9.03.06SCS EngineersCornelius FongDevice TypeDX1000Serial No.S5LA04465Sampling Interval60.000 secDamage CheckNot Damaged

		Ch.	СН	003	СН	1004
Doto	T:	Tag	FL-150 IN	IST FLOW	FL-150	TEMP
Date	Time	Unit	SC	SCFM		°F
		sec	MIN	MAX	MIN	MAX
2024/06/27	09:21:00	0.000	2694	2743	1583	1585
2024/06/27	09:22:00	0.000	2694	2728	1580	1584
2024/06/27	09:23:00	0.000	2698	2725	1574	1580
2024/06/27	09:24:00	0.000	2690	2723	1572	1575
2024/06/27	09:25:00	0.000	2695	2725	1570	1572
2024/06/27	09:26:00	0.000	2695	2739	1568	1570
2024/06/27	09:27:00	0.000	2710	2743	1566	1568
2024/06/27	09:28:00	0.000	2707	2739	1567	1568
2024/06/27	09:29:00	0.000	2699	2733	1568	1573
2024/06/27	09:30:00	0.000	2701	2734	1573	1579
2024/06/27	09:31:00	0.000	2695	2734	1578	1583
2024/06/27	09:32:00	0.000	2688	2740	1583	1586
2024/06/27	09:33:00	0.000	2689	2736	1586	1587
2024/06/27	09:34:00	0.000	2699	2732	1581	1587
2024/06/27	09:35:00	0.000	2701	2747	1576	1582
2024/06/27	09:36:00	0.000	2698	2729	1570	1576
2024/06/27	09:37:00	0.000	2685	2736	1567	1571
2024/06/27	09:38:00	0.000	2687	2728	1565	1568
2024/06/27	09:39:00	0.000	2692	2738	1564	1566
2024/06/27	09:40:00	0.000	2688	2749	1566	1569
2024/06/27	09:41:00	0.000	2701	2741	1569	1575
2024/06/27	09:42:00	0.000	2699	2725	1575	1580
2024/06/27	09:43:00	0.000	2701	2739	1580	1583
2024/06/27	09:44:00	0.000	2702	2742	1582	1584
2024/06/27	09:45:00	0.000	2700	2731	1582	1585
2024/06/27	09:46:00	0.000	2694	2736	1571	1582
2024/06/27	09:47:00	0.000	2698	2735	1562	1572
2024/06/27	09:48:00	0.000	2695	2747	1558	1562
2024/06/27	09:49:00	0.000	2694	2739	1559	1564
2024/06/27	09:50:00	0.000	2697	2742	1563	1568
2024/06/27	09:51:00	0.000	2701	2747	1568	1572
2024/06/27	09:52:00	0.000	2704	2735	1571	1579
2024/06/27	09:53:00	0.000	2709	2742	1579	1587
2024/06/27	09:54:00	0.000	2710	2736	1586	1589
2024/06/27	09:55:00	0.000	2706	2734	1588	1589
2024/06/27	09:56:00	0.000	2709	2737	1575	1588
2024/06/27	09:57:00	0.000	2698	2746	1561	1575
2024/06/27	09:58:00	0.000	2706	2753	1556	1561
2024/06/27	09:59:00	0.000	2710	2739	1557	1564
2024/06/27	10:00:00	0.000	2714	2747	1564	1570
2024/06/27	10:01:00	0.000	2702	2755	1570	1573

CHIQUITA CANYON LANDFILL FLARE NO. 1 (FL-1995, formerly FL-150)

DAQSTANDARDR9.03.06Data ViewerR9.03.06SCS EngineersCornelius FongDevice TypeDX1000Serial No.S5LA04465Sampling Interval60.000 secDamage CheckNot Damaged

		Ch.	СН	1003	СН	004
Data	T ;	Tag		IST FLOW	FL-150	TEMP
Date	Time	Unit		FM		°F
		sec	MIN	MAX	MIN	MAX
2024/06/27	10:02:00	0.000	2713	2755	1572	1576
2024/06/27	10:03:00	0.000	2712	2749	1575	1576
2024/06/27	10:04:00	0.000	2708	2748	1576	1578
2024/06/27	10:05:00	0.000	2719	2756	1577	1579
2024/06/27	10:06:00	0.000	2715	2749	1577	1579
2024/06/27	10:07:00	0.000	2705	2744	1577	1579
2024/06/27	10:08:00	0.000	2712	2751	1579	1580
2024/06/27	10:09:00	0.000	2712	2743	1579	1581
2024/06/27	10:10:00	0.000	2714	2747	1579	1581
2024/06/27	10:11:00	0.000	2698	2745	1577	1580
2024/06/27	10:12:00	0.000	2710	2752	1574	1578
2024/06/27	10:13:00	0.000	2707	2747	1571	1574
2024/06/27	10:14:00	0.000	2715	2759	1568	1571
2024/06/27	10:15:00	0.000	2720	2759	1568	1569
2024/06/27	10:16:00	0.000	2707	2766	1567	1569
2024/06/27	10:17:00	0.000	2727	2759	1568	1571
2024/06/27	10:18:00	0.000	2729	2759	1571	1574
2024/06/27	10:19:00	0.000	2731	2770	1573	1576
2024/06/27	10:20:00	0.000	2722	2761	1576	1578
2024/06/27	10:21:00	0.000	2730	2761	1576	1578
2024/06/27	10:22:00	0.000	2734	2770	1577	1578
2024/06/27	10:23:00	0.000	2719	2775	1577	1578
2024/06/27	10:24:00	0.000	2723	2759	1576	1579
2024/06/27	10:25:00	0.000	2714	2759	1576	1578
2024/06/27	10:26:00	0.000	2738	2773	1577	1579
2024/06/27	10:27:00	0.000	2734	2781	1570	1577
2024/06/27	10:28:00	0.000	2729	2767	1563	1570
2024/06/27	10:29:00	0.000	2735	2778	1562	1563
2024/06/27	10:30:00	0.000	2731	2771	1562	1568
2024/06/27	10:31:00	0.000	2724	2773	1566	1573
2024/06/27	10:32:00	0.000	2732	2767	1573	1577
2024/06/27	10:33:00	0.000	2742	2778	1577	1581
2024/06/27	10:34:00	0.000	2731	2776	1581	1583
2024/06/27	10:35:00	0.000	2739	2770	1583	1585
2024/06/27	10:36:00	0.000	2747	2786	1582	1584

Stop

Average during Run:	2729	1575
Minimum during Run:	2685	1556
Maximum during Run:	2786	1589

Data File:L:\CAM\DATA\2010435.0

COMPONENT VALUES DETERMINED AT CALIBRATION

Integral Transducer

РСВ	PCB 10038	5 PCB	PCB 100389
R5	800	R-G	AIN 4420
R7	800		
R8	100		
R9	909		
R15	5760		
		011140 NII 075 DE0 5	

FLOW SENSOR - 50 OHMS NI @75 DEG F TEMP SENSOR - 100 OHMS NI @75 DEG F

CALIBRATION POTENTIOMETERS

TA 548

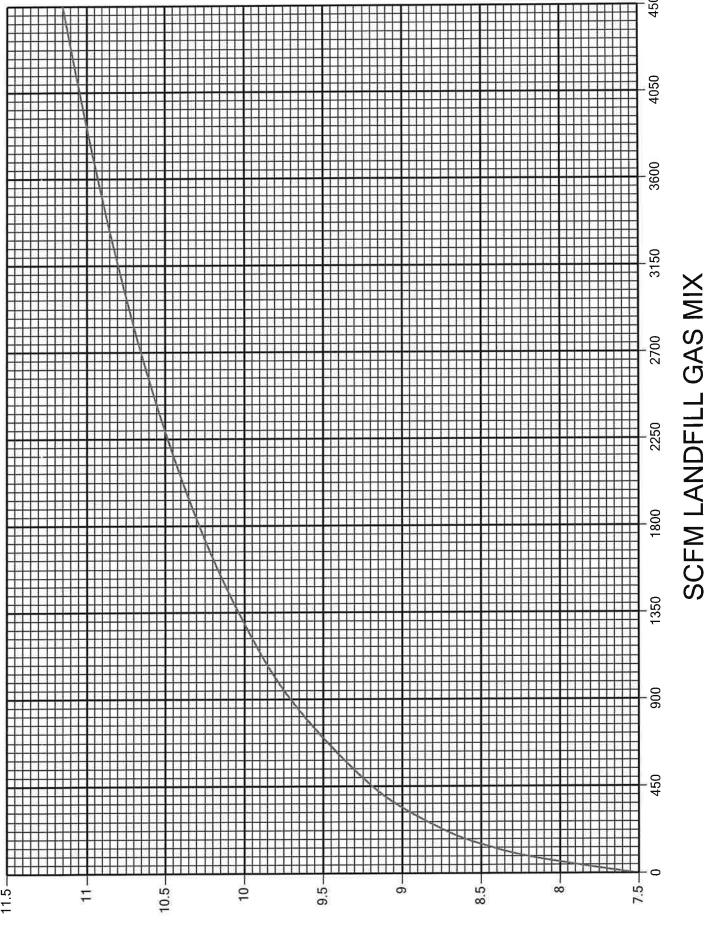
TC 579

OPERATING RANGE

	minimum	maximum	units
FLOW	0	4500	SCFM LANDFILL GAS MIX
TEMPERATURE	40	200	F
PRESSURE	0	15	PSIG

COMMENTS

16" FIBERGLASS LINE


LFG MIX: 40% CH4, 50% CO2, 1.5% O2

METER OUTPUT SIGNAL CALIBRATION

mA	SCFM LANDFILL GAS MIX	Volts
4.00	0.000	7.5150
4.16	45.000	7.8830
4.32	90.000	8.1790
4.80	225.000	8.7470
5.60	450.000	9.1940
7.20	900.000	9.7060
8.80	1350.000	10.0370
10.40	1800.000	10.2840
12.00	2250.000	10.4830
13.60	2700.000	10.6520
15.20	3150.000	10.7980
16.80	3600.000	10.9280
18.40	4050.000	11.0450
20.00	4500.000	11.1510

9500 EEPROM SETUP DATA

Maximum Flow Range	4500	SCFM LANDFILL GAS MIX
Flow FS at 20 mA	4500	SCFM LANDFILL GAS MIX
Flow Full Scale Displayed	4500	SCFM LANDFILL GAS MIX
Totalizer Counts	450	per/Min
Totalizer Decimal Point	0	
Display Cutoff	3	% FS
Filter Time Constant	2 SEC	

Transducer Volts

15.2-(Am) TN3RRUT (mA)

SCFM LANDFILL GAS MIX

Thermal Instrument Company

METER CONFIGURATION PAGE

Serial Number 2010435

Firmware 9500

Meter Type

Revision

Build

Parameter	Value
Flow Full Scale	4500.000
Flow at 20 mA	4500.000
Totalizer Count/minute	450
Totalizer Decimal Point	
Zero Cutoff	3 % FS
Filter Time Constant	2 sec
Totalizer	0
Offset	

Tech Initials AG

CERTIFICATION CALIBRATION

at or the last of the last of

We certify that the calibration accuracies listed below are obtained on equipment, and with methods, that can be traced directly to the US National Institute of Standards and Technology.

± 1% Full Scale FLOWRATE READOUT ACCURACY:

PRESSURE TESTED AT:

2010435 METER SERIAL NUMBER:

62-9/9500I

MODEL NUMBER:

The calibration listed above was performed under the following conditions;

0 - 4500 SCFM LANDFILL GAS MIX 40 - 200 DEG F

16" FIBERGLASS LINE LFG MIX: 40% CH4, 50% CO2, 1.5% O2

60Deg. F @ 1 ATM Standard Conditions: Signature

Date

December 14, 2023

THERMAL INSTRUMENT COMPANY, INC.

217 Sterner Mill Road, Trevose, PA 19053

Phone: 215-355-8400 Fax: 215-355-1789

Web: www.thermalinstrument.com

Appendix A.5 Organics and Sulfur Field and Laboratory Data

METHOD 25.3 DATA

Client/Location	Waste Connections Reference Temp (F)			60
Unit	Flare 1			
Sample Location	Stack	Data By		SJ, AD, JI
Operating Condition (°F)	1,575			
Tankhia	0.54.44	0.54.45	A	1 !!1
Test No	C-F1-1A	C-F1-1B	Average	Limit
Date	6/27/2024	6/27/2024		
Test Method	SCAQMD 25.3	SCAQMD 25.3		
Stack Area (ft ²)	100.88	100.88		
Sample Time (Minutes)	60	60		
Bar. Press (in. Hg.)	28.81	28.81		
Start/Stop Time	0920-1020	0920-1020		
Stack O ₂ (%)	11.0	11.0	(from canister analysis	5)
O ₂ Correction Factor	3	3		
Stack Flow Rate (dscfm)	24,055	24,055	(from PM)	
Methane (ppm)	< 2.10	< 2.20	< 2.15	
Methane (lb/hr)	< 0.128	< 0.134	< 0.131	
Canister VOC (ppm)	0.62	0.65	0.64	
Water Vial VOC (ppm)	4.27	4.10	4.19	
Total VOC (ppm)	4.89	4.75	4.82	
Method 25.3 Multiplier	1.086	1.086		
VOC as Methane (ppm)	5.31	5.16	5.23	
VOC as Methane (ppm @ 3% O2)	9.60	9.33	9.46	
VOC as Methane (lb/hr)	0.32	0.31	0.32	
VOC as Methane (lb/MMBtu)	0.005	0.005	0.005	
VOC as Hexane (ppm)	0.89	0.86	0.87	
VOC as Hexane (ppm @ 3% O2)	1.600	1.554	1.58	
VOC as Hexane (lb/hr)	0.290	0.281	0.285	
VOC as Hexane (lb/MMBtu)	0.005	0.005	0.005	

INLET- VOC TEST RESULTS

Test Number	1-VOC-1
Reference Temperature, F	60
Test Date	6/27/2024
Test Method	EPA 18
Inlet O ₂ (%)	2.48
Inlet Flow Rate, dscfm	2,729
O2 Correction Factor (%)	3
F-Factor	9,971

Lab Results, ppm component				
Compound	Carbon Atoms	Run 1A	Run 1B	
Methane	1	350,970	350,220	
Ethane + Ethylene	2	18.51	18.52	
Propane + Propylene	3	203.2	203.0	
Butanes	4	977.2	1003	
Pentanes	5	1048	1028	
Hexanes	6	594.9	594.6	
C6+	6	4423	5076	

TGNMOC, ppm as Methane	Avg Results
ppm	41,862.23
ppm @3% O2	40,680.45
lb/hr	288.99

TGNMOC, ppm as Hexane	Avg Results
ppm	6977.0
ppm @3% O2	6780.08
lb/hr	258.89

Methane	Avg Results
ppm	350,595.00
ppm @3% O2	340,697.64
lb/hr	2,420.30

Inlet Run 1

Analyte	Result	Units	Reporting Limit
Benzene	120000	ppbv	640
Benzyl chloride	ND	ppbv	80
Chlorobenzene	400	ppbv	80
1,2-Dichlorobenzene	ND	ppbv	80
1,4-Dichlorobenzene	650	ppbv	80
1,1-Dichloroethane	ND	ppbv	80
1,2-Dichloroethane	740	ppbv	80
1,1-Dichloroethene	ND	ppbv	80
Methylene Chloride	350	ppbv	80
1,2-Dibromoethane	ND	ppbv	80
Tetrachloroethene	250	ppbv	80
Carbon Tetrachloride	ND	ppbv	80
Toluene	24000	ppbv	80
1,1,1-Trichloroethane	ND	ppbv	80
Trichloroethene	130	ppbv	80
Chloroform	ND	ppbv	80
Vinyl Chloride	ND	ppbv	80
m,p-Xylenes	13000	ppbv	160
o-Xylene	4600	ppbv	80

Inlet Run 2

Analyte	Result	Units	Reporting Limit
Benzene	130000	ppbv	640
Benzyl chloride	ND	ppbv	80
Chlorobenzene	430	ppbv	80
1,2-Dichlorobenzene	ND	ppbv	80
1,4-Dichlorobenzene	750	ppbv	80
1,1-Dichloroethane	ND	ppbv	80
1,2-Dichloroethane	720	ppbv	80
1,1-Dichloroethene	ND	ppbv	80
Methylene Chloride	370	ppbv	80
1,2-Dibromoethane	ND	ppbv	80
Tetrachloroethene	310	ppbv	80
Carbon Tetrachloride	ND	ppbv	80
Toluene	24000	ppbv	80
1,1,1-Trichloroethane	ND	ppbv	80
Trichloroethene	140	ppbv	80
Chloroform	ND	ppbv	80
Vinyl Chloride	ND	ppbv	80
m,p-Xylenes	14000	ppbv	160
o-Xylene	5000	ppbv	80

Inlet Run 3

Analyte	Result	Units	Reporting Limit
Benzene	150	ppbv	600
Benzyl chloride	ND	ppbv	75
Chlorobenzene	490	ppbv	75
1,2-Dichlorobenzene	ND	ppbv	75
1,4-Dichlorobenzene	950	ppbv	75
1,1-Dichloroethane	ND	ppbv	75
1,2-Dichloroethane	840	ppbv	75
1,1-Dichloroethene	ND	ppbv	75
Methylene Chloride	380	ppbv	75
1,2-Dibromoethane	ND	ppbv	75
Tetrachloroethene	300	ppbv	75
Carbon Tetrachloride	ND	ppbv	75
Toluene	29000	ppbv	75
1,1,1-Trichloroethane	ND	ppbv	75
Trichloroethene	160	ppbv	75
Chloroform	ND	ppbv	75
Vinyl Chloride	ND	ppbv	75
m,p-Xylenes	17000	ppbv	150
o-Xylene	6000	ppbv	75

Outlet Run 1

Analyte	Result	Units	Reporting Limit
Benzene	7.6	ppbv	0.36
Benzyl chloride	ND	ppbv	0.36
Chlorobenzene	ND	ppbv	0.36
1,2-Dichlorobenzene	ND	ppbv	0.36
1,4-Dichlorobenzene	ND	ppbv	0.36
1,1-Dichloroethane	ND	ppbv	0.36
1,2-Dichloroethane	ND	ppbv	0.36
1,1-Dichloroethene	ND	ppbv	0.36
Methylene Chloride	ND	ppbv	0.36
1,2-Dibromoethane	ND	ppbv	0.36
Tetrachloroethene	ND	ppbv	0.36
Carbon Tetrachloride	ND	ppbv	0.36
Toluene	2.7	ppbv	0.36
1,1,1-Trichloroethane	ND	ppbv	0.36
Trichloroethene	ND	ppbv	0.36
Chloroform	ND	ppbv	0.36
Vinyl Chloride	ND	ppbv	0.36
m,p-Xylenes	ND	ppbv	0.72
o-Xylene	ND	ppbv	0.36

Outlet Run 2

Analyte	Result	Units	Reporting Limit
Benzene	4.2	ppbv	0.36
Benzyl chloride	ND	ppbv	0.36
Chlorobenzene	ND	ppbv	0.36
1,2-Dichlorobenzene	ND	ppbv	0.36
1,4-Dichlorobenzene	ND	ppbv	0.36
1,1-Dichloroethane	ND	ppbv	0.36
1,2-Dichloroethane	ND	ppbv	0.36
1,1-Dichloroethene	ND	ppbv	0.36
Methylene Chloride	ND	ppbv	0.36
1,2-Dibromoethane	ND	ppbv	0.36
Tetrachloroethene	ND	ppbv	0.36
Çarbon Tetrachloride	ND	ppbv	0.36
Toluene	ND	ppbv	0.36
1,1,1-Trichloroethane	ND	ppbv	0.36
Trichloroethene	ND	ppbv	0.36
Chloroform	ND	ppbv	0.36
Vinyl Chloride	ND	ppbv	0.36
m,p-Xylenes	ND	ppbv	0.72
o-Xylene	ND	ppbv	0.36

Outlet Run 3

Analyte	Result	Units	Reporting Limit
Benzene	1.4	ppbv	0.36
Benzyl chloride	ND	ppbv	0.36
Chlorobenzene	ND	ppbv	0.36
1,2-Dichlorobenzene	ND	ppbv	0.36
1,4-Dichlorobenzene	ND	ppbv	0.36
1,1-Dichloroethane	ND	ppbv	0.36
1,2-Dichloroethane	ND	ppbv	0.36
1,1-Dichloroethene	ND	ppbv	0.36
Methylene Chloride	ND	ppbv	0.36
1,2-Dibromoethane	ND	ppbv	0.36
Tetrachloroethene	ND	ppbv	0.36
Carbon Tetrachloride	ND	ppbv	0.36
Toluene	ND	ppbv	0.36
1,1,1-Trichloroethane	ND	ppbv	0.36
Trichloroethene	ND	ppbv	0.36
Chloroform	ND	ppbv	0.36
Vinyl Chloride	ND	ppbv	0.36
m,p-Xylenes	ND	ppbv	0.72
o-Xylene	ND	ppbv	0.36

SCAQMD METHOD 25.3 EVACUATED CANISTER SAMPLING DATA

Client/Facility: Chiquita D				Date: 6 27/24			
	Unit/Location: Flove Performed By:						
Probe Material 55 Probe Length							
Connecting Tubir			22	onnecting ⁻		gth N	A
Barometric Press				mbient Ten		-	,
		1		1			
Test No. Vial ID		17 A	75	17/)		
Canister ID		C80 2	42	(80	224		
ournotor 15		Time	Vacuum	Time	Vacuum	Time	Vacuum
Pre-Test Leak Check	Start	800	20	300	30		
Pre-Test Leak Check	Stop	810	70	810	30		
Sample Collection	Start	0920	30	920	30		
		69 30	27	09 30	27		
		09 40	23	0940	29		
		69 50	20	0950	20		
		1000	17	1000	17		
		16/0	1 3	1010	13		
Sample Collection	Stop	1020	10	1020	10		
Post -Test Leak Check	Start	1050	10	1050	10		
Post-Test Leak Check	Stop	1100	10	1100	10		
Line Rinse Volume							

Comments:_____

EPA METHOD TO-15 EVACUATED CANISTER SAMPLING DATA

Client/Facility: SC5 Chiquiton Date: 6 27-24									
Unit/Location: Flare (Inlet) Performed By: AD									
	Probe Material SS Probe Length S								
10.			,						
Connecting Tubir	_	7		_	_				
Barometric Press	sure	2831	Aı	mbient Ter	nperature_	150			
Test No.		1	,	2	2_	3			
Canister ID		CECC	27	CSOC	:44	C8015	6		
		Time	Vacuum	Time	Vacuum	Time	Vacuum		
Pre-Test Leak Check	Start	0830	30	083c	₹C	0E3C	3C		
Pre-Test Leak Check	Stop	0840	30	0840	30	0840	30		
Sample Collection	Start	0920	30	0955	30	103C	3C		
		0930	20	1005	21	1040	20		
		0940	12	1015	11	1050	//		
_		0950	5	1025	5	1100	5		
Sample Collection	Stop	095c	5	1025	5	1100	5		
Post -Test Leak Check	Start	1105	5	//05	5	1105	5		
Post-Test Leak Check	Stop	1115	5	1/15	5	1/15	5		

Comments	:			

EPA METHOD TO-15 EVACUATED CANISTER SAMPLING DATA

Client/Facility:(higu,	ta	D	ate:	27/29	1	
Unit/Location:							
Probe Material_	_			robe Lengt			
Connecting Tubir						ath	
Barometric Press							5
Test No.		1		2		3	
Canister ID		68018	2	680	194	480	263
		Time	Vacuum	Time	Vacuum	Time	Vacuum
Pre-Test Leak Check	Start	800	30	300	30	300	29
Pre-Test Leak Check	Stop	810	30	810	30	810	27
Sample Collection	Start	920	30	935	30	1030	29
		930	27	10 05	21	1046	20
		940	14	10 15	14	1050	12
Sample Collection	Stop	950	S	1025	5	1100	S
Post -Test Leak Check	Start	1120	5	1120	5	1120	5
Post-Test Leak Check	Stop	1130	5	1130	5	1130	5

Comments:

TEDLAR BAG SAMPLING DATA SHEET

CLIENT: WASTE CONVE	ECTION S	PERFC	RMED BY:	50
LOCATION: FLANG!	CHIQUITA	UNIT: _	Flanc	1×12+

Test #	1A	13		
Date	6/27	6/27		
Time (start/stop)	0920/	0920/		
Bag #	INIA	INLB		

Comments:		 	

1210 E. 223rd Street, Suite #314 • Carson, California 90745 • 310/830-2226 • Fax 310/830-2227

CLIENT: Montrose AQS
CLIENT PROJ NO: Chiquita Flare 1

 LABORATORY NO:
 24-703

 SAMPLING DATE:
 06/27/24

 RECEIVING DATE:
 06/28/24

 ANALYSIS DATE:
 06/28/24

 REPORT DATE:
 07/03/24

Laboratory Analysis Report

Analysis Method: ASTM 1945-03; HHV Calculations: ASTM 3588-98

0	ample ID	Chiquita Flare 1	Chiquita Flare 1
	ampie 1D	Inlet 1A	Inlet 1B
	ample Date	06/27/24	06/27/24
	ample Time		•
L	ab ID	18024-9	18024-10
	nits	Mole %	Mole %
Methane, %		34.93	34.86
Ethane, %		<0.01	< 0.01
Ethylene, %		<0.01	<0.01
Propane, %		< 0.01	< 0.01
Propylene, %		< 0.01	< 0.01
i-Butane, %		< 0.01	< 0.01
n-Butane, %		< 0.01	< 0.01
1-Butene, %		< 0.01	< 0.01
i-Butylene, %		< 0.01	< 0.01
trans-2-Butene,%		< 0.01	< 0.01
cis-2-Butene,%		< 0.01	< 0.01
i-Pentane, %		< 0.01	< 0.01
n-Pentane, %		< 0.01	< 0.01
2,2-Dimethyl Butane, %		<0.01	<0.01
2,3-Dimethyl Butane, %		< 0.01	< 0.01
2-Methyl Pentane, %		<0.01	< 0.01
3-Methyl Pentane, %		<0.01	<0.01
n-Hexane, %	Planta la constitución de la con	< 0.01	< 0.01
C6+, %		0.50	0.45
CO2, %	and the second s	45.62	45.64
CO, %		< 0.01	<0.01
02, %		2.48	2.48
N2 %		16.47	16.57
H2, %	The second secon	<0.01	< 0.01
H2S, %		< 0.01	< 0.01
Average Molecular Weight		31.518	31.501
Total Wt.% Adjusted Sp. Gr:		1.0881	1.0876
Compressibility Factor (14.69	96 Psi, 60 F)	0.9975	0.9975
NET BTU/Cub. Ft		340	337
GROSS BTU/Cub. Ft	-	376	373
CHONS		9/0	%
Carbon		31.83	31.72
Hydrogen		4.69	4.66
Oxygen		48.83	48.89
Nitrogen		14.64	14.73
Sulfur		< 0.01	< 0.01
Dry F Factor (60 F, 1 Atm);			***************************************
SDCF/MMBTU, ASTM 35	00	9965	9977
SDCF/WINDIO, ASTNI 35	00		***************************************

Dr. Andrew Kitto

1210 E. 223rd Street, Suite #314 · Carson, California 90745 · 310/830-2226 · Fax 310/830-2227

CLIENT: Montrose AQS
CLIENT PROJ NO: Chiquita Flare 1

LABORATORY NO: 24-703
SAMPLING DATE: 06/27/24
RECEIVING DATE: 06/28/24
ANALYSIS DATE: 06/28/24
REPORT DATE: 07/03/24

Laboratory Analysis Report

Analysis Method	SCAQMD 307-91			
Detection Limits	0.05 PPMV			
	Sample ID	Chiquita Flare 1 Inlet 1A 06/27/24		
	Sample Date Sample Time	-		
	Lab ID	18024-9		
Analyte	Units	PPMV		
Hydrogen Sulfide		67.64		
Carbonyl Sulfide		2.20		
Methyl Mercaptan		82.91		
Ethyl Mercaptan		1.97		
Dimethyl Sulfide		466.7		
Unidentified S Compounds		156.9		
Total Sulfur as H ₂ S		778.3		

Dr. Andrew Kitto

1210 E. 223rd Street, Suite #314 · Carson, California 90745 · 310/830-2226 · Fax 310/830-2227

CLIENT: Montrose AQS
CLIENT PROJ NO: Chiquita Flare 1

LABORATORY NO: 24-703
SAMPLING DATE: 06/27/24
RECEIVING DATE: 06/28/24
ANALYSIS DATE: 06/28/24
REPORT DATE: 07/03/24

Quality Assurance Report

Duplicate Analysis

Sample ID: Chiquita Flare 1 Inlet 1A

Lab ID: 1	80	24-9
-----------	----	------

Analysis Method	SCAQMD 307-91			
Detection Limit		0.05 PPMV		
	Aver. Conc.	Dil. Factor	DF*A/CF	% Sample
Analyte	PPMV	Ambient Air	PPMV	Recovery*
Hydrogen Sulfide	70.20	20	72.76	104
Carbonyl Sulfide	2.26	20	2.32	103
Methyl Mercaptan	85.49	20	88.08	103
Ethyl Mercaptan	1.95	20	1.93	99
Dimethyl Sulfide	460.6	20	454.5	99
Unidentified S Compounds	141.4	20	126.0	89
Total Sulfur as H ₂ S	761.9	20	745.5	98

N/A: Not Applicable

*Must be $\pm 10\%$

Dr. Andrew Kitto

1210 E. 223rd Street, Suite #314 • Carson, California 90745 • 310/830-2226 • Fax 310/830-2227

CLIENT: Montrose AQS
CLIENT PROJ NO: Chiquita Flare 1

 LABORATORY NO:
 24-703

 SAMPLING DATE:
 06/27/24

 RECEIVING DATE:
 06/28/24

 ANALYSIS DATE:
 06/28/24

 REPORT DATE:
 07/03/24

Laboratory Analysis Report

Analysis Method	EPA 18			
Detection Limits	0.5 PPMV			
	Sample ID	Chiquita Flare 1 Inlet 1A	Chiquita Flare 1 Inlet 1B	
	Sample Date	06/27/24	06/27/24	
	Sample Time	-	-	
	Lab ID	18024-9	18024-10	
	Units	PPMV	PPMV	
C1 - Methane		350,970	350,220	
C2 - Ethane, Ethylene		18.51	18.52	
C3 - Propane, Propyler	ie	203.2	203.0	
C4 - Butanes		977.2	1003	
C5 - Pentanes		1048	1028	
C6 - Hexanes		594.9	594.6	
C6+		4423	5076	
Total VOCs as Methan	e including ethane	39,905	43,818	

Dr. Andrew Kitto

1210 E. 223rd Street, Suite #314 • Carson, California 90745 • 310/830-2226 • Fax 310/830-2227

CLIENT: Montrose AQS
CLIENT PROJ NO: Chiquita Flare 1

 LABORATORY NO:
 24-703

 SAMPLING DATE:
 06/27/24

 RECEIVING DATE:
 06/28/24

 ANALYSIS DATE:
 06/28/24

 REPORT DATE:
 07/03/24

Standard Verification

I - Blank

	Results
Lab ID	PPMV
C1 - Methane	<0.5
C2 - Ethane	< 0.5
C3 - Propane	< 0.5
C4 - Butane	< 0.5
C5 - Pentane	< 0.5
C6 - Hexane	<0.5

II - Initial Calibration Verification Standard - C1-C6

	Theoretical Value	Tested Value	0/0
Lab ID	PPMV	PPMV	Recovery*
C1 - Methane	100.0	108.0	108%
C2 - Ethane	100.0	107.4	107%
C3 - Propane	100.0	107.5	107%
C4 - Butane	100.0	108.6	109%
C5 - Pentane	100.0	108.5	109%
C6 - Hexane	100.0	110.3	110%

*Must be ±10%

Dr. Andrew Kitto

Date/time	Received by: (signature)	Received b	dy.	Date/Time	Relinguished by: (signature)
Date/time	Received by: (signature)	Received b	e)	Date/Time	Kelinguished by: (signature)
Date/time 6 28 24 11; 16		Received b	7/24	Date/Time	Relingual had by (signature)
	X X	0 1	14		1 1 1
	>	Number	(max	1	Minuta Class 1 miles 14
Remarks		Lab ID	Date Time	Tag#	Ctient Sample ID
Normal	Pros of Market				fax:
48 Hours	the months		P.O. Number:	6313	tel: 426 617 6313
24 Hours	1 8 8 M		Project Manager: 1-54mely	Jon	Contact Person: P. Sar
Same Day	No. Of St.		Project Name: CHL		
Turnaround Time:	Analysis		Project No.: Red-	8	Client: Montage AQS
Page: Of:				XQC	CHAIN OF CUSTODY
1210 E. 223rd Street, Suite #314 • Carson, California 90745	1210 E. 223rd Str				
310/830-2226 • Fax 310/830-2227 • www.quantumairlab.com	310/830-2226 • Fax		s mc.	ひらんだいの	Analytical Services Inc.

Enthalpy Analytical 931 West Barkley Ave Orange, CA 92868 (714) 771-6900

enthalpy.com

Lab Job Number: 511226

Report Level : II

Report Date : 07/16/2024

Analytical Report prepared for:

Pete San Juan Montrose Air Quality Services 1631 E. St Andrew PI Santa Ana, CA 92705

Location: Chiquita Flare 1 PROJ-040458

Authorized for release by:

Richard Wellet

Richard Villafania, Project Manager richard.villafania@enthalpy.com

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the above signature which applies to this PDF file as well as any associated electronic data deliverable files. The results contained in this report meet all requirements of NELAP and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

CA ELAP# 1338, NELAP# 4038, SCAQMD LAP# 18LA0518, LACSD ID# 10105

Sample Summary

Pete San Juan

Montrose Air Quality

Services

1631 E. St Andrew Pl Santa Ana, CA 92705 Lab Job #:

Location:

511226 Chiquita Flare 1 PROJ-040458

Date Received: 06/28/24

Sample ID	Lab ID	Collected	Matrix
CHIQUITA FLARE 1 EXH (C80242)	511226-001	06/27/24 10:20	Air
CHIQUITA FLARE 1 EXH (C80224)	511226-002	06/27/24 10:20	Air
CHIQUITA FLARE 1 IN-1	511226-003	06/27/24 09:50	Air
CHIQUITA FLARE 1 IN-2	511226-004	06/27/24 10:25	Air
CHIQUITA FLARE 1 IN-3	511226-005	06/27/24 11:00	Air
CHIQUITA FLARE 1 EXH-1	511226-006	06/27/24 09:50	Air
CHIQUITA FLARE 1 EXH-2	511226-007	06/27/24 10:25	Air
CHIQUITA FLARE 1 EXH-3	511226-008	06/27/24 11:00	Air

Case Narrative

Montrose Air Quality Services 1631 E. St Andrew Pl Santa Ana, CA 92705 Pete San Juan Lab Job 511226 Number:

Location: Chiquita Flare 1 PROJ-

040458

Date Received: 06/28/24

This data package contains sample and QC results for eight air samples, requested for the above referenced project on 06/28/24. The samples were received intact.

Volatile Organics in Air by MS (EPA TO-15):

No analytical problems were encountered.

Non-Methane Non-Ethane Organic Compounds (SCAQMD 25.3):

- This data package contains the raw instrument data for the samples and QA/QC as well as the ICAL and MDL/PQL summary. Supporting field documentation (if supplied by the client) follows the COC and receipt documentation.
 Samples were analyzed by SCAQMD method 25.3 and 10.1 modified (% and ppm level fixed gases).
- · No analytical problems were encountered.

Intercions to assistilling out the COC are on the next tab Parkley Ave., Orange, CA 92868 contact/repo	OF LAINALPY	てて	200		Air	.Chi	Air Chain of Custody Record	fCL	Isto	dy F	Seco	5		-	Lab Us	Lab Use Only	
Point Line Point Name Point Line Poi	Instructions to assist filling	out the COC are	on the next tal				Redu	est fo	r Anal	ysis				work order	115	276	
Starkley Ave., Orange, CA 9288 Scontant Notintose AGOS	ab name Enthalpy - Orange				CUST	OMER INF	ORMATION				ROJECTIN	FORMATIC	Z	custod	ly seal intact?	#O4	
STAF77143800 Control Service	oddress 931 W. Barkley Ave., C	range, CA	92868	company: N	Montrose	AGS			<u>a</u>	roject nar	ne: Chiquit	ta Flare 1		Ě	□ 2 □	Juone	
Contact Cont	- 1			contact/re	oort to:	Pete San	Juan		Ø)	ubmit inv	oice to			on ice		T	Votes
C certain C ce	pecial instructions:			email: psai	njuan@r	nontrose-	env.com		Q.	roject #: F	ROJ-0404	58		tempe	rature "C		-
Side 19 19 19 19 19 19 19 1				cc emails;					α.	.o. #: PO	066298			meets	req.? \ \ yes		
Stock Company Compan				address: 163	31 E St Ar	idrew PI			S	ite name:(Shiquita La	IIII		breser	vation notes		
V STANDARD Other Chemat Chematical				phone: 626-	617-6313				is	ite state: C	Y,						
Part	STANDARD Glass pre-approvating	equired for TAT le	ss than stand	ard, surcharges v	will apply o	lata delive	rable type	2	ANDARD	Ц	er.			4	nalysis	Comm	ents
Description contains Description Descr	vΓ	/ T aay	orme		Ī	DD requir	ed (N/N)5		ш	DD Forma				Re	pested		
Page		omtainer or me	dia type: (B)	bag (tedlar), (Bo		nits for re	porting:		1.	etention	equiremen	nts:			10		
Matrix Sample Matrix Sampl	_	ge, (8t) bottle, e, (TO) therma	(c) canister, I	(F) fitter, (O) ot tube		gulatory pre	gram, as appliance	cable (i.e., C	AA, CARB, et	ij)SI 1 Ə		
Matrix Sample Matrix Sampl	<u>=</u>		Equipme	nt Information	1		Start Samr	ding Infort	mation		an Samolin	a toformas			Kul		
Martic Sample Type** Date Final Prize			Container	Container				- Lu	itial	\$	Fina	E III CLIER			SIC		
Signature Code Type Incede type Ince		trix Sample	Type**			ainer			essure					_	OT A		
Signature Canist Ca	Chiquita Clara 4 F. A.	le* Type	(media type)	(Medis ID) C	-		Date 1			T ate	10-		- 1	S	/d3		
Signature Sign	Origina Flare 1 EXD	INTE	Canist	C80242 V	ial 17A		6/27/24 (09:50		127124 1			0	7			
Signature Sign	Chiquita Flare 1 Exh	INTEK	Canist	C80224 Vi	ial 17B		6/27/24 (05:50		127/24 1			Q	7			
Signature Sign	Chiquita Flare 1 In -1	INTE	Canist	C80027			6/27/24 (19:20		127124 C					7		
Signature 10 - 3 S INTEC Canist C80156 6L 6/27/24 10:30 30 6/27/24 11:00 5 SJ	Chiquita Flare 1 In -2	INTE	Canist	C80044				39:55		127124 1					7		
Signature S INTEX Canist C80182 6L 6/27/24 09:56 30 6/27/24 10:25 5 JI/AD	Chiquita Flare 1 In -3	INTE	Canist	C80156			-	00:30		127124 1		-	_	Ī	7		
NTECT Canist C80263 6L 6/27/24 10:30 29 6/27/24 11:00 5 JI/AD	Chiquita Flare 1 Exh-1	INTE	Canist	C80182				9:20		127/24 0			Q		7	WHITE WEIGHT B. GENERAL	and the same of th
Signature Frint Name Company / Title Canist		INTE	Canist	C80194			_	9:55		127/24 1			Q	Ī	7		
Signature Signature Signature Company / Title Company		INTE	Canist	C80263				0:30		127124 1			Q	Ī	7		
Signature 6L 6L Onte (mM/Do/m) Time (24:00) Time (24:00) Time (24:00) COMpany / Title On 202 / Cd CC7 CC7<																	
Signature Signature Y: Company / Title Company / Titl														ļ	-	Anada Carana Car	
Signature																	
Signature Frint Name Company/Title Date (MM/DD/M) Time (24:00) Y: Company/Title Date (MM/DD/M) Time (24:00) Y: Company/Title Company/Title Date (MM/DD/M) Time (24:00)											-	-	-	İ	-		
Signature Print Name Company / Title Date (MM/DD/M) Time (24:00) Y: Print Name Company / Title Date (MM/DD/M) Time (24:00) Y: Print Name Company / Title Date (MM/DD/M) Time (24:00) Y: Print Name Company / Title Date (MM/DD/M) Time (24:00) Y: Print Name Company / Title Date (MM/DD/M) Time (24:00) Y: Print Name Company / Title Date (MM/DD/M) Time (24:00) Y: Print Name Company / Title Date (MM/DD/M) Time (24:00) Y: Print Name Company / Title Date (MM/DD/M) Time (24:00)											-	-					
Signature Y: Print Name Company / Title Date (MM/DD/M) Time (24:00) Print Name Company / Title Date (MM/DD/M) Time (24:00)						9							-		-		
Signature Print Name Company/Title Date (мм/Do/m) Time (24:00) Y:					-								-	ļ	and the second		
d By: Color of the place of the		1		Print Name		Ť	Company /	Title		۵	ate (MM/DD	-		otes (andu	de special conduting	ens, possible bazards	, etc.);
3 84; Selve Solve Solven a Mirch E. H. 6138104 10:73 184;	Relinquished By:	1		7	1	0	8	800			1.102/2	2	72				
d By: 1 By:	Received By:	Vilus	X	000	200	W WCAL		1	THE S		1801	F	1				
1 By:	Refinquished By:										10000	1	4				
1 By:	Received By:											-					
i By:	Refinquished By:											-	i i i	eld samp	Jing conditi	ons (notes)	T
	Received By:													rain/sm	ow during deploy	/ment/pick-up	
	kelinquished By:													Continu	ous rain during s	amp, period	
	(eceived By:													suow or	ment during san	noling period	

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: MAQS	Project: Chiquita Flare 1			
Date Received: 6/28/24	Sampler's Name Present: [Yes	√ No	
Section 2				
Sample(s) received in a cooler? Yes, How many?	No (skip section 2)	Sampl	e Temp (°C) (No Cooler)	: Amb.
Sample Temp (°C), One from each cooler: #1: (Acceptance range is < 6°C but not frozen (for Microbiology samples, accept the same day as sample receipt to have a higher temper. Shipping Information:	tance range is < 10°C but not frozen). It	s acceptable		s collected
Section 3				
Was the cooler packed with.	Bubble Wrap Styrol Other#3:	oam #4:		
Section 4		YES	NO	N/A
Was a COC received?		1		
Are sample IDs present?		√		31198
Are sampling dates & times present?		1		
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?			1	
If custody seals are present, were they intact?				✓
Are all samples sealed in plastic bags? (Recommended				1
Did all samples arrive intact? If no, indicate in Section 4		1		SERVE
Did all bottle labels agree with COC? (ID, dates and time		√		KEL C
Were the samples collected in the correct containers fo	r the required tests?	1		10.1016
Are the containers labeled with the correct preser	vatives?			1
Is there headspace in the VOA vials greater than 5-6 mr	n in diameter?			1
Was a sufficient amount of sample submitted for the re	quested tests?	1		
Section 5 Explanations/Comments Canisters ambient.		-10	e de la compa	
Section 6				1
For discrepancies, how was the Project Manager notifie	d? Verbal PM Initials: Email (cmail sent to/o			
Project Manager's response:		** / ** re-alternation-mes-calar-	-	
Completed By: Lean Sylvety	Date: 1111 2 8 2024		40	[

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: {714} 771-6900 • F: {714} 538-1209

www.enthalpy.com/socal

Sample Acceptance Checklist – Rev 4, 8/8/2017

Analysis Results for 511226

Pete San Juan Montrose Air Quality Services 1631 E. St Andrew PI Santa Ana, CA 92705

Lab Job #: 511226 Location: Chiquita Flare 1 PROJ-040458

Date Received: 06/28/24

Sample ID:	Lab ID: 511226-001	Collected: 06/27/24 10:20
CHIQUITA FLARE 1 EXH (C80242)	Matrix: Air	

511226-001 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SCAQMD 25.3								-	
Methane	<2.1		ppmC	2.1	2.1	344111	07/01/24	07/01/24	MPD
Carbon Monoxide	31.5		ppmC	2.1	2.1	344111	07/01/24	07/01/24	MPD
Ethene/Ethane	<2.1		ppmC	2.1	2.1	344111	07/01/24	07/01/24	MPD
Carbon Dioxide	9.7		%v/v	0.0002	2.1	344111	07/01/24	07/01/24	MPD
Oxygen	11.0		%v/v	0.2	2.1	344111	07/01/24	07/01/24	MPD
TNMNEOC	5.3		ppmC	0.7	2.1	344111	07/01/24	07/01/24	MPD

Sample ID:	Lab ID: 511226-002	Collected: 06/27/24 10:20
CHIQUITA FLARE 1 EXH (C80224)	Matrix: Air	

511226-002 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: SCAQMD 25.3									
Methane	<2.2		ppmC	2.2	2.2	344111	07/01/24	07/01/24	MPD
Carbon Monoxide	7.0		ppmC	2.2	2.2	344111	07/01/24	07/01/24	MPD
Ethene/Ethane	<2.2		ppmC	2.2	2.2	344111	07/01/24	07/01/24	MPD
Carbon Dioxide	9.7		%v/v	0.0002	2.2	344111	07/01/24	07/01/24	MPD
Oxygen	11.0		%v/v	0.2	2.2	344111	07/01/24	07/01/24	MPD
TNMNEOC	5.2		ppmC	0.7	2.2	344111	07/01/24	07/01/24	MPD

Sample ID: Lab ID: 511226-003 Collected: 06/27/24 09:50

CHIQUITA FLARE 1 IN-1 Matrix: Air

511226-003 Analyte	Result	Qual Ur	its	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15 Prep Method: METHOD								<u>-</u>	
Benzene	120,000	pp	bv	640	3200	345088	07/15/24 18:15	07/15/24 18:15	MBC
Benzene	400,000		m3	2,000	3200	345088		07/15/24 18:15	MBC
Benzyl chloride	ND	bb	bv	80	400	345027		07/13/24 21:01	ZNZ
Benzyl chloride	ND	ug	m3	410	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Chlorobenzene	400	pr	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Chlorobenzene	1,800	ug	m3	370	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,2-Dichlorobenzene	ND	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,2-Dichlorobenzene	ND	ug	m3	480	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,4-Dichlorobenzene	650	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,4-Dichlorobenzene	3,900	ug,	m3	480	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,1-Dichloroethane	ND	pp	bν	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,1-Dichloroethane	ND	ug	m3	320	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,2-Dichloroethane	740	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,2-Dichloroethane	3,000	ug	m3	320	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,1-Dichloroethene	ND	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,1-Dichloroethene	ND	ug	m3	320	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Methylene Chloride	350	pp	bν	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Methylene Chloride	1,200	ug/	m3	280	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,2-Dibromoethane	ND	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,2-Dibromoethane	ND	ug/	m3	610	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Tetrachloroethene	250	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Tetrachloroethene	1,700	ug/	m3	540	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Carbon Tetrachloride	ND	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Carbon Tetrachloride	ND	ug/	m3	500	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Toluene	24,000	рр	bv	320	1600	345027	07/13/24 21:34	07/13/24 21:34	ZNZ
Toluene	91,000	ug/	m3	1,200	1600	345027	07/13/24 21:34	07/13/24 21:34	ZNZ
1,1,1-Trichloroethane	ND	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
1,1,1-Trichloroethane	ND	ug/	m3	440	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Trichloroethene	130	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Trichloroethene	700	ug/	m3	430	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Chloroform	ND	pp	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Chloroform	ND	ug/	m3	390	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Vinyl Chloride	ND	рр	bv	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Vinyl Chloride	ND	ug/	m3	200	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
m,p-Xylenes	13,000	рр	bV	160	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
m,p-Xylenes	57,000	ug/	m3	690	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
o-Xylene	4,600	pp	ov	80	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
o-Xylene	20,000	ug/	m3	350	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ
Surrogates			1	Limits					
Bromofluorobenzene	108%	%R	EC 6	0-140	400	345027	07/13/24 21:01	07/13/24 21:01	ZNZ

Sample ID: Lab ID: 511226-004 Collected: 06/27/24 10:25 CHIQUITA FLARE 1 IN-2 Matrix: Air

511226-004 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15 Prep Method: METHOD									
Benzene	130,000		ppbv	640	3200	345088	07/15/24 18:48	07/15/24 18:48	MBC
Benzene	420,000		ug/m3	2,000	3200	345088	07/15/24 18:48	07/15/24 18:48	MBC
Benzyl chloride	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Benzyl chloride	ND		ug/m3	410	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Chlorobenzene	430		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Chlorobenzene	2,000		ug/m3	370	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,2-Dichlorobenzene	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,2-Dichlorobenzene	ND		ug/m3	480	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,4-Dichlorobenzene	750		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,4-Dichlorobenzene	4,500		ug/m3	480	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,1-Dichloroethane	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,1-Dichloroethane	ND		ид/т3	320	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,2-Dichloroethane	720		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,2-Dichloroethane	2,900		ug/m3	320	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,1-Dichloroethene	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,1-Dichloroethene	ND		ug/m3	320	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Methylene Chloride	370		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Methylene Chloride	1,300		ug/m3	280	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,2-Dibromoethane	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,2-Dibromoethane	ND		ug/m3	610	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Tetrachloroethene	310		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Tetrachloroethene	2,100		ug/m3	540	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Carbon Tetrachloride	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Carbon Tetrachloride	ND		ug/m3	500	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Toluene	24,000		ppbv	320	1600	345027	07/13/24 22:44	07/13/24 22:44	ZNZ
Toluene	89,000		ug/m3	1,200	1600	345027	07/13/24 22:44	07/13/24 22:44	ZNZ
1,1,1-Trichloroethane	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
1,1,1-Trichloroethane	ND		ug/m3	440	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Trichloroethene	140		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Trichloroethene	740		ug/m3	430	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Chloroform	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Chloroform	ND		ug/m3	390	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Vinyl Chloride	ND		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Vinyl Chloride	ND		ug/m3	200	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
m,p-Xylenes	14,000		ppbv	160	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
m,p-Xylenes	63,000		ug/m3	690	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
o-Xylene	5,000		ppbv	80	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
o-Xylene	22,000		ug/m3	350	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ
Surrogates				Limits					
Bromofluorobenzene	100%		%REC	60-140	400	345027	07/13/24 22:11	07/13/24 22:11	ZNZ

Sample ID: Lab ID: 511226-005 Collected: 06/27/24 11:00 CHIQUITA FLARE 1 IN-3 Matrix: Air

511226-005 Analyte	Result	Qual	Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15 Prep Method: METHOD									
Benzene	150,000		ppbv	600	3000	345088	07/15/24 19:22	07/15/24 19:22	MBC
Benzene	470,000	1	ug/m3	1,900	3000	345088	07/15/24 19:22	07/15/24 19:22	MBC
Benzyl chloride	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Benzyl chloride	ND	Į	ug/m3	390	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Chlorobenzene	490		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Chlorobenzene	2,300	Į.	ug/m3	350	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,2-Dichlorobenzene	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,2-Dichlorobenzene	ND	ŧ	ug/m3	450	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,4-Dichlorobenzene	950		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,4-Dichlorobenzene	5,700	Į	ıg/m3	450	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,1-Dichloroethane	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,1-Dichloroethane	ND	ι	ıg/m3	300	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,2-Dichloroethane	840		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,2-Dichloroethane	3,400	l	ıg/m3	300	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,1-Dichloroethene	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,1-Dichloroethene	ND	Į	ıg/m3	300	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Methylene Chloride	380		ррьу	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Methylene Chloride	1,300	ι	ıg/m3	260	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,2-Dibromoethane	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,2-Dibromoethane	ND	L	ıg/m3	580	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Tetrachloroethene	300		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Tetrachloroethene	2,000	L	ıg/m3	510	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Carbon Tetrachloride	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Carbon Tetrachloride	ND	l	ıg/m3	470	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Toluene	29,000		ppbv	300	1500	345027	07/13/24 23:55	07/13/24 23:55	ZNZ
Toluene	110,000	L	ıg/m3	1,100	1500	345027	07/13/24 23:55	07/13/24 23:55	ZNZ
1,1,1-Trichloroethane	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
1,1,1-Trichloroethane	ND	ŧ	ıg/m3	410	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Trichloroethene	160		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Trichloroethene	860	L	ıg/m3	400	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Chloroform	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Chloroform	ND	Ł	ig/m3	370	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Vinyl Chloride	ND		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Vinyl Chloride	ND	L	ıg/m3	190	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
m,p-Xylenes	17,000		ppbv	150	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
m,p-Xylenes	73,000		ig/m3	650	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
o-Xylene	6,000		ppbv	75	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
o-Xylene	26,000		ig/m3	330	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ
Surrogates				Limits					
Bromofluorobenzene	106%	0,	6REC	60-140	380	345027	07/13/24 23:21	07/13/24 23:21	ZNZ

Sample ID: Lab ID: 511226-006 Collected: 06/27/24 09:50
CHIQUITA FLARE 1 EXH-1 Matrix: Air

511226-006 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
Method: EPA TO-15 Prep Method: METHOD								
Benzene	7.6	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Benzene	24	ug/m3	1.2	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Benzyl chloride	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Benzyl chloride	ND	ug/m3	1.9	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Chlorobenzene	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Chlorobenzene	ND	ug/m3	1.7	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,2-Dichlorobenzene	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,2-Dichlorobenzene	ND	ug/m3	2.2	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,4-Dichlorobenzene	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,4-Dichlorobenzene	ND	ug/m3	2.2	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,1-Dichloroethane	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,1-Dichloroethane	ND	ug/m3	1.5	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,2-Dichloroethane	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,2-Dichloroethane	ND	ug/m3	1.5	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,1-Dichloroethene	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,1-Dichloroethene	ND	ug/m3	1.4	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Methylene Chloride	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Methylene Chloride	ND	ug/m3	1.3	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,2-Dibromoethane	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,2-Dibromoethane	ND	ug/m3	2.8	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Tetrachloroethene	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Tetrachloroethene	ND	ug/m3	2.4	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Carbon Tetrachloride	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Carbon Tetrachloride	ND	ug/m3	2.3	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Toluene	2.7	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Toluene	10	ug/m3	1.4	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,1,1-Trichloroethane	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
1,1,1-Trichloroethane	ND	ug/m3	2.0	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Trichloroethene	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Trichloroethene	ND	ug/m3	1.9	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Chloroform	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Chloroform	ND	ug/m3	1.8	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Vinyl Chloride	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Vinyl Chloride	ND	ug/m3	0.92	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
m,p-Xylenes	ND	ppbv	0.72	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
m,p-Xylenes	ND	ug/m3	3.1	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
o-Xylene	ND	ppbv	0.36	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
o-Xylene	ND	ug/m3	1.6	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ
Surrogates		-	Limits				. , 5, 5	
Bromofluorobenzene	113%	%REC	60-140	1.8	345027	07/13/24 19:00	07/13/24 19:00	ZNZ

Sample ID: Lab ID: 511226-007 Collected: 06/27/24 10:25 CHIQUITA FLARE 1 EXH-2 Matrix: Air

11226-007 Analyte	Result	Qual Un	its RL	DF	Batch	Prepared	Analyzed	Chemis
ethod: EPA TO-15 rep Method: METHOD								
Benzene	4.2	pp	bv 0.36	1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Benzene	13	ug/		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Benzyl chloride	ND	pp		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Benzyl chloride	ND	ug/		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Chlorobenzene	ND	pp		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Chlorobenzene	ND	ug/		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,2-Dichlorobenzene	ND	pp		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,2-Dichlorobenzene	ND	ug/		1.8	345027	07/13/24 19:42	07/13/24 19:42	
1,4-Dichlorobenzene	ND	pp		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,4-Dichlorobenzene	ND	ug/		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,1-Dichloroethane	ND	pp		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,1-Dichloroethane	ND	ug/		1.8	345027	07/13/24 19:42		ZNZ
1,2-Dichloroethane	ND	pp		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,2-Dichloroethane	ND	ug/		1.8	345027		07/13/24 19:42	ZNZ
1,1-Dichloroethene	ND	pp		1.8	345027	07/13/24 19:42 07/13/24 19:42	07/13/24 19:42	ZNZ
1,1-Dichloroethene	ND	ug/		1.8	345027		07/13/24 19:42	ZNZ
Methylene Chloride	ND	pp		1.8		07/13/24 19:42	07/13/24 19:42	ZNZ
Methylene Chloride	ND	ug/			345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,2-Dibromoethane	ND			1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1.2-Dibromoethane	ND	pp		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Tetrachloroethene	ND	ug/		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Tetrachloroethene	ND	ppi		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Carbon Tetrachloride		ug/		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Carbon Tetrachloride	ND	pp		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
	ND	ug/i		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Toluene	ND	ppl		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Toluene	ND	ug/i		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,1,1-Trichloroethane	ND	ppl		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
1,1,1-Trichloroethane	ND	ug/ı		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Trichloroethene	ND	ppl		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Trichloroethene	ND	ug/ı		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Chloroform	ND	ppl		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Chloroform	ND	ug/i		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Vinyl Chloride	ND	ppl		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
Vinyl Chloride	ND	ug/ı		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
m,p-Xylenes	ND	ppl		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
m,p-Xylenes	ND	ug/ı		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
o-Xylene	ND	ppl		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
o-Xylene	ND	ug/ı		1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ
rrogates			Limits					
Bromofluorobenzene	98%	%R	EC 60-140	1.8	345027	07/13/24 19:42	07/13/24 19:42	ZNZ

Sample ID: Lab ID: 511226-008 Collected: 06/27/24 11:00 CHIQUITA FLARE 1 EXH-3 Matrix: Air

1226-008 Analyte	Result	Qual Units	RL	DF	Batch	Prepared	Analyzed	Chemist
ethod: EPA TO-15 ep Method: METHOD								
Benzene	1.4	ppbv	0.36	1.8	345027	07/13/24 20:24	07/10/04 00:04	71:7
Benzene	4.5	ug/m3	1.2	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Benzyl chloride	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Benzyl chloride	ND	ug/m3	1.9	1.8	345027		07/13/24 20:24	ZNZ
Chlorobenzene	ND		0.36			07/13/24 20:24	07/13/24 20:24	ZNZ
Chlorobenzene	ND	ppbv	1.7	1.8	345027 345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,2-Dichlorobenzene	ND	ug/m3		1.8		07/13/24 20:24	07/13/24 20:24	ZNZ
1,2-Dichlorobenzene	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,4-Dichlorobenzene		ug/m3	2.2	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,4-Dichlorobenzene	ND	ug/m3	2.2	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,1-Dichloroethane	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,1-Dichloroethane	ND	ug/m3	1.5	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,2-Dichloroethane	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,2-Dichloroethane	ND	ug/m3	1.5	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,1-Dichloroethene	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,1-Dichloroethene	ND	ug/m3	1.4	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Methylene Chloride	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Methylene Chloride	ND	ug/m3	1.3	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,2-Dibromoethane	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,2-Dibromoethane	ND	ug/m3	2.8	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Tetrachloroethene	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Tetrachloroethene	ND	ug/m3	2.4	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Carbon Tetrachloride	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Carbon Tetrachloride	ND	ug/m3	2.3	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Toluene	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Toluene	ND	ug/m3	1.4	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,1,1-Trichloroethane	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
1,1,1-Trichloroethane	ND	ug/m3	2.0	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Trichloroethene	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Trichloroethene	ND	ug/m3	1.9	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Chloroform	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Chloroform	ND	ug/m3	1.8	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Vinyl Chloride	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
Vinyl Chloride	ND	ug/m3	0.92	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
m,p-Xylenes	ND	ppbv	0.72	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
m,p-Xylenes	ND	ug/m3	3.1	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
o-Xylene	ND	ppbv	0.36	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
o-Xylene	ND	ug/m3	1.6	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
rogates		2510	Limits	,	5 10027	377 TO/ET 20.24	J1110/24 20.24	ZIVZ
Bromofluorobenzene	93%	%REC	60-140	1.8	345027	07/13/24 20:24	07/13/24 20:24	ZNZ
		, , , , , L	00 , 10	1,0	070027	01/10/ET 20.24	01/10/24 20,24	۷۱۹۷

Value is less than indicated concentration

ND Not Detected

Type:	Lab Control Sample	Lab ID:	QC1169142	Batch:	345027
Matrix:	Air	Method:	EPA TO-15	Prep Method:	METHOD

				1 10p inc	triod: Wil	THOD
QC1169142 Analyte	Result	Spiked	Units	Recovery	Qual	Limits
Benzene	8.707	10.00	ppbv	87%		70-130
Benzyl chloride	10.16	10.00	ppbv	102%		70-130
Chlorobenzene	9.620	10.00	ppbv	96%		70-130
1,2-Dichlorobenzene	10.28	10.00	ppbv	103%		70-130
1,4-Dichlorobenzene	9.815	10.00	ppbv	98%		70-130
1,1-Dichloroethane	9.129	10.00	ppbv	91%		70-130
1,2-Dichloroethane	8.555	10.00	ppbv	86%		70-130
1,1-Dichloroethene	8.561	10.00	ppbv	86%		70-130
Methylene Chloride	8.696	10.00	ppbv	87%		70-130
1,2-Dibromoethane	9.193	10.00	ppbv	92%		70-130
Tetrachloroethene	11.12	10.00	ppbv	111%		70-130
Carbon Tetrachloride	8.611	10.00	ppbv	86%		70-130
Toluene	9.445	10.00	ppbv	94%		70-130
1,1,1-Trichloroethane	8.739	10.00	ppbv	87%		70-130
Trichloroethene	9.548	10.00	ppbv	95%		70-130
Chloroform	8.883	10.00	ppbv	89%		70-130
Vinyl Chloride	8.801	10.00	ppbv	88%		70-130
m,p-Xylenes	22.18	20.00	ppbv	111%		70-130
o-Xylene	11.40	10.00	ppbv	114%		70-130
Surrogates						
Bromofluorobenzene	11.16	10.00	ppbv	112%		60-140

Type: Lab Control Sample Duplicate Lab ID: QC1169143 Batch: 345027

Matrix: Air Method: EPA TO-15 Prep Method: METHOD

QC1169143 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
Benzene	8.816	10.00	ppbv	88%		70-130	1	25
Benzyl chloride	9.314	10.00	ppbv	93%		70-130	9	25
Chlorobenzene	9.559	10.00	ppbv	96%		70-130	1	25
1,2-Dichlorobenzene	10.19	10.00	ppbv	102%		70-130	1	25
1,4-Dichlorobenzene	9.728	10.00	ppbv	97%		70-130	1	25
1,1-Dichloroethane	9.116	10.00	ppbv	91%		70-130	0	25
1,2-Dichloroethane	8.639	10.00	ppbv	86%		70-130	1	25
1,1-Dichloroethene	8.820	10.00	ppbv	88%		70-130	3	25
Methylene Chloride	8.837	10.00	ppbv	88%		70-130	2	25
1,2-Dibromoethane	9.201	10.00	ppbv	92%		70-130	0	25
Tetrachloroethene	9.958	10.00	ppbv	100%		70-130	11	25
Carbon Tetrachloride	8.749	10.00	ppbv	87%		70-130	2	25
Toluene	9.367	10.00	ppbv	94%		70-130	1	25
1,1,1-Trichloroethane	8.841	10.00	ppbv	88%		70-130	1	25
Trichloroethene	9.526	10.00	ppbv	95%		70-130	0	25
Chloroform	8.956	10.00	ppbv	90%		70-130	1	25
Vinyl Chloride	8.918	10.00	ppbv	89%		70-130	1	25
m,p-Xylenes	21.44	20.00	ppbv	107%		70-130	3	25
o-Xylene	10.75	10.00	ppbv	108%		70-130	6	25
Surrogates								
Bromofluorobenzene	11.14	10.00	ppbv	111%		60-140		

Type: Blank	Lab II	D: QC1169144		Batch:	345027
Matrix: Air	Method	d: EPA TO-15		Prep Method:	METHOD
QC1169144 Analyte	Result C	Qual Units	RL	Prepared	Analyzed
Benzene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Benzyl chloride	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Chlorobenzene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
1,2-Dichlorobenzene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
1,4-Dichlorobenzene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
1,1-Dichloroethane	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
1,2-Dichloroethane	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
1,1-Dichloroethene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Methylene Chloride	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
1,2-Dibromoethane	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Tetrachloroethene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Carbon Tetrachloride	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Toluene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
1,1,1-Trichloroethane	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Trichloroethene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Chloroform	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Vinyl Chloride	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
m,p-Xylenes	ND	ppbv	0.40	07/13/24 16:27	07/13/24 16:27
o-Xylene	ND	ppbv	0.20	07/13/24 16:27	07/13/24 16:27
Surrogates			Limits		
Bromofluorobenzene	94%	%REC	60-140	07/13/24 16:27	07/13/24 16:27

Type:	Lab Control Sample	Lab ID:	QC1169396	Batch:	345088
Matrix:	Air	Method:	EPA TO-15	Prep Method:	METHOD

QC1169396 Analyte	Result	Spiked	Units	Recovery Qual	Limits
Benzene	9.243	10.00	ppbv	92%	70-130
Surrogates					
Bromofluorobenzene	10.93	10.00	ppbv	109%	60-140

Type:	Lab Control Sample Duplicate	Lab ID:	QC1169397	Batch:	345088
Matrix:	Air	Method:	EPA TO-15	Prep Method:	METHOD

QC1169397 Analyte	Result	Spiked	Units	Recovery	Qual	Limits	RPD	RPD Lim
Benzene	9.621	10.00	ppbv	96%		70-130	4	25
Surrogates								
Bromofluorobenzene	10.91	10.00	ppbv	109%		60-140		

	Type:	Blank	Lab ID:	QC1169398	Batch:	345088
Matrix: Air Method: EPA TO-15 Prep Method: METHOD	latrix:	Air	Method:	EPA TO-15	Prep Method:	METHOD

QC1169398 Analyte	Result Qua	l Units	RL	Prepared	Analyzed
Benzene	ND	ppbv	0.20	07/15/24 16:59	07/15/24 16:59
Surrogates			Limits		
Bromofluorobenzene	90%	%REC	60-140	07/15/24 16:59	07/15/24 16:59

ND Not Detected

Results

SCAQMD 25.3/10.1 Results Summary

Parameter	Units	Nomenclature	Sample 1	Sample 2
Enthalpy LR/Sample ID #	none	Eid	511226-001	511226-002
Client Sample ID#	none	Cid	CHIQUITA FLARE 1 EXH (C80242)	CHIQUITA FLARE 1 EXH (C80224
		Sample Data		
Canister ID #	none	Tid	C80242	C80224
Canister Volume	Liters (L)	Λc	6.0	6.0
Initial Canister Pressure	mmHg (A)	Pj	0.0	0.0
Initial Canister Pressure Check Date	mm/dd/yy	none	6/24/2024	6/24/2024
Post Sampling Canister Pressure	mmHg (A)	Pr	434,4	420.2
Post Purge Final Canister Pressure	mmHg (A)	Pf	900.80	904.20
Canister Reciept Date	mm/dd/yy	none	6/28/2024	6/28/2024
Atmospheric Pressure	mmHg (A)	Ра	760.0	760.0
Canister Dilution Factor	none	Dftank	2.07	2.15
Sample Volume	Liters (L)	Vsample	3.43	3.32
Aqueous Impinger Volume	Milliliters (ml)	Ņ	3.214	3.245
TOC Analysis Dilution Factor	none	Dftoc	4.0	4.0
Ideal Gas Volume	Liters/mole	Víd	24.47	24.47
Atomic Weight of Carbon	grams/mole	Ac	12.01	12.01
Bias Correction Factor	none	CFb	1.086	1.086
	Resul	Results and Calculations	ons	
Avg Raw TOC Result	ppmC	ט	0.60	0.56
TOC Trip Blank Result	bpmC	cp Cp	0.05	0.05
Final Gaseous TOC Result = $((Ci - Cb) \times TOCdf) \times Vi \times Pa \times Vid)/(Vc \times Pr \times Ac)$	рртС	CW	4.27	4.10
Avg Raw NMNEOC Result	ppmC	Cm	0.30	0.30
Final NMNEOC Result = $Cm \times (Pf/Pr-Pi)$	ppmC	၁	0.62	0.65
Final Methane Result = Avg Conc x (Pf/Pr-Pi)	ppmC	Cmt	< 2.1	< 2.2
Final Carbon Monoxide Result = Avg Conc x (Pf/Pr-Pi)	ppmC	CCO	31.5	7.0
Final Ethene/Ethane Result = Avg Conc x (Pf/Pr-Pi)	ppmC	Cet	< 2.1	< 2.2
Final Carbon Dioxide Result = Avg Conc x (Pf/Pr-Pi)	n/n%	Cco2	9.7	5.6
Final Oxygen Result = Avg Conc x ($Pf/Pr-Pi$)	n/n%	C02	11.0	11.0
Final TNIMMEON Bacoult - (Co ACM) > CEN	Junua	Cuor	6 11	

Sample Data

	Sample 1	Sample 2
Enthalpy ID	511226-001	511226-002
Client ID	CHIQUITA FLARE 1 EXH (C80242)	CHIQUITA FLARE 1 EXH (C80224
LIMS Batch ID:	344111	344111
Canister ID #	C80242	C80224
Canister Cleaning Date	6/19/2024	6/11/2024
Canister Volume	6.0	6.0
Initial Canister Pressure	0	0
Canister Pressure Check Date	6/24/2024	6/24/2024
Post Sampling Canister Pressure	-325.6	-339.8
Post Purge Final Canister Pressure	140.8	144.2
Canister Reciept and Purge Date	6/28/2024	6/28/2024
Analysis Date/Time	07/01/2024 14:54	07/01/2024 15:45
Reagent Water ID	062424A	062424A
Vial ID#	17A	17B
TOC final return Volume	3.2144	3.2452
TOC Analytical Dilution Factor	4.00	4.00
Result 1	0.00	0.00
Result 2	0.00	0.00
RPD %	#DIV/0!	#DIV/0!
Avg Methane Result	0.00	0.00
Result 1	15.20	3.20
Result 2	15.20	3.30
RPD %	0.00	3.08
Avg Carbon Monoxide Result	15.20	3.25
Result 1	0.30	0.30
Result 2	0.30	0.30
RPD %	0.00	0.00
Avg TNMNEOC Result	0.30	0.30
Result 1	46628.10	45098.10
Result 2	46589.30	45126.40
RPD %	0.08	0.06
Avg Carbon Dioxide Result	46608.70	45112.25
Result 1	0.00	0.00
Result 2	0.00	0.00
RPD %	#DIV/0!	#DIV/0!
Avg Ethene/Ethane Result	0.0	
Result 1	5.30	0.0 5.10
Result 2	5.30	
RPD %		5.10
	0.00	0.00
Avg Oxygen Result	5.30	5.10
Result 1	37.50	36.10
Result 2	37.40	36.10
RPD %	0.27	0.00
Avg Nitrogen Result	37.45	36.10
Avg raw TOC	0.6043	0.5599
TOC Blank	0.0456	0.0456

Fixed Gases Total %

98.3

98.4

Page 1 of 1

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 14-54-44 511226-001 inj 1 - master scaqmd 253 analysis 100923.run Mathod File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : 511226-001

Calculation Date: 2024-07-02 12:37

Detector Type: 4XX-GC (1000 Volts) Bus Address: 44 Sample Rate: 5.00 Rz Run Time: :23.000 min

Status Width Sep. 1/2 Code (sec) 19.2 93853 -0.056 0.504 Totals:

Status Codes: M - Missing peak

Identified Peaks: 3 Rejected Peaks: 0 68450 counts Total Unidentified Counts : Detected Peaks: 3

1 microvolts LSB: Baseline Offset: 0 microVolts

Divisor: 1

Multiplier: 1

Unidentified Peak Factor: 0

Print Date: Tue Jul 02 15:15:40 2024

Page 1 of 1

Calculation Date: 2024-07-02 15:15

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sumple Rate: 5.00 Hz
Run Time: 23.000 min

Status Width Sep. 1/2 Code (sec) -0.391 490018272 46628.1

Status Codes: M - Missing peak Totals:

34931 counts Total Unidentified Counts :

Identified Peaks: 2 Rejected Feaks: 0 Detected Peaks: 3

Unidentified Peak Factor: 0

Divisor: 1

Multiplier: 1

Print Date: Tue Jul 02 14:59:18 2024

Page 1 of 1

Calculation Date: 2024-07-02 14:59

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Sample Rate : 5.00 Hz
Run Time : 23.000 min

Status Width Sep. 1/2 Code (sec) 4.0 0.0 11342243 -0.304 2.884 2.446 5.848 7.979 42.8 1 Hydrogen 2 Oxygen 3 Nitrogen 4 Methane 5 Carbon Monox Totals:

Status Codes: M - Missing peak

0 counts Total Unidentified Counts :

Identified Peaks: 5 Unidentified Peak Factor: Rejected Peaks: 0 Divisor: 1 Detected Peaks: 2 Multiplier: 1

1 microVolus LSB: 6 Baseline Offset: 103300 microvolts

O Noise (used): 200 microVolts - fixed value J Noise (monitored before this run): 178 microVolts O Manual injection

不是这些的事情也在这个在我们的人的人,如此是这个人的,我们的人的,我们的人,我们的人,我们们的人,我们们的人,我们们的人,我们们的人,我们们的人,我们们们的人,我们们们们的人,我们们们们的人,我们们们

Print Date: Tue Jul 02 12:37:58 2024

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 15-20-16 511226-001 inj 2 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth : 511226-001

Page 1 of 1

Calculation Date: 2024-07-02 12:37

Detector Type: 4XX-GC (1000 Volts) Bus Address: 4 Sample Rate: 5.00 Hz Run Time: 23.000 min

Status Width Sep. 1/2 Code (sec) BB 19.2 BB 18.5 0.053 15.2 Totals:

Status Codes: M - Missing peak

67100 counts Total Unidentified Counts :

Unidentified Peak Factor: 0 Identified Peaks: 3 Rejected Peaks: 0 Divisor: 1 Detected Peaks: 3 Multiplier: 1

Page 1 of 1 Print Date: Tue Jul 02 15:15:54 2024 ritle Run File : c:\brukerws\data\2024\070124 25.3\2024-07-01 15-20-16 511226-001 inj 2 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : 511226-001

Calculation Date: 2024-07-02 15:15

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 4
Sample Rate : 5.00 Hz
Run Time : 23.000 min

Status Sep. 1/2 Code (sec) -0.391 489667040

Status Codes: M - Missing peak

34088 counts Total Unidentified Counts :

Identified Peaks: 2 Rejected Peaks: 0 Detected Peaks; 3

Unidentified Peak Factor: 0 1 microvolts LSB: Divisor: 1 Baseline Offset: O microVolts Multiplier: 1

Noise (used): 20 microVolts - monitored before this run

Page 1 of 1

Calculation Date: 2024-07-02 14:59

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min

Status Width Sep. 1/2 Code (sec) 11323691 -0,304 2,884 3,446 4,098 7,979 42.7 1 Hydrogen 2 Oxygen 3 Nitrogen 4 Methane 5 Carbon Monox Totals:

Status Codes: M - Missing peak

0 counts Total Unidentified Counts : Identified Peaks: 5 Unidentified Peak Factor: 0 Rejected Peaks: 0 Divisor: 1 Detected Peaks: 2 Multiplier: 1

1 microVolts G Baseline Offset: 102483 microVolts

Volume (word): 200 microVolts - fixed value

J Noise (monitored before this run): 328 microVolts

O Manual injection

Page 1 of 1

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 15-45-54 511226-002 inj 1 - master scaqmd 253 analysis 100923.run
Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth
Sample ID : 511226-002

Calculation Date: 2024-07-02 12:38

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 44
Sample Rate : 5.00 Kz
Run Time : 23.000 min

Status Width Sep. 1/2 Code (sec) BB 19.4 BB 17.6 19493 6918 26411 0.436 3.2 Totals:

Status Codes: M - Missing peak

64722 counts Total Unidentified Counts :

Unidentified Feak Factor: 0 Identified Peaks: 3 Rejected Peaks: 0 Divisor: 1 Detected Peaks: 3 Multiplier: 1

Print Date: Tue Jul 02 15:16:07 2024

ritle : c:\Drukerws\data\2024\070124 25.3\2024-07-01 15-45-54 511226-002 inj 1 ~ master scaqmd 253 analysis 100923.run Nut File : c:\Drukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Method File : 511226-002

Page 1 of 1

Calculation Date: 2024-07-02 15:16

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 44
Bus Address : 5.00 Hz
Run Time : 5.00 Min

Width Sep. 1/2 Code (sec)

Status

45098.1 Status Codes: M - Missing peak Totals:

-0.386 476108160

35045 counts Total Unidentified Counts :

Identified Peaks: 2 Unidentified Peak Factor: Rejected Peaks: 0 Divisor: 1 Detected Peaks: 3 Multiplier: 1

Print Date: Tue Jul 02 15:00:34 2024

ritle Run File : c:\Drukerws\data\2024\070124 25.3\2024-07-01 15-45-54 511226-002 inj 1 - master scaqmd 253 analysis 100923.run Method File : c:\Drukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : 511226-002

Page 1 of 1

Calculation Date: 2024-07-02 15:00 Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Status Codes Width Sep. 1/2 Code (sec) Area (counts) 1682563 9248675 10931238 10.003 -0,302 Time Offset (min) 2.884 3.445 4.101 5.848 7.979 Defection Date: 2024-07-01 15:45 Ca.

Operator: MPD

Operator: MPD

Operator: MPD

Norstation: Windows

Norstation: Windows

Norstation: Windows

Norstation: Windows

Defection: Windows

Defection: Windows

Santysis

Operator: Bruker GCTCA#1

Santysis

Operator: Bruker GCTCA#1

Santysis

Operator: Analysis

Operator: Analysis

Santysis

Operator: Analysis

Operator: Analysis

Operator: Analysis

Santysis

Operator: Analysis

Operato Ret. Time (min) 41.2 1 Hydrogen 2 Oxygen 3 Ntrogen 4 Methane 5 Carbon Monox Totals:

Status Codes: M - Missing peak

270 counts Total Unidentified Counts :

Identified Peaks: 5 Unidentified Peak Factor: 0 Rejected Peaks: 0 Detected Peaks: 3

Divisor: 1 Multiplier: 1

Print Date: Tue Jul 02 12:39:17 2024

Page 1 of 1

Calculation Date: 2024-07-02 12:39

Detector Type: 4XX-6C (1000 Volts)
Bus Address : 44
Sample Rate : 5.00 Hz
Run Time : 23.000 min

20153 7230 men weapon menses -0.038 0.471 manuscreams 0.433 3.3 9.3 9.6

Status

19.3

Width Sep. 1/2 Code (sec)

66700 counts Total Unidentified Counts : Status Codes: M - Missing peak

Totals:

Identified Peaks: 3 Unidentified Peak Factor: 0 Rejected Peaks: 0 Divisor: 1 Detected Peaks: 3 Multiplier: 1

LSB: 1 microVolts Baseline Offset: 0 microVolts

Print Date: Tue Jul 02 15:16:32 2024

ritle
Run File : c:\brukerws\data\2024\070124 25.3\2024-07-01 16-11-26 511226-002 inj 2 - master scaqmd 253 analysis 100923.run
Wethod File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth
Sample ID : 511226-002

Page 1 of 1

Calculation Date: 2024-07-02 15:16

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: :23.000 min

Sep. 1/2 Code (sec) -0.387 476367424 45126.4 Totals:

Status

Status Codes: M - Missing peak

33971 counts Total Unidentified Counts :

Identified Peaks: 2 Rejected Peaks: 0 Detected Peaks: 3

Unidentified Peak Factor: 0 Divisor: 1 Multiplier: 1

Page 1 of 1

ritle Run File : c:\Drukerws\data\2024\070124 25.3\2024-07-01 16-11-26 511226-002 inj 2 - master scaqmd 253 analysis 100923.run Method File : c:\Drukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : 511226-002 Calculation Date: 2024-07-02 15:00

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Bus Address: 44
Bus Address: 5.00 Hz
Run Time : 23.000 min

Status Width Sep. 1/2 Code (sec) 10956031 -0,303 2.884 3.445 4.100 5.848 41.2 1 Bydrogen 2 Oxygen 3 Nitrogen 4 Methane 5 Carbon Monox Totals:

Status Codes: M - Missing peak

0 counts Total Unidentified Counts:

Identified Peaks: 5 Rejected Peaks: 0 Detected Peaks: 2

Unidentified Peak Factor: 1 microVolts Divisor: 1 Multiplier: 1

Time

General Info Analysis Name Template Name Operator Date

20240711A.adb 071124.tdb Administrator 7/11/2024 8:28:54 AM

			Temola	te Settings				
Element	Integration Time	Samples -	Extra Samples	Max. CV	Volume	May Ones		
Carbon	75	3	2			Max Conc.		
Nitrogen	100	2		5	200	20		
		2	2	2	200	20		
Sample Time	300							
			Calibr	ation Info				
CurveNo	Туре	FileName:	Volume	Correlation	R-squared	A0:	A1:	A2:
1	IC	20230801B.adb	200	0.999335761	0.99867	260,676		
2	TC	20230802A.adb	200	0.999822357	0.99964	•	483,869	0
			200	V.3330ZZ331	0.99904	88,855	473,969	0
			Sample In	\$A				
Identit	fication	Inj. Type						
740,70		iiij. i ype	Conc.	Area	CV	Inj. Volume		
Suctor	n Rinse	T00						
aysten	ii iviise	TOC	0.2557	-	-			
		TC	0.2557	210026	4.0	200		
		IC	-0.3599	86550	9.9	200		
MB 0	71124	TOC	0.0178	_				
		TC	0.0178	97288	13.3	200		
		IC	-0.4010	86667				
			-0.4010	00007	9.7	200		
RL check 1.0	0440C2 (mlm)	TOC	0.0400					
ric bridge 1,0	ugmin uzu na a		0.9109	-	-			
		TC	0.9109	520588	4.1	200		
		IC	-0.1447	190636	2.0	200		
001110								
CCV 10ug/	mi S20450	TOC	9.7105	Na.	_			
		TÇ	9.7105	4691317	1.5	200		
		IC	-0.2162	156068	3.1	200		
					0.1	200		
H20 I	olank	TOC	0,2095	-	-			
		TC	0.2095	188136		000		
		ic	-0.3489		6.8	200		
		10	-0.3409	91873	2.7	200		
511226 T	rin Blank	TOC	0.0450					
011220 1	TIP DIGITIK		0.0456	*	-			
		TC	0.0456	110446	3.0	200		
		IC	-0.3975	68333	2.2	200		
511226-	-001 4x	TOC	0.6043	-	_			
		TC	1.1329	625833	0.9	200		
		IC	0.5286	516448	3.2	200		
				0.0	0.2	200		
511226-	-002 4x	TOC	0.5599		_			
		TC	0.7757					
		IC		456529	3.3	200		
		10	0.2159	365120	2.5	200		
H20 b	dank	T00						
FIZU L	ланк	TOC	0.2676	-	-			
		TC	0.2676	215689	5.6	200		
		IC	-0.2955	117702	6.0	200		
A						-		
RL check 1.0 u	.g/ml S20449	TOC	0.5443	-	-			
		TC	0,5443	346830	1.8	200		
		IC	-0.1635	181556	2.9			
			J. 7 J W W	101000	۵.۵	200		
CCV 10ug/r	nl S20450	тос	9.7488	-				
	>== !!==	TC			-			
			9.7488	4709474	0.9	200		
		IC	-0.2109	158608	3.2	200		

QA/QC Data

SCAQMD 25.3/10.1 QAQC Summary

Ор	Opening TNMNEOC CV's							
Analyte	Target	Result	% rec	Rec Limit				
TNMNEOC Low	1.0	0.9	90.0	90-110				
TNMNEOC High	10.0	9.5	95.0	90-110				

A20	Opening FG	G's CV's		
Analyte	Target	Result	% rec	Rec Limit
Oxygen	21.5	20.7	96.3	85-115
Nitrogen	78.1	78.6	100.6	85-115
Carbon Monoxide	5.00	5.1	102.0	85-115
Methane	5.02	5.0	99.6	85-115
Carbon Dioxide	4.99	4.5	91.1	85-115

	Opening TC	C CV's		
Analyte	Target	Result	% rec	Rec Limit
TOC	10.00	9.7	97.1	90-110

Cl	Closing TNMNEOC CV's							
Analyte	Target	Result	% rec	Rec Limit				
TNMNEOC Low	1.0	0.9	90.0	90-110				
TNMNEOC High	10.0	9.6	96.0	90-110				

	Closing FG's CV's							
Analyte	Target	Result	% rec	Rec Limit				
Oxygen	21.5	20.7	96.3	85-115				
Nitrogen	78.1	78.2	100.1	85-115				
Carbon Monoxide	5.00	5.0	100.0	85-115				
Methane	5.02	5.1	101.6	85-115				
Carbon Dioxide	4.99	4.5	91.2	85-115				

Closing TOC CV's										
Analyte	Target	Result	% rec	Rec Limit						
TOC	10.00	9.7	97.5	90-110						

Print Date: Tue Jul 02 12:25:33 2024

ritle Run File : c:\brukerws\data\2024\070124 25.3\2024-07-01 08-56-23 argon blank inj 1 - master scagmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : Argon Blank

Page 1 of 1

Injection Date: 2024-07-01 08:56 Calculation Date: 2024-07-02 12:25

Operator : MPD

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 4
Instrument : Bruker GC/TCA#1 Sample Rate : 5.00 Rz
Channel : Middle w FID
Run Time : 23.000 min

Channel : Middle w FID Run Time : 23.000 min ** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Codes: M - Missing peak Total Unidentified Counts: 71275 counts

Detected Peaks: 10 Rejected Peaks: 9 Identified Peaks: 3

Noise (used): 10 microVolts - monitored before this run

Print Date: Tue Jul 02 15:12:26 2024

Page 1 of 1

rithe : Run File : c:\brukerws\data\2024\070124 25,3\2024-07-01 08-56-23 argon blank inj 1 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : Argon Blank

Calculation Date: 2024-07-02 15:12 Injection Date: 2024-07-01 08:56

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time ; 23.000 min Operator : MPD Workstation: Windows Instrument : Bruker GC/TCA#1 Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) (counts) 0 0.000 Time Offset (min) 5.000 Ret. Time (min) 0.0 Result Peak Peak No. Name I Carbon Dioxi 2 Ethane Totals:

Status Codes: M - Missing peak

31685 counts Total Unidentified Counts :

Identified Peaks: 2 Rejected Peaks: 0 Detected Peaks: 2

Unidentified Peak Factor: 0 1 microVolts LSB: Baseline Offset: -24 microvolts

Divisor: 1

Multiplier: 1

Noise (used): 9 microVolts - monitored before this run

Manual injection

Print Date: Tue Jul 02 14:55:22 2024

Title : c:/brukerws/data/2024/070124 25.3/2024-07-01 08-56-23 argon blank inj l - master scaqmd 253 analysis 100923.run Abthod File : c:/brukerws/mathods/active gc methods 2023/master scaqmd 253 quant 100923.mth Sample ID : Argon Blank Page 1 of 1

Calculation Date: 2024-07-02 14:55 Injection Date: 2024-07-01 08:56

Detector Type: 4XX-GC (10 Volts) Bus Address: 44 Sample Rate: 5.00 Hz Run Time: :23.000 min ** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** Operator : MPD
Operation: Windows
Instrument : Bruker GC/TCA#1
Channel : Rear = TCD

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) 0.0 Area (counts) 2699 2274 4973 -0.393 Time Offset (min) -0.183 -0.576 2.884 3.448 4.217 5.848 7.586 Ret. Time (min) 0.0 0.0 0.0 Result (%V) Peak Peak
No. Name
1 Hydrogen
2 Oxygen
3 Mitrogen
4 Methane
5 Carbon Monox Totals:

Status Codes: M - Missing peak

2402 counts Total Unidentified Counts ;

Identified Peaks: 5 Rejected Peaks: 0 Detected Peaks: 5

Unidentified Peak Factor: 0 1 microvolts Baseline Offset: 107849 microvolts Divisor: 1

Noise (used): 200 microVolts - fixed value Noise (monitored before this run): 157 microVolts

在一个时间,我们的人,我们们们的人,我们们们的人,我们们们的人,我们们们们们们的人,我们们们们们们的人,我们们们们们们们的,我们们们的人,我们们们们们的一个人,

Manual injection

109 of 204

Print Date: Tue Jul 02 12:26:43 2024

ritle : c:\brukervs\data\2024\070124 25.3\2024-07-01 09-22-00 argon blank inj 2 - master scaqmd 253 analysis 100923.run Method File : c:\brukervs\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : Argon Blank pW

Page 1 of 1

Calculation Date: 2024-07-02 12:26 Injection Date: 2024-07-01 09:22

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 4
Sample Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstation; Windows Instrument : Bruker GC/ICA#1 Channel : Middle = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Status Width Sep. 1/2 Code (sec) Area (counts) 0 0.000 Time Offset (min) 5.896 Ret. Time (min) Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard 0.0 Result 1 Methane 2 Carbon Monox 3 NMNEOC Peak Totals:

Status Codes: M - Missing peak

69111 counts Total Unidentified Counts :

Identified Peaks: 3 Rejected Peaks: 0 Detected Peaks: 1

Unidentified Peak Factor: 0 1 microVolts Divisor: 1 Baseline Offset: 0 microVolts Multiplier: 1

Noise (used): 18 microVolts - monitored before this run Manual injection 110 of 204

Page 1 of 1 Print Date: Tue Jul 02 15:12:40 2024

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 09-22-00 argon blank inj 2 - master scaqmd 253 analysis 100923.run Methof File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : Argon Blank DW

Calculation Date: 2024-07-02 15:12

Operator : MPD
Operstation: Windows
Instrument : Bruker GC/TCA#1
Channel : Front = FID

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Kz
Run Time: :23.000 min ** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

(counts) Time Offset (min) Ret. Time (min) Result Peak Peak Name F. J. Carbon Dioxi E. Ethane

Status width Sep. 1/2 Code (sec) 0.000 5.000 0.0 Status Codes: M - Missing peak Totals:

29078 counts Total Unidentified Counts : Identified Peaks: 2 Rejected Peaks: 0 Detected Peaks: 2

Unidentified Peak Factor: 0 LSB: 1 microVolts Divisor: 1 Baseline Offset: O microVolts Multiplier: 1

Noise (used): 16 microVolts - monitored before this run

Manual injection

Print Date: Tue Jul 02 14:55:40 2024

Page 1 of 1

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 09-22-00 argon blank inj 2 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : Argon Blank pw

Calculation Date: 2024-07-02 14:55

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min Operator : MFD

Workstation: Windows
Instrument : Bruker GC/TCA#1
Channel : Rear = TCD

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

	Status	Codes	1	2	,	Σ	Σ		******	
Width	7/4	(sec)	1					2.2	and the first party control party control than	
5	Sep.	Code	1					BB	philo tions while bless	
,	ALES	(counts)						2748	225 350 205 365 day feet day the sea and last last	2748
Time								-0.534		-0.534
Ret.	DITT T	(mim)		2.884	3.448	4.400	5.848	7.445		
1	THE CATE	(AB)						0.0	医型型性性性性	0.0
ذ ه ه 0	4 0 0 0	Name		Hydrogen	Oxygen	Nitrogen	Methane	Carbon Monox		Totals:
6 0	4 5 5 4	No.	1	М	N	m	4	ū	1 1	

Status Codes: M - Missing peak

0 counts Total Unidentified Counts :

Identified Peaks: 5 Rejected Peaks: 0 Divisor: 1 Detected Peaks: 1 Multiplier: 1

Unidentified Peak Factor; 0 LSB: Baseline Offset: 105826 microVolts

Noise (used): 200 microVolts - fixed value Noise (monitored before this run): 403 microVolts

Manual injection

112 of 204

Print Date: Tue Jul 02 12:29:18 2024

Page 1 of 1

Title : c:/brukerws/data/2024/070124 25.3/2024-07-01 09-47-40 1.0 ppmc s20864 inj 1 - master scaqmd 253 analysis 100923.run Method File : c:/brukerws/methods/active gc methods 2023/master scaqmd 253 quant 100923.mth sample ID : 1.0 ppmc S20864

Calculation Date: 2024-07-02 12:29 Injection Date: 2024-07-01 09:47

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: :23.000 min Operator : MPD Workstation: Windows Instrument : Bruker GC/ICA#1 Channel : Niddle = FID

** MSWS 8.0.1 for SCION Version 8,0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width 1/2 (sec) 11.2 19.0 16.5 Sep. Code Area (counts) 5327 5365 23805 34497 0.9 8.309 0.311 0.9 8.309 0.371 0.9 15.052 0.501 Time Offset (min) Ret. Time (min) Result Peak Peak No. 1 Methane 1 Carbon Monox 3 MNECC Totals:

Identified Peaks: 3 Rejected Peaks: 0 Datected Peaks: 4

69157 counts

Total Unidentified Counts :

Unidentified Peak Factor: 0 Divisor: 1 Multiplier: 1

1 microvolts

Noise (used): 32 microVolts - monitored before this run

Baseline Offset: O microVolts

Manual injection

Print Date: Tue Jul 02 15:06:28 2024

Title : c:\brukerws\data\2024\070124 25.3\2024~07-01 09-47-40 1.0 ppmc s20864 inj 1 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : 1.0 ppmc S20864

Page 1 of 1

Calculation Date: 2024-07-02 15:06 Injection Date: 2024-07-01 09:47

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 46
Sample Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD Morkstation: Windows Instrument : Bruker GC/TCA#1 Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Midth Sep. 1/2 Code (sec) BB 15.5 BB 27.2 Area (counts) 12719 12148 24867 0.074 0.306 Time Offset (min) 4.768 Ret. Time (min) 2.1 Result Peak Peak No. Name I Carbon Dioxi Z Ethane Totals:

Noise (used): 17 microVolts - monitored before this run

Identified Peaks: 2

Rejected Peaks: 0 30896 counts

Total Unidentified Counts:

Detected Peaks: 4

Multiplier: 1

Divisor: 1

Baseline Offset: O microVolts

Unidentified Peak Factor; 0

1 microvolts

LSB:

Manual injection

114 of 204

Page 1 of 1 Print Date: Tue Jul 02 12:29:37 2024

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 10-13-12 1.0 ppmc s20864 inj 2 - master scagnd 253 analysis 100923.run Run File : c:\brukerws\methods\artive gc methods 2023\master scagnd 253 quant 100923.mth
Sample ID : 1.0 ppmc S20864 pur

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 4
Sample Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstation: Windows Instrument : Bruker GC/TCR#1 Channel : Middle = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** D1187-6211-BB0-455D ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Feak Name		Carbon Monox NMNEOC	Totals:
Result			2.7
Ret. Time (min)	5,780	0.9 × 310	
Time Offset (min)		0.372	0.760
Area (counts)	5759	5105	34078
လ လ ဂ လ ဂ လ ဂ လ ဂ လ ဂ လ ဂ လ ဂ လ ဂ လ ဂ လ		88 88	1
Width 1/2 (sec)	11.6	16.3	
Status Codes			, ee eas eas eas eas eas

63537 counts Total Unidentified Counts:

Identified Peaks: 3 Rejected Peaks: 1 Detected Peaks: 5

Unidentified Peak Factor: 0 1 microVolts LSB; Divisor: 1 Baseline Offset: 0 microVolts Multiplier: 1

Noise (used): 16 microVolts - monitored before this run

Print Date: Tue Jul 02 15:06:42 2024

Page 1 of 1

Title : c:/brukerws/data/2024/070124 25.3%2024-07-01 10-13-12 1.0 ppmc s20864 inj 2 - master scaqmd 253 analysis 100923.run Method File : c:/brukerws/methods/active gc methods 2023/master scaqmd 253 quant 100923.mth Sample ID : 1.0 ppmc S20864 ptd

Calculation Date: 2024-07-02 15:06

Operator : MFD Workstation: Windows Instrument : Bruker GC/TCA#1 Channel : Front = FID

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sumple Rate: 5.00 Hz
Run Time: 23.000 min

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) BB 15.5 BB 27.8 12840 Area (counts) -0.225 0.081 Time Offset (min) 4.775 Ret. Time (min) Result ppmCarbon Peak Peak Peak
No. Name
I Carbon Dioxi Totals:

Identified Peaks: 2 27926 counts Rejected Peaks: 0 Total Unidentified Counts : Detected Peaks: 4

Unidentified Peak Factor: 0 1 microVolts Divisor: 1 Baseline Offset: O microVolts Multiplier: 1

Noise (used): 30 microVolts - monitored before this run

Manual injection

116 of 204

Print Date: Tue Jul 02 12:30:09 2024

Page 1 of 1

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 10-38-50 10 ppmc s16946 inj 1 - master scagmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : 10 ppmc S16946 Calculation Date: 2024-07-02 12:30 Injection Date: 2024-07-01 10:38

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min Operator : MFD
Operation: Windows
Instrument : Bruker Gc/ICA#1
Channel : Middle = FID

Status Width Sep. 1/2 Code (sec) BB 11.4 BB 19.1 BB 16.1 ** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** \$6407 \$2026 258267 366700 Area (counts) 0.350 5.780 9.3 9.5 1.5.050 Ret. Time (min) Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard Result ppmCarbon No. Rane F. 1 Methane 2 Carbon Monox 3 NAMNEGC Totals:

Identified Peaks: 3 Rejected Peaks: 0 Detected Feaks: 4

66748 counts

Total Unidentified Counts :

Unidentified Peak Factor: 0 1 microVolts LSB: Divisor: 1 Baseline Offset: 0 microVolts Multiplier: 1

Noise (used): 20 microVolts - monitored before this run

Page 1 of 1 Print Date: Tue Jul 02 15:07:10 2024 ritie : c:\brukerws\data\2024\070124 25.3\2024-07-01 10-38-50 10 ppmc s16946 inj 1 - master ecaqmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : 10 ppmc S16946

Calculation Date: 2024-07-02 15:07 Injection Date: 2024-07-01 10:38

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Mz
Run Time: :23.000 min Operator : MPD
Operstation: Windows
Instrument : Bruker GC/TCA#1
Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BBO-455D ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) BB 15.4 BB 28.0 Area (counts) 125457 251664 -0.232 0.084 Time Offset (min) 9.555 Ret. Time (min) 10.5 10,4 20.9 Result 1 Carbon Dioxi 2 Ethane Peak Totals:

Identified Peaks: 2 Rejected Peaks: 8 37119 counts Total Unidentified Counts : Detected Peaks: 12

1 microvolts LSB: Baseline Offset: O microVolts

Divisor: 1

Multiplier: 1

Unidentified Peak Factor: 0

Noise (used): 6 microVolts - monitored before this run

Print Date: Tue Jul 02 12:30:28 2024

Page 1 of 1

Title : C:\brukerws\data\2024\070124 25.3\2024-07-01 11-04-24 10 ppmc s16946 inj 2 - master scaqmd 253 analysis 100923.run Method File : C:\brukerws\mathods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : 10 ppmc 816946 \\ \frac{100}{100} \end{aligned}

Calculation Date: 2024-07-02 12:30

Operator : MFD
Operstation: Windows
Instrument : Bruker GC/TCA#1
Channel : Middle = FID

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 4
Sample Rate : 5.00 Hz
Run Time : 23.000 min ** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width 1/2 (sec) 119.1 Sep. 56373 51802 259359 Area (counts) 0.351 0.498 Time Offset (min) 9.3 5.779 8.4 8.289 9.5 15.049 Ret. Time (min) 27.2 Result Peak Peak No. Name F 1 Methane 2 Carbon Monox 3 MANGOC rotals:

Identified Feaks: 3 Unidentified Peak Factor: 0 Rejected Peaks: 0 Divisor: 1 Detected Peaks: 4 Multiplier: 1

63636 counts

Total Unidentified Counts :

1 microVolts Noise (used): 13 microVolts - monitored before this run LSB: Baseline Offset: 0 microVolts

8 70	
c:\brukerws\data\20024\070124 25.3\2024-07-01 11-04-24 10 ppmc s16946 inj 2 - master scaqmd 253 analysis 10 c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth	
53	
agmd	
υ tu	
nasten	
mth	
923.	
100	
8169 Uant	
ртс 53 q	
c:\brukerws\data\2024\070124 25.3\2024-07-01 11-04-24 10 ppmc s16946 inj 2 - m c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth 10 ppmc \$16946 (NU)	:17
4-24 sca	2 15
11-0 ster	0-40
-01 3\ma	024-
202	9: 2
1/202 thods	Dat
25.3	tion
124 re go	cule
\070 ct1v	Cal
2024 ds.24	. 4.
lata\ Detho	11:0
W8\0 W8\m	10-
ruke:	24-0-
: c:\brukerws\data\2024 : c:\brukerws\methods\ats : 10 ppmc \$16946 Owy	: 20%
	Date
16 FLI	ton
fitle Aun File Method File Sample ID	Injection Date: 2024-07-01 11:04 Calculation Date: 2024-07-02 15:11
FREC	H

Page 1 of 1

Print Date: Tue Jul 02 15:12:03 2024

00923.run

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min Operator : MPD

Operation: Windows

Instrument : Bruker GC/TCA#1

Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Codes Width 1/2 (sec) 15.4 27.8 Identified Peaks: 2 770.0 -0.232 Time Offset (min) 27841 counts 9.548 Ret. Time (min) 10.4 Result Total Unidentified Counts: Peak Peak No. Name Dioxi Carbon Dioxi 2 Ethans Totals: Detected Peaks: 4

1 microvolts Noise (used): 21 microVolts - monitored before this run Baseline Offset: 0 microVolts

Unidentified Peak Factor: 0

Rejected Peaks: 0

Divisor: 1

Multiplier: 1

在新年的时间,我们的人,我们的人,我们的人,我们的人,我们的人,我们的人,我们们的人,我们们的人,我们们的人,我们们的人,我们们的人,我们们的人,我们们们的人,

Manual injection

120 of 204

Page 1 of 1 Print Date: Tue Jul 02 15:09:22 2024

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 11-29-59 fgs ccv s18115 inj 1 - master scagmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : FGs CCV 518115

Calculation Date: 2024-07-02 15:09 Injection Date: 2024-07-01 11:29

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate : 5.00 Hz
Run Time : 23.000 min

Operator : MPD

Porkstation: Windows

Nostrument : Bruker GG/TCA#1

Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standerd

Width Sep. 1/2 Code (sec) Time Area (min) (counts) (0.392 479220128 -0.392 479220128 4.608 Ret. Time (min) 45439.0 45439.0 Result Peak Name
No. Tazbon Dioxi
2 Ethane
Totals:

Status Codes: M - Missing peak

35444 counts Total Unidentified Counts :

Identified Peaks: 2 Rejected Peaks: 0 Detected Peaks: 3

Unidentified Peak Factor: 0 LSB: 1 microVolts Divisor: 1 Baseline Offset: 0 microvolts Multiplier: 1

Noise (used): 26 microVolts - monitored before this run

Page 1 of 1 Print Date: Tue Jul 02 12:44:55 2024

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 11-29-59 fgs ccv s18115 inj 1 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : FGs CCV 518115

Calculation Date: 2024-07-01 13:11 Injection Date: 2024-07-01 11:29

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
844
Rup Bus Bate: 5.00 Hz
Run Time : 23,000 min

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** Operator : MPD Workstation: Windows Tinstrument : Bruker GC/TCA#1 Channel : Rear = TCD

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width 1/2 (sec) Sep. Code 1094738 1249354 3966670 1341117 Area (counts) -0.008 -0.187 -0.192 0.064 Time Offset (min) Ret. Time (min) wanni woon 18.3 Result (8V) Carbon Monox 2 Okygen 3 Nitrogen 4 Methane 5 Carbo Peak Totals:

Status Codes: M - Missing peak

Identified Peaks: 5 Rejected Peaks: 0 0 counts Total Unidentified Counts : Detected Peaks:

Unidentified Peak Factor: 0

1 microVolts LSB: Baseline Offset: 106379 microVolts

Divisor: 1

Multiplier: 1

Noise (used): 200 microvolts - fixed value Noise (monitored before this run): 116 microvolts

Manual injection

Print Date: Tue Jul 02 15:09:40 2024

Page 1 of 1

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 11-55-30 fgs ccv s18115 inj 2 - master scaqmd 253 analysis 100923.run Sun File : c:\brukerws\mathods\active gc methods 2023\master scaqmd 253 quant 100923.mth
Sample ID : FGs CCV S18115 \(\bullet \text{U} \)
Injection Date: 2024-07-01 11:55 \(\text{Calculation Date: 2024-07-02 15:09} \)

Calculation Date: 2024-07-02 15:09

Detector Type: 4XX-GC (1000 Volts) Bus Address: 4 Sample Rate: 5.00 Rz Run Time: :23.000 min Operator : MFD Workstation: Windows Moststation: Windows Charment : Bruker GC/TCA#1 Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Width Sep. 1/2 Code (sec) BB 17.1 Area (counts) -0.393 479038752 -0.393 479038752 Time Offset (min) 4.607 Ret. Time (min) 45419.1 45419.1 Result ppmCarbon 1 Carbon Dioxi 2 Ethane Peak

Status

Status Codes: M - Missing peak

Totals:

35572 counts Total Unidentified Counts :

Unidentified Peak Factor: 0 Identified Peaks: 2 Rejected Peaks: 0 Divisor: 1 Detected Peaks: 3 Multiplier: 1

1 microVolts Noise (used): 33 microVolts - monitored before this run LSB: Baseline Offset: 0 microvolts

Print Date: Tue Jul 02 12:45:56 2024

Page 1 of 1

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 11~55-30 fgs ccv s18115 inj 2 - master scagmd 253 analysis 100923.run Run File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : FGs CCV S18115 pw

Calculation Date; 2024-07-02 12:45 Injection Date: 2024-07-01 11:55

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min Operator : MPD
Operstation: Windows
Instrument : Bruker GC/ICA#1
Channel : Rear = ICD

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Codes Width Sep. 1/2 Code (sec) Area (counts) 1095328 1253854 4038165 1327443 7714790 -0.007 -0.187 -0.192 0.064 -0.322 Time Offset (min) 2.884 4.213 5.656 0.43 Ret. Time (min) Result (%V) 1 Hydrogen
2 Oxygen
3 Nitrogen
4 Methane
5 Carbon Monox Peak Name Totals:

Status Codes: M - Missing peak

161 counts Total Unidentified Counts ;

Identified Peaks: 5 Rejected Peaks: 0 Detected Peaks: 5

Unidentified Peak Factor: 0 1 microVolts LSB: Baseline Offset: 105321 microVolts Divisor: 1 Multiplier: 1

Noise (used): 200 microvolts - fixed value Noise (monitored before this run): 193 microvolts

124 of 204

Page 1 of 1 Print Date: Tue Jul 02 12:32:17 2024

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 12-21-12 lab air inj 1 - master scagmd 253 analysis 100923.run werhod Eile : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : Lab Air

Calculation Date: 2024-07-02 12:32 Injection Date: 2024-07-01 12:21

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: : 23.000 min

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** Operator : MFD

Workstation: Windows
Instrument : Bruker GC/TCA#1
Channel : Middle = FID

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width 1/2 (sec) 11.2 20.5 23.7 12587 4007 7811 24405 83 --0.113 35 0.397 89 0.538 Time Offset (min) 5.783 Ret. Time (min) 2.1 Result ppmCarbon 9,0 1 Methane 2 Carbon Monox 3 NMNEOC Peak Totals;

Identified Peaks: 3 Rejected Feaks: 0 71002 counts Total Unidentified Counts: Detected Peaks: 4

Unidentified Feak Factor: 0 1 microvolts Divisor: 1 Baseline Offset: 0 microVolts Multiplier: 1

Manual injection

Noise (used): 49 microVolts - monitored before this run

Print Date: Tue Jul 02 15:13:54 2024

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 12-21-12 lab air inj 1 - mester scegmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : Lab Air

Page 1 of 1

Calculation Date: 2024-07-02 15:13 Injection Date: 2024-07-01 12:21

Detector Type: 4XX-GC (1000 Volts) Bus Address : 44 Sample Rate : 5.00 Hz Run Time : 23,000 min Operator : MPD

Workstation: Windows
Instrument : Bruker GG/ICA#1
Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Width Sep. 1/2 Code (sec) Area (counts) 5726379 5726379 -0.229 -0.229 Time Offset (min) 4.771 Ret, Time (min) 478.8 Peak Peak Result
No. Name ppmCarbon
1 Carbon Dioxi 478.8
2 Effane Totals:

Rejected Paaks: 0 33834 counts Total Unidentified Counts : Detected Peaks: 3 Status Codes: M -- Missing peak

Identified Peaks: 2

Unidentified Peak Factor: 0 LSB: 1 microVolts Divisor: 1 Baseline Offset: O microVolts Multiplier: 1

Noise (used): 9 microVolts - monitored before this run

Print Date: Tue Jul 02 14:56:50 2024

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 12-21-12 lab air inj 1 - master scagmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : Lab Air

Page 1 of 1

Calculation Date: 2024-07-02 14:56 Injection Date: 2024-07-01 12:21

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Bus Address: 5.00 Hz
Run Time : 23.000 min Operator : MFD
Workstation: Windows
Instrument : Bruker GC/TCA#1
Channel : Rear # TCD

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) 3.7 (counts) 6791188 20158832 26950020 -0.001 -0.393 -0.394 Time Offset (min) 2.884 3.447 4.007 5.848 Ret. Time (min) 78.67 E, 66 Result (%V) 1 Hydrogen
2 Oxygen
3 Nitrogen
4 Methane
5 Carbon Monox
Totals: Peak

Status Codes: M - Missing peak

0 counts Total Unidentified Counts :

Identified Peaks: 5 Unidentified Feak Factor: Rejected Peaks: 0 Divisor: 1 Detected Peaks: 2 Multiplier: 1

1 microvolts Baseline Offset: 104864 microVolts

Noise (used): 200 microVolts - fixed value Noise (monitored before this run): 179 microVolts Manual injection 127 of 204

Print Date: Tue Jul 02 12:32:39 2024

Title : c:/brukerws/data/2024/070124 25,3\2024-07-01 12-46-43 lab air inj 2 - master scaçmd 253 analysis 100923.run Mun File : c:/brukerws/mathods/active gc methods 2023/master scaçmd 253 quant 100923.mth
Sample ID : Lab Air SW

Page 1 of 1

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min Operator : MPD Workstation: Windows Instrument : Bruker GC/TCA#1 Channel : Middle = PID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) BB 20.7 BB 19.4 11682 3628 6129 21439 Area (counts) 0.413 Time Offset (min) 0,824 65881 counts 5.782 8.351 15.076 Ret. Time (min) 9.00 2.7 Result Total Unidentified Counts : Peak Peak No. Name P I Methane 2 Carbon Monox 3 NWNECC Totals:

Identified Peaks: 3 Rejected Peaks: 0 Detected Peaks: 4

Unidentified Peak Factor: 0 1 microvolts Divisor: 1 Baseline Offset: O microVolts Multiplier: 1

Noise (used): 30 microVolts - monitored before this run

Page 1 of 1 Print Date: Tue Jul 02 15:14:08 2024

Title : c:/brukerws/data/2024/070124 25.3/2024-07-01 12-46-43 lab air inj 2 - master scaqmd 253 analysis 100923.run Runn File : c:/brukerws/methods/active gc methods 2023/master scaqmd 253 quant 100923.mth Sample ID : Lab Air DWP Calculation Date: 2024-07-02 15:14

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 4
Sample Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstation: Windows Instrument : Bruker GC/TCA#1 Channel : Front = FID

** MSWS 8.0,1 for SCION Version 8.0,1 ** 01187-6211-BB0-455D **

Status Width Sep. 1/2 Code (sec) Area (counts) 5717040 5717040 -0.230 -0.230 Time Offset (min) Ret. Time (min) 4.770 9.239 Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard Result ppmCarbon 478,0 478.0 No.

1 Carbon bioxi
2 Ethane
Totals: Peak

Status Codes: M - Missing peak

33868 counts Total Unidentified Counts :

Identified Peaks: 2 Unidentified Peak Factor: 0 Rejected Peaks: 0 Divisor: 1 Detected Peaks: 3 Multiplier: 1

Noise (used): 20 microVolts - monitored before this run

Baseline Offset: 0 microvolts

1 microvolts

LSB:

Print Date: Tue Jul 02 14:57:04 2024

Page 1 of 1

Calculation Date: 2024-07-02 14:56

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Sample Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD
Operstation: Windows
Instrument : Bruker GC/TCA#1
Channel : Rear = TCD

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Σ Width Sep. 1/2 Code (sec) ATS T Area (counts) 6792109 20164840 253 26957202 -0.002 -0.394 -0.348 -0.744 2.884 3.446 4.006 5.500 Ret. Time (min) 70.00 99.4 Result (&V) 1 Hydrogen 2 Oxygen 3 Nitrogen 4 Methane 5 Carbon Monox Peak Totals:

Status Codes: M - Missing peak

o counts Total Unidentified Counts :

Identified Peaks: 5 Rejected Peaks: 0 Detected Feaks: 3

Unidentified Peak Factor: 0 Baseline Offset: 103455 microVolts

Divisor: 1

Multiplier: 1

1 microvolts

Noise (used): 200 microVolts - fixed value Noise (monitored before this run): 132 microVolts

Manual injection

Print Date: Tue Jul 02 12:27:32 2024

Page 1 of 1

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 21-18-32 argon blank inj 1 - master scagmd 253 analysis 100923.run Run File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : Argon Blank Calculation Date: 2024-07-02 12:27 Injection Date: 2024-07-01 21:18

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 44
Sample Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstation: Windows Instrument : Bruker GC/TCA#1 Channel : Middle = FID

** MSWS 8.0,1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) Area (counts) 110 000'0 Time Offset (min) 5.896 7.938 Ret. Time (min) 0.0 Result Peak Peak No. Name I No. 1 Methane Z Carbon Monox 3 NANGOC NO. Totals:

Status Codes: M - Missing peak

64436 counts Total Unidentified Counts ;

Identified Peaks: Rejected Peaks: 0 Detected Peaks: 1

0

Unidentified Peak Factor: 1 microvolts Divisor: 1 Baseline Offset: 0 microVolts Multiplier: 1

Noise (used): 27 microVolts - monitored before this run

Page 1 of 1 Print Date: Tue Jul 02 15:13:31 2024 Title : C:\brukerws\data\2024\070124 25.3\2024-07-01 21-18-32 argon blank inj 1 - master scagmd 253 analysis 100923.run Nethod File : C:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : Argon Blank

Calculation Date: 2024-07-02 15:13 Injection Date: 2024-07-01 21:18

Operator : MPD

Operstation: Wlndows
Instrument : Bruker GC/TCA#1
Channel : Front = FID

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 44
Sample Rate : 5.00 Hz
Run Time : 23.000 min ** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode ; Analysis Peak Measurement; Peak Area Calculation Type: External Standard

Status Codes Width Sep. 1/2 Code (sec) Area (counts) 0.000 Time Offset (min) 5.000 Ret. Time (min) 0.0 Result Peak Peak No. Name Distriction of the No. 1 Carbon Distriction Distriction of the No. 1 Carbon Totals:

Status Codes: M - Missing peak

28532 counts Total Unidentified Counts :

Identified Peaks: 2 Rejected Peaks: 0 Detected Peaks: 2

Unidentified Peak Factor: 0

LSB: 1 microVolts Baseline Offset: 0 microVolts

Divisor: 1

Multiplier: 1

Noise (used): 31 microVolts - monitored before this run

Print Date: Tue Jul 02 14:56:21 2024

Page 1 of 1

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 21-18-32 argon blank inj l - master scagmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : Argon Blank

Calculation Date: 2024-07-02 14:56 Injection Date: 2024-07-01 21:18

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time : 23.000 min

** MSWS 8.0.1 for SCION Version 8.0,1 ** 01187-6211-BB0-455D ** Operator : MFD

Operstion: Windows
Instrument : Bruker GG/ICA#1
Channel : Rear = ICD

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status	Codes		Σ	Σ	×	×	2		
Width 1/2	(sec)							111111	
Sep.	Code	1						-	
Area	(counts)	11111111111						THE BOX COST HAVE BEEN THE THE THE COST	0
Time	(min)	111111						OR HET THE SOUTH SHE SHE SO	000.0
Ret. Time	(mim)	1	2.884	3,448	4.400	5.848	7.979		
Result	(80)							# THE PART AND COST COST ASSESSMENT THAT SHEET AND SHEET	0.0
다 요 차	Name		Hydrogen	Oxygen	Nitrogen	Methane	Carbon Monox	***	Totals:
Peak	No.	1	러	e/	ቦን	4	Š	1	

Status Codes: M - Missing peak

0 counts Total Unidentified Counts:

Identified Peaks: 5 Rejected Peaks: 0 Detected Peaks: 0

Unidentified Peak Factor: 0 1 microVolts Baseline Offset: 102666 microVolts Divisor: 1 Multiplier: 1

Noise (used): 200 microVolts - fixed value Noise (monitored before this run): 146 microVolts

Manual injection

Data Handling: No peaks

Page 1 of 1

ritle : c:\brukerws\data\2024\070124 25.3\2024-07-01 22-09-46 1.0 ppmc s20864 inj 1 - master scagmd 253 analysis 100923.run Run File : c:\brukerws\methods\active gc methods 2023\master scagmd 253 quant 100923.mth Method File : c:\bruc S20864

Operator : MPD Botector Type: 4XX-GC (1000 Volts) Bots Address : 4 Instrument : Bruker GC/TCA#1 Sample Rate : 5.00 Hz Channel : Middle = FID Run Time : 23.000 min

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BBD-455D ** Run Mode : Analysis
Peak Measurement: Peak Area
Calculation Type: External Standard

 Peak
 Peak
 Result
 Time
 Offeet
 Area
 Sep. 1/2
 Status

 No.
 Name
 ppmCarbon
 (min)
 (min)
 (counts)
 Code (sec)
 Codes

 1
 Methane
 0.9
 5.783
 -0.113
 5551
 BB
 11.4

 2
 Carbon Monox
 0.9
 15.038
 0.487
 23402
 BB
 15.9

 3
 NNEDC
 0.9
 15.038
 0.487
 23402
 BB
 15.9

 Totals:
 2.6
 0.759
 33515
 33515
 15.9

Detected Peaks: 4 Rejected Peaks: 0 Identified Peaks: 3 Multiplier: 1 Divisor: 1 Unidentified Peak Factor: 0

67331 counts

Total Unidentified Counts :

Baseline Offset: 0 microVolts LSB: 1 microVolts Noise (used): 41 microVolts - monitored before this run

Manual injection

Page 1 of 1 Print Date: Tue Jul 02 15:08:13 2024 Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 22-09-46 1.0 ppmc \$20864 inj 1 - master scaqmd 253 analysis 100923.run Method Eile : c:\brukerws\mathods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : 1.0 ppmC S20864

Calculation Date: 2024-07-02 15:08 Injection Date: 2024-07-01 22:09

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min Operator : MFD
Operstation: Windows
Instrument : Bruker GG/TCA#1
Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status	Codes					
Width 1/2	(sec)	1	15.8	27.3		
Sep.	Code	-	BB	BB	-	
Area	(counts)		12593	11919		24512
Time Offset	(min)		-0.205	0,373	THE STATE OF THE STATE OF	0.108
Ret.	(mim)		4.795	9.552		
Result	ppmCarbon	****	1,1			2.1
Peak	Name		1 Carbon Dioxi	Ethane		Totals:
Peak	NO.	ŧ	1	N	1	

29835 counts Total Unidentified Counts :

Identified Peaks: 2 Rejected Peaks: 0 Detected Peaks: 4

Unidentified Peak Factor: 0 1 microvolts LSB: Baseline Offset: 0 microVolts

Divisor: 1

Multiplier: 1

Noise (used): 12 microVolts - monitored before this run

Frint Date: Tue Jul 02 12:31:50 2024 Page 1 of 1

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 22-35-28 10 ppmc s16946 inj 1 - master scagmd 253 analysis 100923.run File : c:\brukerws\mathods\active gc methods 2023\master scagmd 253 quant 100923.mth Sample ID : 10 ppmC 916946

Injection Date: 2024-07-01 22:35 Calculation Date: 2024-07-02 12:31

Operator : MED

Detector Type: 4XX-GC (1000 Volts)

Bus Address : 4

Instrument : Bruker GC/TCA#1

Sample Rate : 5.00 Hz

Channel : Middle = FID

Run Time : 23.000 min

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard | No. Name | Peak | Result | Time | Area | Sep. 1/2 | Status | No. Name | Peak | Time | Offset | Area | Sep. 1/2 | Status | No. Name | PpmCarbon | (min) | (min) | (counts) | Code | (sec) | Codes | Carbon Monox | 8.5 | 8.285 | 0.357 | 5.2840 | PB | 19.2 | Sep. 1.7 | Sep. 1.5
Detected Peaks: 8 Rejected Peaks: 4 Identified Peaks: 3

67616 counts

Total Unidentified Counts :

Multiplier: 1 Divisor: 1 Unidentified Peak Factor; 0 Baseline Offset: 0 microVolts LSB: 1 microVolts

Noise (used): 13 microVolts - monitored before this run Manual injection

Print Date: Tue Jul 02 15:08:54 2024

Page 1 of 1

Title : c:/brukerws/data/2024/070124 25.3/2024-07-01 22-35-28 10 ppmc s16946 inj 1 - master scaqmd 253 analysis 100923,run Method File : c:/brukerws/methods/active gc methods 2023/master scaqmd 253 quant 100923.mth Sample ID : 10 ppmC 516946

Calculation Date: 2024-07-02 15:08 Injection Date: 2024-07-01 22:35

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 44
Example Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstatton: Windows Workstatton: Binker GC/TCA#1 Channel : Front = FID

Status Midth Sep. 1/2 Code (sec) 25.3 BB 27.9 ** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** 4.768 -0.232 9.568 0.332 0.097 Time Offset (min) Ret. Time (min) Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard 10.4 20.8 Result Peak Peak No. Name D. 1 Carbon Dioxi Totals:

Identified Peaks: 2 Unidentified Peak Factor: 0 1 microVolts LSB: Divisor: 1 Baseline Offset: 0 microVolts Multiplier: 1

28420 counts Rejected Peaks: 0

Total Unidentified Counts :

Detected Peaks: 4

Noise (used): 28 microVolts - monitored before this run

Print Date: Tue Jul 02 15:09:57 2024

Page 1 of 1

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 23-01-06 fys ccv s18115 inj 1 - master scaqmd 253 analysis 100923.run Mathod File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : FGs CCV S18115

Calculation Date: 2024-07-02 09:37

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstation: Windows Workstation: Windows Charner : Bruker GC/TCA#1 Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Width Sep. 1/2 Code (sec) BB 17.0 Offset Area (min) (counts) -0.387 479667584 -0.387 479667584 Time Offset (min) Ret. Time (min) 4.613 Result 45488.1 45488.1 No. Name
1 Carbon Dioxi
2 Ethane Peak Totals:

Status Codes: M - Missing peak

Total Unidentified Counts :

Identified Peaks: 2 Rejected Peaks: 0 35670 counts Datected Peaks: 3

Unidentified Peak Factor: 0 1 microVolts Divisor: 1 Baseline Offset: 0 microVolts Multiplier: 1

Noise (used): 10 microVolts - monitored before this run

Print Date: Tue Jul 02 12:46:14 2024

ritle : c:\Drukerws\data\2024\070124 25.3\2024-07-01 23-01-06 fgs ccv s18115 inj 1 - master scaqmd 253 analysis 100923.run Method File : c:\Drukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth : FGs Ccv 318115

Page 1 of 1

Calculation Date: 2024-07-02 12:46 Injection Date: 2024-07-01 23:01

Detector Type: 4XX-GC (10 Volts)
Bus Address : 44
Sample Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstation: Windows Workstation: Windows Charnent : Burker GC/TCA#1 Channal : Rear = TCD

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) 4.4 7.0 19.8 Area (counts) 1099838 1261898 4020150 1329530 7711416 10.003 10.181 10.185 0.074 Time Offset (min) 2.8 2.8 2.4 2.2 3.0 8.0 8.0 8.0 8.0 8.0 Ret. Time (min) Result (%V) L Hydrogen Oxygen S Nitrogen Methane Peak Totals:

Status Codes: M - Missing peak

0 counts Total Unidentified Counts :

Identified Peaks: 5 Rejected Peaks: 0 Detected Peaks: 4

Unidentified Peak Factor: 0 1 microvolts LSB: Baseline Offset: 103650 microVolts Divisor: 1 Multiplier: 1

Noise (used): 200 microVolts - fixed value Noise (monitored before this run): 468 microVolts

Manual injection

Print Date: Tue Jul 02 12:33:07 2024

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 23-52-27 lab air inj 1 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\methods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : Lab Alr

Page 1 of 1

Calculation Date: 2024-07-02 12:32 Injection Date: 2024-07-01 23:52

Detector Type: 4XX-GC (1000 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstation: Windows Workstation: Bruker GC/TCA#1 Channel : Middle = FID

** MSWS 8.0.1 for SCION Version 8.0,1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) Area (counts) 12335 4137 10560 27032 0.548 Time Offset (min) 5.783 Ret. Time (min) 2.0 Result ppmCarbon 3.1 1 Methane 2 Carbon Monox 3 NMNEOC Peak Name Totals:

Identified Peaks: 3 Unidentified Peak Factor: 0 1 microvolts Rejected Peaks: 0 LSB: Divisor: 1 Baseline Offset: -11 microVolts Detected Peaks: 4 Multiplier: 1

70366 counts

Total Unidentified Counts :

Manual injection

Noise (used): 34 microVolts - monitored before this run

Print Date: Tue Jul 02 15:14:24 2024

Page 1 of 1

Title : c:/brukerws\data\2024\070124 25.3\2024-07-01 23-52-27 lab air inj 1 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\mathods\ective gc methods 2023\master scaqmd 253 quant 100923.mth sample ID : Lab Air

Calculation Date: 2024-07-02 15:14 Injection Date: 2024-07-01 23:52

Detector Type: 4XX-GC (1000 Volts)
Bus Address : 46
Sumple Rate : 5.00 Hz
Run Time : 23.000 min Operator : MPD Workstation: Windows Instrument : Bruker GC/ICA#1 Channel : Front = FID

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Sep. 1/2 Code (sec) Area (counts) 5094946 -0.231 5094946 -0.231 Time Offset (min) 4.769 Ret. Time (min) Result 425.9 Peak Peak
No. Name
1 Carbon Dioxi Totals:

Identified Peaks: 2 Rejected Peaks: 0 33820 counts Total Unidentified Counts : Detected Peaks: 3 Status Codes: M - Missing peak

Unidentified Peak Factor: 0 1 microVolts LSB: Divisor: 1 Baseline Offset: 0 microVolts Multiplier: 1

Noise (used): 12 microVolts - monitored before this run

Manual injection

Print Date: Tue Jul 02 14:57:26 2024

Page 1 of 1

Title : c:\brukerws\data\2024\070124 25.3\2024-07-01 23-52-27 lab air inj 1 - master scaqmd 253 analysis 100923.run Method File : c:\brukerws\mathods\active gc methods 2023\master scaqmd 253 quant 100923.mth Sample ID : Lab Alv

Calculation Date: 2024-07-02 14:57 Injection Date: 2024-07-01 23:52

Detector Type: 4XX-GC (10 Volts)
Bus Address: 44
Sample Rate: 5.00 Hz
Run Time: 23.000 min Operator : MPD
Workstation: Windows
Workstation: Windows
Instrument : Bruker GC/TCA#1
Channel : Rear = TCD

** MSWS 8.0.1 for SCION Version 8.0.1 ** 01187-6211-BB0-455D **

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: External Standard

Status Width Sep. 1/2 Code (sec) Area (counts) 6795170 20037468 26832638 -0.001 -0.392 Time Offset (min) 2.884 3.447 4.009 5.848 Ret. Time (min) 78.2 98,9 Result (&V) 1 Hydrogen 2 Oxygen 3 Nitrogen 4 Methane 5 Carbon Monox Peak Name Totals:

Status Codes: M - Missing peak

Identified Peaks: 5 Rejected Peaks: 0 o counts Total Unidentified Counts : Detected Peaks: 2

1 microvolts LSB: Baseline Offset: 102833 microVolts

Divisor: 1

Multiplier: 1

Unidentified Peak Factor: 0

Noise (used): 200 microVolts - fixed value Noise (monitored before this run): 201 microVolts

Manual injection

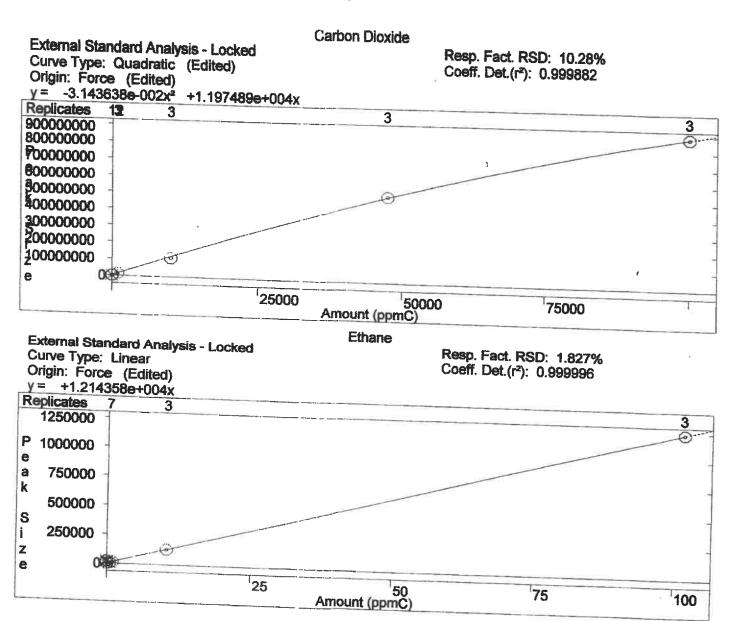
142 of 204

ICAL Data

Print Date: 12 Oct 2023 08:16:15 Calibration Curves Report

File: c:\...\active gc methods 2023\master scaqmd 253 quant 100923.mth

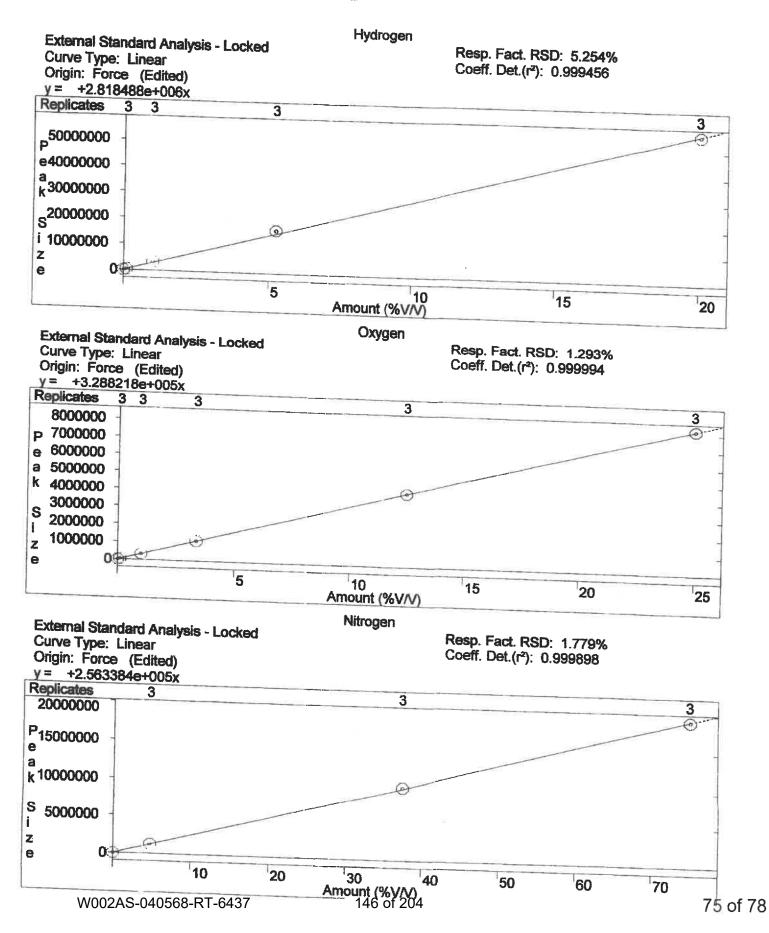
Detector: 45X-GC, Address: 44, Channel ID: Middle



Print Date: 12 Oct 2023 08:14:26

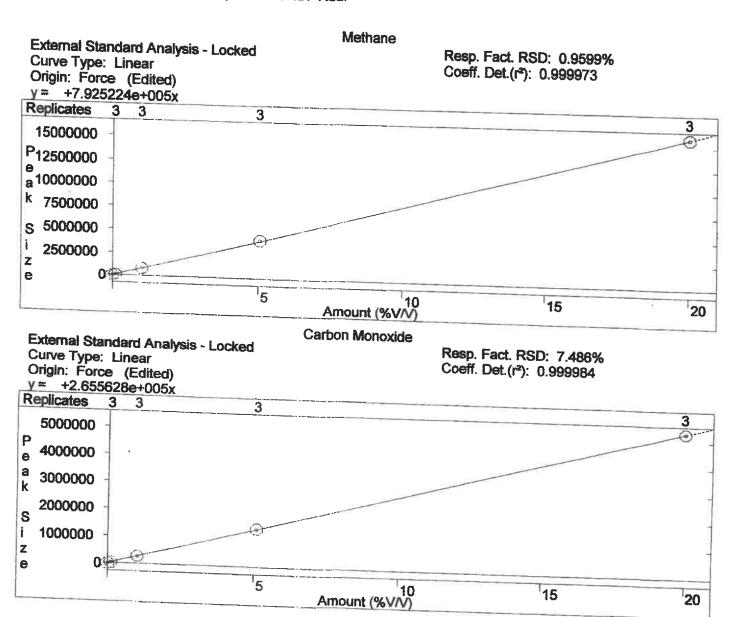
Calibration Curves Report

File: c:\... \active gc methods 2023\master scaqmd 253 quant 100923.mth


Detector: 45X-GC, Address: 44, Channel ID: Front

Print Date: 12 Oct 2023 08:18:17 Calibration Curves Report - Page 1

File: c:\... \active gc methods 2023\master scaqmd 253 quant 100923.mth


Detector: 45X-GC, Address: 44, Channel ID: Rear

Print Date: 12 Oct 2023 08:18:17 Calibration Curves Report - Page 2

File: c:\... \active gc methods 2023\master scaqmd 253 quant 100923.mth

Detector: 45X-GC, Address: 44, Channel ID: Rear

A Company of Section 1997 of Reflection 1997 of Ref

General Info

Analysis Name 20230802A.adb

Calibration Info

 R2:
 0.99964
 Correlation
 0.99982

 A2:
 0
 Volume
 200

 A1:
 473,969
 Curve Order
 1st Order

 A0:
 88,855

Single Info:

Conc. Templ.	Area	
0.00	128,820	Selecter
0.00		No
0.00	116,153	Yes
0.00	106,193	Yes
0.00	104,903	Yes
0.25	133,408	No
0.25	272,844	No
0.25	261,226	Yes
0.25	241,927	Yes
0.50	239,165	Yes
0.50	260,534	Yes
0.50	330,027	No
0.50	254,313	Yes
1.00	266,705	Yes
1.00	576,177	Yes
	540,108	Yes
1.00	608,473	No
1.00	530,643	Yes
5.00	2,415,002	Yes
5.00	2,437,735	Yes
5.00	2,376,409	Yes
10.00	4,989,918	Yes
10.00	4,924,273	Yes
10.00	4,894,049	Yes
20.00	9,586,046	Yes
20.00	9,515,950	Yes
20.00	9,483,644	Yes

General Info

Analysis Name 20230801B.adb

Calibration Info

 R2:
 0.99867
 Correlation
 0.99934

 A2:
 0
 Volume
 200

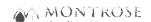
 A1:
 483,869
 Curve Order
 1st Order

 A0:
 260,676

Single Info:

Conc. Tempi.	Area	
0.00		Selected
0.00	4,205,618	No
0.00	192,656	No
0.00	91,947	Yes
0.00	94,337	Yes
0.25	95,353	Yes
0.25	329,202	Yes
0.25	313,969	Yes
0.50	325,881	Yes
0.50	475,495	Yes
0.50	466,245	Yes
1.00	472,721	Yes
1.00	815,990	Yes
1.00	810,491	Yes
5.00	814,524	Yes
5.00	2,821,698	Yes
5.00	2,806,482	Yes
10.00	2,817,790	Yes
10.00	5,276,943	Yes
	5,265,985	Yes
10.00	5,282,510	Yes
20.00	9,767,954	
20.00	9,797,747	Yes
20.00	9,877,473	Yes Yes

Appendix A.6 **Quality Assurance Data**



CEMS PERFORMANCE DATA SHEET

Client: Waste Connections Date: 6/27/2024

Location: Flare 1
CEMS ID#: T4 Performed By: SJ, AD, JI

O_2	CO ₂	NO _x	CO			
CAI	Sevomex	CAI	TECO			
U08069	2745	B04012	JC1227100397			
Material:	Titanium	Length:	13'	Gas Temp:	1,473 °	°F
Material:	Teflon	Length:	15'		260 °	°F
er:		Туре:	Universal		33 °	°F
Material:	Teflon	Length:	100'			
Material:	Teflon	Length:	100'			
ponse Time:	23	Downscale F	Response Time:	25	seconds	
essure (psi):	6	Sam	ple Flow Rate:	5	LPM	
	CAI U08069 Material: Material: Material: Material: Material:	CAI Sevomex 2745 Material: Titanium Material: Teflon er: Material: Teflon Material: Teflon 23	CAI Sevomex CAI B04012 Material: Titanium Length: Material: Teflon Length: er: Type: Material: Teflon Length: Material: Teflon Length: ponse Time: 23 Downscale F	CAI Sevomex CAI TECO B04012 JC1227100397 Material: Titanium Length: 13' Material: Teflon Length: 15' er: Type: Universal Material: Teflon Length: 100' Material: Teflon Length: 100' Material: Teflon Length: 100' Downscale Response Time:	CAI Sevomex CAI TECO	CAI Sevomex U08069 CAI B04012 TECO B04012 <th< td=""></th<>

SPAN GAS RECORD AND SCAQMD CALIBRATION ERROR/LINEARITY

CLIENT/LOCATION: Waste Connections Flare 1 DATE: 6/27/24

TRUCK/CEM I.D.: T4 BY: SJ, AD, JI

				Exp.	Vendor	% of
	Gas	Cylinder#	Value	Date	ID	Range
ZERO	Low	EB0153454	0.0	1/19/32	B32024	
O ₂	Mid	CC203715	9.09	11/20/31	B32023	45.5%
O ₂	High	CC505326	18.05	11/15/31	B32023	90.3%
CO ₂	Mid	CC203715	8.97	11/20/31	B32023	44.9%
CO ₂	High	CC505326	18.28	11/15/31	B32023	91.4%
NO _x	Mid	EB0108976	11.06	8/16/26	B32023	44.2%
NO _x	High	CC755218	22.60	9/7/25	F22022	90.4%
NO ₂	NO_2	CC504061	17.04	8/17/26	B32023	
co	Mid	CC146055	44.95	3/25/32	B32024	45.0%
co	High	CC1442	90.18	9/13/30	B32023	90.2%

PRE-TEST INSTRUMENT CALIBRATION ERROR

		ANALYZER				
	O ₂	CO ₂	NO _x	CO		STATUS
Analyzer Range	20	20	25	100		
Zero Gas Value	0.0	0.0	0.0	0.0		
Analyzer Reads	-0.05	0.00	0.01	-0.08		
Error (% of scale)	-0.2%	0.0%	0.1%	-0.1%		PASS
High Gas Value	18.05	18.28	22.60	90.18		
Analyzer Reads	18.04	18.31	22.80	90.53		
Error (% of scale)	0.0%	0.2%	0.8%	0.3%	ļ	PASS
Mid Gas Value	9.09	8.97	11.06	44.95		
Analyzer Reads	9.09	9.12	10.97	45.26		
Error (% of scale)	0.0%	0.8%	-0.4%	0.3%		PASS
Linearity at Mid Point	0.1%	0.7%	-0.8%	0.2%		PASS

POST-TEST INSTRUMENT CALIBRATION ERROR

		ANALYZER				
	O ₂	CO ₂	NO _x	CO	SO ₂	STATUS
Analyzer Range	20	20	25	100		
Zero Gas Value	0.0	0.0	0.0	0.0		
Analyzer Reads	-0.08	0.00	0.0	-0.10		
Error (% of scale)	-0.4%	0.0%	0.1%	-0.1%	0	PASS
High Gas Value	18.05	18.28	22.60	90.18		
Analyzer Reads	18.00	18.30	22.74	90.70		
Error (% of scale)	-0.3%	0.1%	0.6%	0.5%		PASS
Mid Gas Value	9.09	8.97	11.06	44.95		
Analyzer Reads	9.06	9.04	11.04	44.88		
Error (% of scale)	-0.2%	0.3%	-0.1%	-0.1%		PASS
Linearity at Mid Point	0.2%	0.3%	-0.4%	-0.3%		PASS

NO₂ to NO Converter Efficiency Test

Analyzer Manufacturer: CAI

Analyzer Model: 600

Analyzer Serial Number: B04012

Date: 6/27/24

NO Cal Gas Value: 22.60

NO₂ Cal Gas Value: 17.04

Performed By: SJ, AD, JI

CEMS ID#: T4

	ANALYZER	ANALYZER	CAL	
GAS	MODE	RESPONSE	CORRECTED	LABEL
Zero	NO_x	0.01		
Zero	NO	0.02		
NO E	NO_x	22.80		
NO	NO	22.84		
NO_2	NO	0.10	0.1	C ₁
NO ₂	NO_x	16.32	16.2	C_2

		Label	Requirement
Abs. Value C _o -C ₁ :	17.0	D_1	
Abs. Value C ₂ -C ₁ :	16.1	D_2	₹ 100
C_1/C_2	1%	D_3	< 5%
$CE = D_2/D_1 * 100\%$:	95%		> 90%

Cylinder#	Exp. Date
NO bottle: CC755218	9/7/2025
NO ₂ bottle: CC504061	8/17/2026

Airgas Specialty Gases Airgas USA LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF BATCH ANALYSIS

Grade of Product: CEM-CAL ZERO

Part Number: Cylinder Analyzed:

NI CZ15A

EB0149403

Laboratory: Analysis Date: Lot Number:

Jan 19, 2024

124 - Los Angeles (SAP) - CA

48-402947391-1

Reference Number: 48-402947391-1 Cylinder Volume:

Cylinder Pressure: Valve Outlet:

142.0 CF 2000 PSIG

580

Expiration Date: Jan 19, 2032

Component	Requested Purity	Certified Concentration
NITROGEN	99.9995 %	99.9995 %
NOx	0.1 PPM	<ldl 0.018="" ppm<="" td=""></ldl>
SO2	0.1 PPM	<ldl 0.095="" ppm<="" td=""></ldl>
THC	0.1 PPM	<ldl 0.006="" ppm<="" td=""></ldl>
CARBON MONOXIDE	0.5 PPM	<ldl 0.012="" ppm<="" td=""></ldl>
CARBON DIOXIDE	1.0 PPM	<ldl 0.016="" ppm<="" td=""></ldl>
Cultural Inc.		

ANALYTICAL RESULTS

Cylinders in Batch:

EB0149403, EB0153444, EB0153453, EB0153454, EB0153464, EB0153490, EB0153492, EB0153499, EB0153527, EB0153539

Impurities verified against analytical standards traceable to NIST by weight and/or analysis.

EB 015 3454 EXP. 1-19-32

Approved for Release

LU 2/22/24

Airgas Specialty Gases Airgas USA LLC 11711 S. Alameda Street Los Angeles, CA 90059 Aireas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number: Cylinder Number: E03NI64E15AC041

CC505326

Laboratory: PGVP Number:

124 - Los Angeles (SAP) - CA

Gas Code:

B32023

CO2,O2,BALN

Reference Number: 48-402893526-1

Cylinder Volume:

158.0 CF 2015 PSIG

Cylinder Pressure: Valve Outlet:

590

Certification Date:

Nov 15, 2023

Expiration Date: Nov 15, 2031

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig. i.e. 0.7 megapascals.

			ANALYTICA	LRESULTS		(**,
Compor	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON	DIOXIDE	18.00 %	18.28 %	G1	+/- 0.6% NIST Traceab	ile 11/15/2023
OXYGEN		18.00 %	18.05 %	G1	+/- 0.4% NIST Traceab	
NITROGE	N	Balance				
		y do not	CALIBRATION	STANDARD	S	ner arkette s
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	12061520	CC354777	19.87 % CARBON DI	IOXIDE/NITROGEN	+/- 0.6%	Jan 11, 2024
NTRM	08010228	K016648	23.20 % OXYGEN/NI	ITROGEN	+/- 0.2%	Jun 01, 2024
			ANALYTICAL	EQUIPMENT	the second of th	
Instrume	nt/Make/Mode		Analytical Principle	= = = = = = = = = = = = = = = = = = = =	Last Multipolnt Calibr	ration
SIEMENS	6E CO2		NDIR		Oct 23, 2023	
SIEMENS	OXYMAT 6		PARAMAGNETIC		Nov 01, 2023	

Triad Data Available Upon Request

02 18.05% CO2 18.28% CC505326 EXP. NOV 15, 2031 B32023

Approved for Release

LO 1215/2027

Airgas Specialty Gases Airgos USA LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number:

E03NI82E15A0220

Reference Number: 48-402896444-1

Cylinder Number:

CC203715

Cylinder Volume:

140.0 CF

Laboratory:

124 - Los Angeles (SAP) - CA

Cylinder Pressure:

2015 PSIG

PGVP Number:

B32023

Valve Outlet:

590

Gas Code:

Certification Date:

Nov 20, 2023

CO2,02,BALN

Expiration Date: Nov 20, 2031

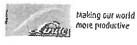
Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTICA	AL RESULTS		
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON	DIOXIDE	9.000 %	8.970 %	G1	+/- 0.6% NIST Traceable	11/20/2023
OXYGEN		9.000 %	9.090 %	G1	+/- 1.0% NIST Traceable	11/20/2023
NITROGE	N	Balance	· inter			
	no		CALIBRATION	N STANDARDS		A DESCRIPTION OF THE PARTY OF T
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060432	CC413737	7.489 % CARBON	DIOXIDE/NITROGEN	+/- 0.6%	May 14, 2025
NTRM	98051113	SG9163D10BAL	9.507 % OXYGEN	INITROGEN	+/- 0.7%	Mar 22, 2030
	V		ANALYTICAL	EQUIPMENT	The second secon	N. Carlotte
instrume	nt/Make/Mode	1	Analytical Principle	L	ast Multipoint Calibrat	ion
SIEMENS	6E CO2		NDIR	0	lct 23, 2023	
SIEMENS	OXYMAT 6		PARAMAGNETIC	N.	lov 01, 2023	

Triad Data Available Upon Request

02 9.090%

CO2 8.9707.


CC203715

EXP. NOV 20, 2031

B32023

Approved for Release

Lo 12/5/2023

DocNumber: 502201

Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

MON' ROSE AIR QUALITY SERVICES 1631 E ST ANDREWS PLACE SANTA ANA CA92705

Certificate (ssuance Date: 05/07/2022 Liside Oider Number, 78154652 Part Number: NI NO22 5ME-AS Gistomar PO Number: LUIS OLIVARES

Fill Date: 08/24/2023 Lat Number: 70086223602 Cylinder Style & Outlet: AS CGA 660 Cylinder Pressure and Volumn: 2000 psig 140 ft3

Certified Concentration

Expiration Date: NIST Traceable 09/07/2025 Cylinder Number: CC755218 Expanded Uncertainty 22.6 ppm Nitric oxide ± 0.2 ppm Balance Nitrogen

ProSpec EZ Cert

For Reference Only:

NOx 22.6 ppm

Certification Information:

Certification Date: 09/07/2022

Tenn: 36 Months

Expiration Date: 09/07/2025

This sylinder was certified according to the 2012 EPA Traccobility Protocol, Decument #EPA-600/R-12/631, using Protecture G1. Uncertainty above is expressed as absolute expanded uncartainty at a level of confidence of approximately 95% with a coverage factor k = 2, Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data:

(R=Reference Standard, Z=Zero Gas, C=Ges Candidete)

1. Component: Nitric oxide Requested Concentration: 22.5 ppm Certified Concentration: 22.6 ppm

Instrument Used: Tharmo Electron 42i-LS S/N 1030645077 Analytical Method: Chemiuminescence

Last Multipoint Calibration: 08/11/2022

First Analysis Data; Date 08/37/2022 Z: 0 C: 22.5 Done: 22.5 R: 47.5 D C: 22.6 Cone: 22.6 Z: ¢ C: 22,6 R: 47,4 Conc: 22.6 UCM: ppm Mean Test Assay: 22.8

Reference Standard:

Type / Cylinder #: GMIS / ND8750

Concentration / Uncertainty: 47.5 ppm ±0.2 ppm

Expiretion Date. 06/02/2025

Traceable to: SRM#/ Sample #/ Cylinder #. PRM / C1765710.01 / APEX1324923

SRM Concentration / Uncertainty: 50.04 ppm / 10.20 ppm

SRM Expiration Date: 12/09/2022 Date 09/07/2022 2: 0 R: 47.5 Conc: 22.6 R: 47.5 Z: 0 Cone: 226 Z: 0 C: 22.7 Cone: 22.7 UOM: ppm Certified By I issette Morales

Analyzed By

Venry Koung

AS 2-9-23

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the extent of the specific analyses performed, we make no warranty or representation as to the sulfability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, CA 92705

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number: Cylinder Number: E02NI99E15AC006

EB0108976

Laboratory:

124 - Los Angeles (SAP) - CA

PGVP Number: Gas Code:

B32023 NO, NOX, BALN

Reference Number: 48-402812562-1

144.0 CF

Cylinder Volume: Cylinder Pressure:

2015 PSIG

Valve Outlet: 660

Certification Date:

Aug 16, 2023

Expiration Date: Aug 16, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

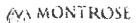
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
NOX	11.00 PPM	11.06 PPM	G1	+/- 1.0% NIST Traceable	08/08/2023, 08/16/2023
NITRIC OXIDE	11.00 PPM	10.92 PPM	G1	+/- 1.0% NIST Traceable	08/08/2023, 08/16/2023
NITROGEN	Вајалсе			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00/00/2023, 00/10/2023

CALIBRATION STANDARDS								
Type	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date			
NTRM	16010107	KAL004113	9.95 PPM NITRIC OXIDE/NITROGEN	+/- 1.0%	Jun 07, 2026			
PRM	12402	APEX1324263-NOx	10.01 PPM NOX/NITROGEN	+/- 0.5%	Dec 23, 2022			
GMIS	16010107	KAL004113-NOX	9.95 PPM NOx/NITROGEN	+/- 0.6%	May 14, 2024			
The SRM, I	NTRM, PRM, or RG	M noted above is only in reference	to the GMIS used in the assay and not part of the a					

	ANALYTICAL EQUIP	PMENT
Instrument/Make/Model	Analytical Principle	Last Multipoint Calibration
nCLD 844 S 844N0213 NO	Chemiluminescence	Aug 07, 2023
nCLD 844 S 844N0213 NOx	Chemiluminescence	Aug 07, 2023

Triad Data Available Upon Request

NOx 11.06 ppm


EB0108976

Exp. 08/16/26

B32023

-Approved for Release

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, CA 92705

CERTIFICATE OF ANALYSIS **Grade of Product: EPA PROTOCOL STANDARD**

Part Number:

E02Al99E15W0062

Cylinder Number:

CC504061

Laboratory: PGVP Number:

B32023

Gas Code:

124 - Los Angeles (SAP) - CA

NO2.BALA

Reference Number: 48-402812564-1

Cylinder Volume: Cylinder Pressure:

146.0 CF 2015 PSIG

Valve Outlet:

660

Certification Date:

Aug 17, 2023

Expiration Date: Aug 17, 2026

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 psig. i.e. 0.7 megapascals.

			ANALYTIC	AL RESU	LTS		
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Rela Uncertain		Assay Dates
NITROGE AIR	N DIOXIDE	17.00 PPM Balance	17.04 PPM	G1	+/- 1.7% NI	ST Traceable	08/10/2023, 08/17/2023
			CALIBRATIO	N STAND.	ARDS		
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date
GMIS PRM The SRM, N	15340120213 12409 ITRM, PRM, or R	D913660	15.05 PPM NITRO 15.01 PPM NITRO eference to the GMIS used it	GEN DIOXIDE/	AIR	+/- 1.6% +/- 1.5% Hysis.	Jun 15, 2025 Feb 17, 2023
No. of Concession,			ANALYTICAL	LECTUPM	ENT		- Marie Mari
Instrume	nt/Make/Mod	el	Analytical Principle	-		Multipoint Calibr	ation
MKS FTIR	NO2 01833582	1	FTIR		4	3, 2023	

Triad Data Available Upon Request

NO₂ 17.04 ppm CC504061 Exp. 08/17/26 332023

Approved for Release

JS 9/20/23

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, CA 92705

CERTIFICATE OF ANALYSIS Grade of Product: EPA PROTOCOL STANDARD

Part Number:

E02NI99E15AC672

Cylinder Number:

CC1442

Laboratory:

124 - Los Angeles (SAP) - CA

PGVP Number: Gas Code:

B32022

CO.BALN

Reference Number: 48-402541563-1

Cylinder Volume: Cylinder Pressure: 144.0 CF 2015 PSIG

Valve Outlet:

350

Certification Date:

Sep 13, 2022

Expiration Date: Sep 13, 2030

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 maga: ascals.

			ANALYTICAL	RESULTS		74 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON NITROGE	MONOXIDE N	90.00 PPM Balance	90.18 PPM	G1	+/- 1.0% NIST Traceable	
Туре	Lot ID	Cylinder No	CALIBRATION S	STANDARDS		The second second second
NTRM	09010248	KAL004905	98.48 PPM CARBON MO	NOVIDERUTOOFA	Uncertainty	Expiration Date
and the same of			ANALYTICAL E	Name and Address of the Owner, where the Party of the Par	+/- 0.5%	Oct 16, 2024
Instrume	nt/Make/Mode	1	Analytical Principle		ast Multipoint Calibra	tion
Nicolet iS5	0 AUP2110317	CO	FTIR		ug 17, 2022	

Triad Data Available Upon Request

CO 90.18 ppm CC1442

Exp. 09/13/30

B32022

Approved for Release

Page 1 of 1

JS 9/15/23

Airgas Specialty Gases Airgas USA LLC 11711 S. Alameda Street Los Angeles, CA 90059 Airgas.com

CERTIFICATE OF ANALYSIS

Grade of Product: EPA PROTOCOL STANDARD

Part Number: Cylinder Number: E02NI99E15AC055

CC146055

Laboratory:

124 - Los Angeles (SAP) - CA

PGVP Number: Gas Code:

B32024

CO.BALN

Reference Number: 48-403001706-1

Cylinder Volume:

144.0 CF 2015 PSIG

Cylinder Pressure:

Valve Outlet: 350

Certification Date:

Mar 25, 2024

Expiration Date: Mar 25, 2032

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impunities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted. The results relate only to the items tested. The report shall not be reproduced except in full without approval of the laboratory. Do Not Use This Cylinder below 100 paig, i.e. 0.7 megapascals.

			ANALYTICAL	RESULTS			,
Compone	nt	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty		Assay Dates
CARBON M		45.00 PPM Balance	44.95 PPM	G1	+/- 0.7% NIST Trace	able	03/25/2024
Туре	Lot ID	Cylinder No	CALIBRATION S Concentration	TANDARD	S Uncertainty	Earn land:	
NTRM	12011237	KAL004585	49.24 PPM CARBON	MONOXIDE/	+/- 0.6%	Expiration Aug 31.	later in the later
			ANALYTICAL E	QUIPMEN	Γ		- Control of the Cont
Instrumen	t/Make/Model	64- W	Analytical Principle		Last Multipoint Cal	ibration	
Nicolet iS50	AUP2110317 CO		FTIR	AND STREET, ST	Mar 07, 2024	·	. I departed in the second

Triad Data Available Upon Request

00 44.95 RM cc 46 oft Ext. 05/25/2032 E 32024

Approved for Release

LO 05/07/2024

Barometric Pressure Determination

Date: 06/27/24	
Time: 7:00	
Data By: SJ, AD, Ji	_
Reference: Lat: 34.42972°NLon: 118.66712°WElev: 1278.0ft.	https://forecast.weather.gov/MapClick.php?lat=33.6873&
Reference Barometer ID	
Reference Barometer Location	DEL VALLE (DLVC1)
Reference Barometer Other Info.	
Reference Barometer Indication, corrected to sea level	29.85
Reference Barometer Reference Elevation	1278
Reference Barometer Actual Pressure	28.57
Test Barometer Location/Site	Chiquita Canyon
Location/Site Elevation	997
Location/Site Barometric Pressure	28.85
Sampling Location Height (above/below site elevation)	45
Sampling Location Barometric Pressure	28.81

04/24/2024

Date:

0.551

Q @ dH = 1:

SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

(in. Hg)

C-5000 48-WCS 4/24/2024 29.96 (in L. Olivares Surya Adhlkari

Model #: ID #: Date: Bar, Pressure: Performed By: Reviewed By:

SE SOO ING	UKT GAS ME	DRY GAS ME	DRY GAS WE
	Volume Initial Ten	Volume Volume Initial Ten	Initial Ter
Total Inlet		Total	
	(cn tt)	(cn ti) (cn ti)	
5.540		885,240	200000000000000000000000000000000000000
5.540	ever i	890.780	5.540
5.540	896,320 5.540		5.540 5.540
1 AAA	asa han	380 080	5.540 5.540 5.540
200			5.540 5.540 5.540 5.540
(Brad)	(Brad)	873.520	5.540 5.540 5.540 5.540 5.540
	878.995 5.475		5.540 5.540 5.540 5.460 5.460 5.460
0.000.0		851.905	5.540 5.540 5.540 5.460 5.460 5.460
Marroy.	Marroy.	857,120	5.540 5.540 5.540 5.460 5.460 5.475 5.205
5.215	- A.B.,	- A.B.,	5.540 5.540 5.540 5.460 5.460 5.475 5.205
5.175	anan wasan barrana	835.975	5.540 5.540 5.540 5.540 5.460 5.460 5.475 5.205 5.215
5.170	841 145 5.170	B-0286, A1	5.540 5.540 5.540 5.540 5.460 5.460 5.460 5.20s 5.215 5.215
5.140	=v	300 300	5.540 5.540 5.540 5.460 5.460 5.475 5.205 5.215 5.215 5.175

0	Onlice	8	dH® · dH@ a	< 0,1557				Pass				Равз				Pass	And in the second secon			Pass	
1	Orifice	200	0.98 < Y/Yd	< 1.02?	TO THE PERSON AND AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE			Равв				Pass				Pass				Pass	
) or observational	Orifice		Ymax - Ymin	< 0.010?	William Commission and Commission and Commission of Commission and			Pass	of the spirit sp			Pass	deit de committé de committe d			Ses	1			Pass	
100	Rim		0.95 < Y	< 1.05?	Pass	Pass	Pass		Pass	Pass	Passs		Pass	Pass	Pass		Pass	Pass	Passa	Coal "dista" managemana	
ONIFICE CALIBOATION EACTOR	CALIBRATION PACTOR	dH@	Value	(in H2O)	1.874	1.874	1.874	1,874	1.820	1.816	1.813	1.816	1.847	1.847	1.845	1.847	1.866	1.866	1.863	1.865	dH@: 1.860
CALIBOATION FACTOR	ピロコなしたが、「大学のころろ	>-	Value	(unuper)	1,002	1,002	1.002	Average 1.002	0.995	0.997	0.996	Average 0.996	0.993	0.991	0.893	Average 0.992	0.984	0.986	0.993	Average 0.987	Average Yd: 0.994 a
	VOLUME	NOMINAL	VGT	(GL (E)	5.480	5.480	5,480	Av	5.396	5.396	5.396	A	5.162	5,164	5.166	A	5,119	5,122	5.122	Av	Ave
#21-120	VOLUME	CORRECTED	Vcr(std)	(liters)	155.3	155,3	155.3		153.0	153.0	153.0		145.6	145.5	146.5		145.5	145.5	145.5	A A A A A A A A A A A A A A A A A A A	
			Ver(std)		5.485	5.485	5,485		5.401	5.401	5.401		5.176	5.174	5.171		5.139	5.136	5,136	in the state of th	
Mit in	VOLUME	CORRECTED	Vm(std)	(likers)	155.0	155.0	155.0		153.7	153.4	153.6		147.6	147.8	147.5		148.0	147.7	146.5	responses to an analysis of the second secon	
UNY GAS MEREN			Vm(std)						5.428	5.418	5.422		5,213	5.218	5.208		5.224	5.214	5.174	+40°C Britonderlandschein	

Note; Control box not equipped with meter inlet temperature reading.

Performed by signature: Reviewed by signature:

W002AS-040568-RT-6437

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 48-WCS

Readout Description: Control box

Date: 1/2/2024

Performed By: JS

Calibrated Thermocouple ID: TC-295
T1 Reference Thermometer ID: 313010
T2 Reference Thermometer ID: 2736
T3 Reference Thermometer ID: 2786

T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence	1
I.D.	Readout			'F			c	F				1
TC-295	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (~ 370 F)	48-WCS	371	371	371	371	370	370	370	370	1.0	0.1%	Pas
T2 (~212 F)	48-WCS	215	215	215	215	212	212	212	212	3.0	0.4%	Pas
T1 (~ 32 F)	48-WCS	33	33	33	33	32	32	32	32	1.0	0.2%	Pas

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

			T/C - F	Readout			T/C S	Source		Diffe	rence	1
	T/C Source		c	°F			0	F				1
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T4 (~650 F)	125097	653	653	653	653	650	650	650	650	3.0	0.3%	Pas
T3 (~370 F)	125097	371	371	371	371	370	370	370	370	1.0	0.1%	Pas
T2 (~212 F)	125097	213	213	213	213	212	212	212	212	1.0	0.1%	Pas
T1 (~32 F)	125097	32	32	32	32	32	32	32	32	0.0	0.0%	Pas

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

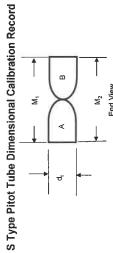
THERMOCOUPLE CALIBRATION

Thermocouple ID: 85

Date: 1/4/2024

Performed By: JS

Calibrated Digital Temperature Readout ID: PTC-83


T1 Reference Thermometer ID: 313010
T2 Reference Thermometer ID: 2736
T3 Reference Thermometer ID: 805002770

T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence	1
I.D.	Readout		C	F			٥	F				1
85	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
T3 (~ 370 F)	PTC-83	375	375	375	375	370	370	370	370	5.0	0.6%	Pa
T2 (~ 212 F)	PTC-83	211	211	211	211	212	212	212	212	1.0	0.1%	Pa
T1 (~ 32 F)	PTC-83	33	33	33	33	32	32	32	32	1.0	0.2%	Pa

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

77	†		1	1	-
	Σ	\searrow		M ₂	End View
		∢		ļ	ш -
		ਰੱ			

	, w	<u>- </u>
1.05 Dt < P < 1.5 Dt	Ratio of P/Dt	1.2
5 degrees	Average Face Opening Plane Frontal Angle from parallel to Longitudinal Axis	0.4
10 degrees	Average Face Opening Plane Angle, offset from perpendicular to transverse	-0.8
n/a	M6	0.405
n/a	MS	0.420
n/a	M4	0.910
п/а	M3	0.916
n/a	M2	0.916
n/a	M1	0.905
"3/16" < Dt < 3/8"	Tubing Diameter, dt	0.375
Yes	Pa = Pb	>
z < 1/8" w < 1/32"	Side View, Side View, Impact openings Properly Properly aligned, z < aligned, w < 1/8".	>-
z < 1/8"	Side View, Impact openings Properly aligned, z < 1/8"	>
Iteria	Calibrated By	JAC
Acceptability Criteria	Date	1/4/24
	Pitot ID	088

Status

Pass

Reference "A Type-S Pitot Tube Calibration Study", Robert F. Vollaro, October 15, 1975
If tube is not visibly deformed it is assumed that Pa = Pb = .5 x avg. of M1 & M2, and that average face opening plane angles represent individual angles to tube axis Notes:

Side View

Pass

DIFFERENTIAL PRESSURE CALIBRATION

Semi-annual

Display ID: ADM 10 Description: Air Data Multimeter (ADM 850) Serial Number: M05569 Calibration Date: 1/2/2024

Calibrated By: P. Whitman

ID: Microtector	ser: S270	Calibrated Dr. D Whitman
Reference Device ID: Microtector	Reference Serial Number: \$270	Lotos dila

	Calibration Range	nde	<u>x</u>	Run 1		Individual Run Results		Γ
_	Scale: 0 -	0 - 0.050	Measured Value	Reference Value	Absolute Value	% Difference	Pass/Fail	
_	S H ₂ ((inches W.C.)	(inches W.C.)				
L	Target 20%	0.010	0.010	0.010	0.0000	0.00%	Pass	
_	Target 40%	0.020	0.020	0.020	0.0000	0.00%	Pass	
_	Target 60%	0:030	0.031	0.030	0.0010	3.33%	Pass	
_	Target 80%	0.040	0.039	0.040	0.0010	2.50%	Pass	
	Target 100%	0.050	0.048	0.050	0.0020	4.00%	Pass	
	Calibration Range	nge	R	Run 2		Individual Run Results		Г
_	Scale: 0 -	0 - 0.050	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail	
	inches H ₂ O		(inches W.C.)	(inches W.C.)				
L	Target 20%	0.010	0.010	0.010	0.0000	0.00%	Pass	Γ
_	Target 40%	0.020	0.020	0.020	0.0000	0.00%	Pass	
_	Target 60%	0.030	0.029	0.030	0.0010	3.33%	Pass	
_	Target 80%	0.040	0.041	0.040	0.0010	2.50%	Pass	
	Target 100%	0.050	0.051	0.050	0.0010	2.00%	Pass	
_	Calibration Range	nge	R	Run 3		Individual Run Results		Г
_	Scale: 0 -	0 - 0.050	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail	
_	inches H ₂ O		(inches W.C.)	(inches W.C.)				
	Target 20%	0.010	0.010	0.010	0.0000	%00.0	Pass	Г
_	Target 40%	0.020	0.020	0.020	0.0000	0.00%	Pass	
_	Target 60%	0.030	0.031	0:030	0.0010	3.33%	Pass	
_	Target 80%	0.040	0.041	0.040	0.0010	2.50%	Pass	
	Target 100%	0.050	0.052	0.050	0.0020	4.00%	Pass	
						Average results for three runs	for three runs	
	Criteria:	: Each individu	Criteria: Each individual measured value within +	+ or - 5.0% of reference value.		% Difference	Pass/Fail	Γ
								Ī

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within $5.0\,\%$.

DIFFERENTIAL PRESSURE CALIBRATION

Semi-annual

Display ID: ADM 10 Description: Air Data Multimeter (ADM 850) Serial Number: M05569 Calibration Date: 1/2/2024

Reference Device ID: Microtector Reference Serial Number: S270 Calibrated By: P. Whitman

Scale: 0 - 0.100 Measured Value Reference Value Absolute Value % Difference Pass/ Fail Target 40% 0.020 <t< th=""><th> Calibration Range</th><th>nge</th><th>Ru</th><th>Run 1</th><th></th><th>Individual Run Results</th><th></th></t<>	Calibration Range	nge	Ru	Run 1		Individual Run Results	
10		- 0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
0.020 0.040 0.060 0.0050 0.0080 0.0080 0.0080 0.0080 0.0080 0.020 0.0040 0.0080 0.0080 0.0080 0.020 0.0020 0.0080 0.0080 0.0000 0.0020 0.0080 0.0000 0.0080 0.0080 0.0000 0.0080 0.0010 0.0000 0.0010 0.0000 0.0010 0.0000 0.0010 0.0000 0.0010 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 <th< th=""><th>inches H₂O</th><th></th><th>(inches W.C.)</th><th>(inches W.C.)</th><th></th><th></th><th></th></th<>	inches H ₂ O		(inches W.C.)	(inches W.C.)			
0.040 0.060 0.060 0.000 0.0100 0.000	Target 20%	0.020	0.020	0.020	0.0000	0.00%	Pass
0.060 0.080 0.069 0.078 0.060 0.0020 0.0010 0.0020 1.67% 2.50% 3.00% On 100 0.080 Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value 0.060 Absolute Value 0.0010 Individual Run Results 0.0000 NR ange 0.060 0.020 0.060 0.0010 0.0010 2.50% 0.0010 0.0000 0.0010 1.67% 0.0000 NR ange 0.060 0.080 0.0010 0.0010 0.0010 2.50% 0.0010 2.50% 0.0010 1.00% 0.0010 NR ange 0.0100 Massured Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value 0.0010 Absolute Value 0.0010 2.50% 0.0010 0.020 0.0020 0.020 0.0020 0.0000 0.0020 0.0000 0.0020 0.0000 0.0020 0.0000 0.0020 0.0000 0.0020 0.0000 0.0020 0.080 0.080 0.082 0.080 0.0020 0.0020 0.0020 0.0020<	Target 40%	0.040	0.041	0.040	0.0010	2.50%	Pass
O.080 0.100 0.080 0.097 0.080 0.0030 0.0020 0.0030 2.50% 3.00% On Range 0.080 Measured Value 0.080 Run 2 (inches W.C.) Run 2 (inches W.C.) Run 2 (inches W.C.) Individual Run Results % Difference S H₂O 0.080 0.040 0.040 0.020 0.040 0.000 0.0010 0.000 0.0000 0.000 0.0000 <td>Target 60%</td> <td>090.0</td> <td>0.059</td> <td>0.060</td> <td>0.0010</td> <td>1.67%</td> <td>Pass</td>	Target 60%	090.0	0.059	0.060	0.0010	1.67%	Pass
o.100 0.097 0.100 0.0030 3.00% on Range Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value (inches W.C.) Individual Run Results 0.040 0.040 0.059 0.060 0.0010 2.50% 1.00% 0.050 0.059 0.060 0.000 2.50% 2.50% 1.00% 0.100 0.100 0.101 0.100 0.0010 1.00% 2.50% 0.100 0.100 0.100 0.0010 0.0010 1.00% 2.50% 0.100 0.100 0.020 0.0010 0.0000 0.000% 0.000% 0.100 0.040 0.000 0.0000 0.0000 0.000% 2.50% 0.040 0.062 0.080 0.080 0.000 0.000 2.50% 0.050 0.062 0.080 0.000 0.000 0.000 2.50%	Target 80%	080.0	0.078	0.080	0.0020	2.50%	Pass
On Range Measured Value Run 2 (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Individual Run Results 0 - 0.100 0.040 0.044 0.040 0.000 0.00% 0.00% 0.060 0.060 0.0659 0.080 0.0010 1.67% 1.67% 0.080 0.080 0.000 0.0010 1.67% 1.00% 0.100 0.101 0.100 0.0010 1.00% 1.00% 0.100 0.101 0.100 0.0010 1.00% 1.00% 0.100 0.100 0.0010 1.00% 0.00% 0.00% 0.100 0.020 0.0010 0.000 0.00% 0.00% 0.040 0.062 0.080 0.0020 2.50% 0.080 0.080 0.0020 0.0020 2.50% 0.090 0.0020 0.0020 0.00% 2.00% 0.100 0.102 0.0020 0.00% 0.00%	Target 100%	0.100	0.097	0.100	0.0030	3.00%	Pass
O - 0.100 Measured Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Individual Run Results (inches W.C.) Individual Run Results (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Run 3 Run 3 Individual Run Results (inches W.C.) Individual Run Results (inches W.C.) Individual Run Results (inches W.C.) Run 3 Individual Run Results (inches W.C.) Individual Run Results (inches W.C.) Run 3 Individual Run Results (inches W.C.) C.0000 (0.0000 C.0000 (0.0000 C.0000 (0.0000 C.0000 (0.0000 C.0000 (0.0000 C.0000 C.0000 (0.0000							
0 - 0.100 Measured Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Absolute (inches W.C.) Absolute Value (inches W.C.) Absolute (inches W.C.)<	Calibration Ra	ınge	Ru	ın 2		Individual Run Results	
s H ₂ O (inches W.C.)	Scale: 0	- 0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
0.020 0.040 0.060 0.060 0.060 0.080 0.000 0.080 0.000	O'H sinches H ₂ O		(inches W.C.)	(inches W.C.)			
0.040 0.041 0.040 0.0010 2.50% 0.060 0.059 0.080 0.0020 2.50% 0.080 0.082 0.0020 2.50% o. 0.00 0.101 0.100 0.0010 1.00% or 0.100 Measured Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value (inches W.C.) 0.0000 0.0000 0.040 0.040 0.040 0.0010 2.50% 0.00% 0.060 0.062 0.0020 2.50% 2.50% 0.080 0.0020 2.50% 2.50% 0.080 0.0020 2.50% 2.50% 0.100 0.100 0.0020 2.50%	Target 20%	0.020	0.020	0.020	0.0000	%00.0	Pass
0.060 0.080 0.080 0.0100 0.060 0.0020 0.0020 0.0010 2.50% 0.0010 1.67% 2.50% 0.0010 on Range 0 - 0.100 0.040 Run 3 (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Absolute Value 0.0020 Absolute Value 0.0020 Absolute Value 0.0000 2.50% 0.0000 0.060 0.080 0.080 0.080 0.080 0.0020 0.0000 0.0020 2.50% 2.50% 0.0020	Target 40%	0.040	0.041	0.040	0.0010	2.50%	Pass
0.080	Target 60%	090'0	0.059	0.060	0.0010	1.67%	Pass
on 100 0.100 0.100 0.0010 1.00% on Range of O.100 Run 3 (inches W.C.) Run 3 (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Absolute (inches W.C.) Absolute (inches W.C.) Absolute Value (inches W.C.) Absolute (in	Target 80%	0.080	0.082	0.080	0.0020	2.50%	Pass
On Range 0 - 0.100 Measured Value N.C.) Run 3 (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.)	Target 100%	0.100	0.101	0.100	0.0010	1.00%	Pass
On Range 0 - 0.100 Measured Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Absol							
0 - 0.100 Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (i	Calibration Ra	inge	Ru	In 3		Individual Run Results	
s H ₂ O (inches W.C.) (inches W.C.) (inches W.C.) 0.0000 0.000% 0.020 0.020 0.020 0.0010 2.50% 0.060 0.062 0.060 0.0020 3.33% 0.080 0.082 0.0020 2.50% 0.100 0.102 0.100 0.0020 2.50%		- 0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
0.020 0.020 0.020 0.0000 0.000% 0.040 0.041 0.040 0.0010 2.50% 0.060 0.062 0.0020 3.33% 0.080 0.082 0.080 0.0020 2.50% 0.100 0.102 0.0020 2.00%	inches H ₂ O		(inches W.C.)	(inches W.C.)			
0.040 0.041 0.040 0.0010 2.50% 0.060 0.062 0.060 0.0020 3.33% 0.080 0.082 0.0020 2.50% 0.100 0.102 0.100 0.0020 2.50%	Target 20%	0.020	0.020	0.020	0.000	0.00%	Pass
0.060 0.062 0.060 3.33% 0.080 0.082 0.080 0.0020 2.50% 0.100 0.102 0.0020 2.00%	Target 40%	0.040	0.041	0.040	0.0010	2.50%	Pass
0.080 0.082 0.080 0.0020 2.50% 0.100 0.102 0.100 0.0020 2.00%	Target 60%	090.0	0.062	0.060	0.0020	3.33%	Pass
0.100 0.102 0.100 0.0020 2.00%	Target 80%	0.080	0.082	0.080	0.0020	2.50%	Pass
	Target 100%	0.100	0.102	0.100	0.0020	2.00%	Pass

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

Pass/Fail Pass

% Difference 1.84%

N MONTROSE

Pass/Fail Pass

% Difference 0.34%

DIFFERENTIAL PRESSURE CALIBRATION

Semi-annual

Display ID: ADM 10 Description: Air Data Multimeter (ADM 850) Serial Number: M05569 Calibration Date: 1/2/2024

Reference Device ID: Microtector Reference Serial Number: S270 Calibrated By: P. Whitman

0 - 1.000 Measured Value Reference Value Absolute Value Reference Value Absolute Value Reference Value Absolute Value Reference Value C.0000 C.0	0 - 1.000 Measured Value (inches W.C.) Reference Value (o.000 Reference Value (o.000 Absolute Value (o.000) Reference Value (o.000) Absolute Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Ab	on R	nge	Run	_		Individual Run Results	
1,000	Name	Scale: 0	- 1.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
0.200 0.400 0.6400 0.200 0.6020 0.200 0.0020 0.000 0.0020 0.000 0.0020 0.000 0.25% 0.600 0.800 0.600 0.802 0.0020 0.0020 0.0020 0.0020 0.20% 0.20% n Range 0-1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Reference Value 0.600 Absolute Value 0.000 Reference Value 0.000 Absolute Value 0.000 Reference Value 0.000 Absolute Value 0.000 Individual Run Results n And 0.800 0.200 0.800 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.10% n Range 0.400 0.600 0.800 0.0000 0.0000 0.0000 0.0000 0.0000 0.17% n Range 0.500 0.200 0.0000 0.0000 0.0000 0.0010 0.17% 0.10% n Loo 0.1000 0.200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.10% n Loo 0.600 0.200 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.10% n Loo 0.600 0.201 0.0000 0.0000 0.0000 0.0000 0.10% 0.10% n Loo 0.600 0.201 0.0000 0.0000 0.00	0.200 0.6400 0.6000 0.6000 0.8000	inches H ₂ O		(inches W.C.)	(inches W.C.)			
0.400 0.402 0.0020 0.50% 0.800 0.604 0.600 0.0040 0.67% 0.800 0.604 0.600 0.0020 0.25% 0.800 0.603 0.0020 0.20% 0.800 0.604 0.600 0.0020 0.00% 0.400 0.400 0.400 0.600 0.000 0.400 0.400 0.600 0.600 0.00% 0.400 0.601 0.600 0.000 0.00% 0.800 0.601 0.600 0.0010 0.00% 0.400 0.601 0.600 0.000 0.00% 0.800 0.800 0.800 0.0010 0.10% 0.400 0.201 0.200 0.0010 0.0010 0.400 0.201 0.000 0.0010 0.00% 0.400 0.201 0.200 0.0010 0.0010 0.400 0.400 0.400 0.0010 0.10% 0.400 0.201 0.200 0.0010 0.0040 0.400 0.400 0.0010 0.0040 0.0040 0.400 0.201 0.200 0.0010 0.0040 0.600 0.201 0.000 0.0010 0.0040 0.600 0.0010 0.0010 0.0010 0.600 0.0010 0.0010 0.0010 0.600 0.0010 0.0010 0.0010 0.600 0.0010 0.0010 0.0010 0.000 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0	0.400 0.600 0.8002 0.400 0.6004 0.0020 0.0020 0.050% 0.0020 0.050% 0.25% Or 1.000 0.400 Measured Value 0.800 Run 3 0.000 Reference Value 0.000 Absolute Value 0.000 Absolute Value 0.000 Individual Run Results 0.000 N Range 0.400 0.200 0.400 0.000 0.000 0.000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 <td< td=""><td>Target 20%</td><td>0.200</td><td>0.200</td><td>0.200</td><td>0.0000</td><td>0.00%</td><td>Pass</td></td<>	Target 20%	0.200	0.200	0.200	0.0000	0.00%	Pass
0.600 0.800 0.800 0.0020 0.604 0.0020 0.0020 0.0040 0.0020 0.67% 0.25% 0.0020 or 1.000 0.1000 0.5000 Measured Value 0.5000 Reference Value 0.0000 Absolute Value 0.0000 Absolute Value 0.0000 Reference Value 0.0000 Absolute Value 0.0000 Absolute Value 0.0000 Reference Value 0.0000 Absolute Value 0.0000 Absolute Value 0.0000 Reference Value 0.0000 Absolute Value 0.0000 Reference Value 0.0000 Absolute Valu	0.600 0.604 0.607 0.0040 0.67% 0.800 0.802 0.800 0.0020 0.025 0.25% 0.002 0.988 1.000 0.0020 0.0020 0.20% 0.1000 Measured Value Reference Value Run Sevilts 0.200 0.200 0.800 0.0000 0.0000 0.000% 0.1000 Measured Value Run Sevilts V.000 0.0000 0.000% 0.1000 Measured Value Run Sevilts V.000 0.0010 0.000% 0.1000 Measured Value Reference Value Absolute Value W.D. 0.1000 Measured Value Reference Value Absolute Value W.D. 0.1000 0.201 0.200 0.0000 0.0010 0.0040 0.400 0.404 0.400 0.0000 0.0040 0.0040 0.600 0.600 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0010 0.0040 0.0040 0.000 0.0000 0.0010 0.0040 0.0040 0.000 0.0000 0.0010 0.0040 0.0040 0.000 0.0000 0.0010 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.0040 0.0040 0.000 0.0000 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.000 0.0000 0.0000 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0	Target 40%	0.400	0.402	0.400	0.0020	0.50%	Pass
o.800 1.000 0.802 0.0020 0.0020 0.0020 0.25% 0.20% on Range 1.000 Measured Value 0.400 Reference Value 0.200 Absolute Value 0.000 Absolute Value 0.000 Individual Run Results 0.000 on Range 0.1000 Measured Value 0.1000 Reference Value 0.000 0.000 0.0000 0.000 0.0000 0.000% 0.0000 0.000% 0.0000 0.000% 0.0000 nn Range 0.1000 Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value 0.0000 Absolute Value 0.0000 Absolute Value 0.0000 0.000% 0.0010 s H₂O 0.1000 0.200 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.000% 0.0001 o.200 0.6000 0.200 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0010 0.0000 0.0010	nn Range 0 - 1.000 Measured Value (inches W.C.) Run 3 (inches W.C.) Run 3 (inches W.C.) Run 3 (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inch	Target 60%	0.600	0.604	0.600	0.0040	0.67%	Pass
one of the state of	one of the state of	Target 80%	0.800	0.802	0.800	0.0020	0.25%	Pass
On Range Run 2 0 - 1.000 Reference Value (inches W.C.) Reference Value 0.0000 Absolute Value 0.0000 Individual Run Results 0 - 1.000 Measured Value 0 1.000 Run 3 (inches W.C.) Reference Value 0.0000 Absolute Value 0.0000 Individual Run Results 0 - 1.000 0.0400 Measured Value 0.0400 Reference Value 0.0000 Absolute Value 0.0000 Absolute Value 0.0000 Absolute Value 0.0000 0.0000 0.0001 0 - 1.000 0.0400 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 1.000 0.797 0.0001 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001 0.0010 0.0001	Name	Target 100%	1.000	0.998	1.000	0.0020	0.20%	Pass
on Range 0 - 1.000 0	On Range Run 2 Run 2 Individual Run Results 0 - 1.000 (inches W.C.) (inches W.C.) (inches W.C.) 0.200 0.0020 1.00% 0.00% 0 - 1.000 0.200 0.200 0.0000 0.0000 0.00% 0.00% 0 - 1.000 0.600 0.0000 0.0000 0.00% 0.00% 0.00% 0 - 1.000 0.800 0.800 0.000 0.00% 0.00% 0.00% 1.000 0.899 1.000 0.0010 0.000 0.00% 0.00% 0 - 1.000 0.999 1.000 0.0010 0.0010 0.10% 0.10% 0 - 1.000 0.999 1.000 0.0010 0.000 0.00% 0.10% 0 - 1.000 0.200 0.200 0.0010 0.0010 0.50% 0.50% 0 - 200 0.200 0.000 0.0010 0.0040 0.00% 0.10% 0 - 200 0.200 0.000 0.0010 0.0010 0.00% 0.10%							
0 - 1.000 Measured Value Reference Value Absolute Value % Difference	0 - 1.000 Measured Value Reference Value Absolute Value % Difference (inches W.C.) (i	Calibration Ra	nge	Ru	ln 2		Individual Run Results	
8 H ₂ O	S H ₂ O (inches W.C.)		- 1.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
0.200 0.400 0.600 0.600 0.800 0.800 0.000 0.800 0.17% 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.	0.200 0.202 0.200 1.00% 0.400 0.400 0.400 0.0000 0.000% 0.500 0.600 0.0000 0.0000 0.000% 0.800 0.800 0.0000 0.000% 0.000% 0.800 0.800 0.0000 0.0000 0.000% 0 - 1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value (inches W.C.) 0 - 1.000 0.200 0.0010 0.0010 0.50% 0 - 4.00 0.200 0.0040 0.0040 0.0040 0 - 400 0.500 0.0040 0.0040 0.17% 0 - 500 0.0010 0.0010 0.0010 0.0040 1.000 1.001 1.000 0.0010 0.0010	inches H ₂ O		(inches W.C.)	(inches W.C.)			
0.400 0.600 0.800 1.000 0.400 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.000% 0.0000 or 800 1.000 Run 3 0.200 Run 3 (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) <td>0.400 0.600 0.600 0.800 0.800 0.800 0.000 0.800 0.17% 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000</td> <td>Target 20%</td> <td>0.200</td> <td>0.202</td> <td>0.200</td> <td>0.0020</td> <td>1.00%</td> <td>Pass</td>	0.400 0.600 0.600 0.800 0.800 0.800 0.000 0.800 0.17% 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Target 20%	0.200	0.202	0.200	0.0020	1.00%	Pass
0.600 0.800 1.000 0.601 0.800 0.0000 0.0010 0.0000 0.017% 0.0000 0.000% 0.0000 0.000% 0.0000 or Atologous of SH2O 0.000 Measured Value (inches W.C.) Run 3 (inches W.C.) Absolute Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value 0.000 Absolute Value 0.000 0.50% 0.0040 0.50% 0.0040 0.200 0.400 0.600 0.600 0.600 0.600 0.800 0.800 0.800 0.0010 0.0010 0.0030 0.0010 0.0010 0.0030 0.0010 0.17% 0.38%	0.600 0.800 1.000 0.601 0.800 0.000 0.0010 0.0000 0.0010 0.017% 0.0000 0.0010 0.17% 0.0000 0.0010 0.17% 0.0000 0.0010 0.17% 0.0000 Name Run 3 0-1.000 Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value 0.000 Absolute Value 0.000 Absolute Value 0.000 Absolute Value 0.000 Absolute Value 0.0001 Absolute Value 0.0001 <t< td=""><td>Target 40%</td><td>0.400</td><td>0.400</td><td>0.400</td><td>0.0000</td><td>0.00%</td><td>Pass</td></t<>	Target 40%	0.400	0.400	0.400	0.0000	0.00%	Pass
o.800 0.800 0.0000 0.000% 0.000% r.000 0.999 1.000 0.0010 0.0010 0.10% or 1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value % Difference	o.800 1.000 0.800 0.0010 0.0000 0.0010 0.000% 0.0010 0.000% 0.0010 0.000% 0.0010 or 1.000 0-1.000 Measured Value (inches W.C.) Run 3 (inches W.C.) Absolute Value (inches W.C.) Absolute Value (inches W.C.) Absolute Value 0.500 Absolute Value 0	Target 60%	0.600	0.601	0.600	0.0010	0.17%	Pass
nn Range Run 3 Individual Run Results n Range Run 3 Individual Run Results 0 - 1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value % Difference % Difference s H ₂ O (inches W.C.) (inches W.C.) (inches W.C.) 0.50% 0.200 0.200 0.0010 0.50% 0.400 0.400 0.0040 1.00% 0.600 0.599 0.600 0.0010 0.800 0.737 0.800 0.0030 1.000 1.001 1.000 0.0010	nn Range Run 3 Individual Run Results n Rasured Value (inches W.C.) Run 3 Individual Run Results 0 - 1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) 0.50% 0.200 0.200 0.200 0.0010 0.50% 0.400 0.400 0.040 0.040 0.077% 0.600 0.599 0.600 0.0010 0.17% 0.800 0.797 0.800 0.0010 0.0010 1.000 1.001 1.000 0.0010 0.0010	Target 80%	0.800	0.800	0.800	0.0000	0.00%	Pass
on Range 0 - 1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Absol	on Range 0 - 1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Individual Run Results % Difference 0.50% 0 - 1.000 0.201 0.200 0.50% 0.50% 0 - 400 0.404 0.400 0.0040 1.00% 0 - 509 0.600 0.0010 0.17% 0.38% 0 - 1.000 1.001 1.000 0.0010 0.0010 0.0010	Target 100%	1.000	0.999	1.000	0.0010	0.10%	Pass
on Range 0 - 1.000 Measured Value S H₂O Reference Value (inches W.C.) Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) </td <td>on Range 0 - 1.000 Measured Value RH₂O Run 3 Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Individual Run Results % Difference 0.200 Absolute Value 0.200 Absolute Value 0.200 Absolute Value 0.50% Absolute Value 0.0010 Absolute Value 0.0010 Absolute Value 0.0010 Absolute Value 0.0010 Absolute Value 0.0010 Absolute Value 0.0010</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	on Range 0 - 1.000 Measured Value RH ₂ O Run 3 Reference Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Individual Run Results % Difference 0.200 Absolute Value 0.200 Absolute Value 0.200 Absolute Value 0.50% Absolute Value 0.0010 Absolute Value 0.0010 Absolute Value 0.0010 Absolute Value 0.0010 Absolute Value 0.0010 Absolute Value 0.0010							
0 - 1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (i	0 - 1.000 Measured Value (inches W.C.) Reference Value (inches W.C.) Absolute Value (inches W.C.) Co.50% (inches	Calibration Ra	nge	Ru	ln 3		Individual Run Results	
s H ₂ O (inches W.C.) (inches W.C.) (inches W.C.) 0.200 0.201 0.200 0.50% 0.400 0.404 0.0040 1.00% 0.600 0.599 0.600 0.0010 0.17% 0.800 0.797 0.800 0.0030 0.38% 1.000 1.001 1.000 0.0010 0.10%	s H ₂ O (inches W.C.) (inches W.C.) (inches W.C.) 0.200 0.201 0.200 0.50% 0.400 0.404 0.0400 0.0040 0.600 0.599 0.600 0.0010 0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	0	- 1.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
0.200 0.201 0.200 0.0010 0.400 0.404 0.400 0.0040 0.600 0.599 0.600 0.0010 0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	0.200 0.201 0.200 0.0010 0.400 0.404 0.400 0.0040 0.600 0.599 0.600 0.0010 0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	inches H ₂ O		(inches W.C.)	(inches W.C.)			
0.400 0.404 0.0040 0.600 0.599 0.600 0.0010 0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	0.400 0.404 0.400 0.0040 0.600 0.599 0.600 0.0010 0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	Target 20%	0.200	0.201	0.200	0.0010	0.50%	Pass
0.600 0.599 0.600 0.0010 0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	0.600 0.599 0.600 0.0010 0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	Target 40%	0.400	0.404	0.400	0.0040	1.00%	Pass
0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	0.800 0.797 0.800 0.0030 1.000 1.001 1.000 0.0010	Target 60%	0.600	0.599	0.600	0.0010	0.17%	Pass
1.000 1.001 1.000 0.0010	1.000 1.001 1.000 0.0010	Target 80%	0.800	0.797	0.800	0:0030	0.38%	Pass
	Average recults for three ris	Target 100%	1.000	1.001	1.000	0.0010	0.10%	Pass

MONTROSE SECTION

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

DIFFERENTIAL PRESSURE CALIBRATION

Semi-annual

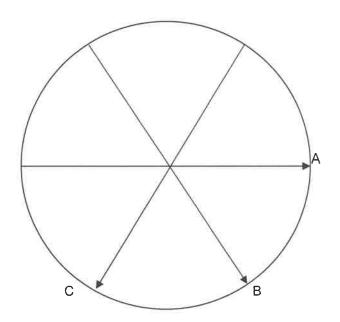
Description: Air Data Multimeter (ADM 850) Serial Number: M05569 Display ID: ADM 10

Calibration Date: 1/2/2024

Reference Device ID: Dwyer 0 - 10" Manometer Reference Serial Number: CC-2 Calibrated By: P. Whitman

Calibration Kange	nge	אַב			Individual Run Results	
Scale: 0 - 10.000	. 10.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Farget 20%	2.000	2.020	2.000	0.0200	1.00%	Pass
arget 40%	4.000	4.040	4.000	0.0400	1.00%	Pass
Target 60%	000'9	6.020	6.000	0.0200	0.33%	Pass
arget 80%	8.000	8.090	8.000	0.0900	1.13%	Pass
Farget 100%	10.000	10.250	10.000	0.2500	2.50%	Pass

Calibration Range	nge	Run 2	2 1		Individual Run Results	
Scale: $0 - 10.000$ inches H_2O	- 10.000	Measured Value (inches W.C.)	Reference Value (inches W.C.)	Absolute Value	% Difference	Pass/ Fail
Target 20%	2.000	2.050	2.000	0.0500	2.50%	Pass
Target 40%	4.000	4.120	4.000	0.1200	3.00%	Pass
Target 60%	000.9	6.110	6.000	0.1100	1.83%	Pass
Target 80%	8.000	8.100	8.000	0.1000	1.25%	Pass
Target 100%	10.000	10.110	10.000	0.1100	1.10%	Pass


Calibration Range	ige	Ru	Run 3		Individual Run Results	
Scale: 0 - 10.000 inches H ₂ O	10.000	Measured Value (inches W.C.)	Reference Value (inches W.C.)	Absolute Value	% Difference	Pass/ Fail
Target 20%	2.000	2.010	2.000	0.0100	0.50%	Pass
Target 40%	4.000	4.160	4.000	0.1600	4.00%	Pass
Target 60%	000.9	6.150	6.000	0.1500	2.50%	Pass
Target 80%	8.000	8.120	8.000	0.1200	1.50%	Pass
Target 100%	10.000	10.090	10.000	0.0900	%06.0	Pass

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

Average results for three runs Pass/Fai Pass % Difference 1.67%

FACILITY: CHIQUITA SOURCE TESTED: CALIBRATED BY: DATE:

NOZZLE ID		READING (INCHE	S)	AVG DIA.
	Α	В	С	
260	0.0648	0.648	0.648	0.648
	(B)		1	

Calibrated by:

Measuring Device Used: Mitutoyo Digital Calipers

Serial Number: 0247955 Model Number: CD-6" CS

Resolution : 0.01mm or 0.0005"/0.01mm Accuracy : \pm 0.02mm or \pm 0.001"/ \pm 0.02mm

APPENDIX B GENERAL EMISSIONS CALCULATIONS

GENERAL EMISSIONS CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$P_s = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528^{\circ}R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_i * Q_{sd} * 60}{SV * 10^6}$$

V. Gaseous Concentrations, corrected (Ccorr @ 3%O₂.)

Ccorr @3%O₂ =
$$\frac{ppm * (20.9-3.0)}{(20.9-\%O2)}$$

VI. <u>Destruction Efficiency (DE), %)</u>

$$DE$$
, % = $\left(\frac{M_{in}-M_{out}}{M_{in}}\right)$ (100%) based on mass emission rates

VII. Emission Rates, lb/MMBtu

$$\frac{\text{lb}}{\text{MMBtu}} = \frac{\text{ppm * MW}_{i} * F}{\text{SV * } 10^{6}} * \frac{20.9}{20.9 - \% O_{2}}$$

VIII. Emission Rates, lb/MMBtu

$$\frac{\text{lb}}{\text{MMBtu}} = \frac{\text{lb/hr}}{\text{MMBtu/hr}}$$

IX Percent Isokinetic

$$I = \frac{17.32 * T_s (V_{mstd})}{(1 - B_{wo}) 0 * V_s * P_s * Dn^2} * \frac{520 °R}{T_{ref}}$$

X. Particulate Emissions

- (a) Grain loading, gr/dscf $C = 0.01543 (M_n/V_{m std})$
- (b) Grain loading at 12% CO₂, gr/dscf $C_{12\%}$ CO₂ = C (12/% CO₂)
- (c) Mass emissions, lb/hr $M = C * Q_{sd} * (60 min/hr) / (7000 gr/lb)$
- (d) Particulate emission factor

Ib/10⁶ Btu = Cx
$$\frac{1 \text{ lb}}{7000 \text{ gr}}$$
 * F * $\frac{20.9}{20.9 - \% O_2}$

Nomenclature:

stack area, ft2 A_s flue gas moisture content, dimensionless B_{wo} = C_{12%CO2} particulate grain loading, gr/dscf corrected to 12% CO₂ particulate grain loading, gr/dscf C pitot calibration factor, dimensionless C_p nozzle diameter, inches Dn = fuel F-Factor, dscf/MMBtu @ 0% O2 F = Н orifice differential pressure, iwg = % isokinetics 1 mass of collected particulate, mg M_n mass emission rate of specie i, lb/hr Mi = molecular weight of flue gas, lb/lb-mole MW = molecular weight of specie i: M_{wi}

> SO₂: 64 NO_x: 46 CO: 28 HC: 16

0 = sample time, minutes

 ΔP = average velocity head, iwg = $(\sqrt{\Delta P})^2$ P_{bar} = barometric pressure, inches Hg P_s = stack absolute pressure, inches Hg

P_{sg} = stack static pressure, iwb

Q = wet stack flow rate at actual conditions, wacfm

 Q_{sd} = dry standard stack flow rate, dscfm

SV = specific molar volume of an ideal gas at standard conditions, ft³/lb-mole

 T_m = meter temperature, °R T_{ref} = reference temperature, °R T_s = stack temperature, °R V_s = stack gas velocity, ft/sec

V_{lc} = volume of liquid collected in impingers, ml

V_m = uncorrected dry meter volume, dcf

V_{mstd} = dry meter volume at standard conditions, dscf V_{wstd} = volume of water vapor at standard conditions, scf

Y_d = meter calibration coefficient

APPENDIX C SAMPLING AND ANALYTICAL PROCEDURES

SAMPLING AND ANALYTICAL PROCEDURES

SCAQMD METHOD 1.1 - SAMPLING AND VELOCITY TRAVERSE FOR STATIONARY SOURCES

A preliminary source test site assessment was performed prior to the source test in order to determine applicable testing port locations and sample point traverse locations. The stack diameter, and the distance from sample ports to disturbances, i.e. bends, flanges, etc., both upstream and downstream, were measured. This information was utilized to determine the minimum number of sampling points per traverse, and the distance from the inner stack wall to each sample point location.

SCAQMD METHOD 2.1 - VELOCITY AND VOLUMETRIC FLOW RATE

The velocity of the gas stream was determined by using an "S" type pitot tube, a digital low flow manometer differential pressure gauge, and type "K" thermocouple with a digital temperature measuring device. The calibrated pitot tube was connected to the electronic micro manometer gauge and leak checked. A temperature and differential pressure were obtained at each traverse point, and a duct static pressure was measured and recorded. The dry volumetric flow rate was determined from the gas velocity data, stack pressure, stack gas moisture content, stack gas molecular weight, and cross-sectional area of the duct.

SCAQMD METHOD 3.1 - GAS ANALYSIS FOR DRY MOLECULAR WEIGHT CALCULATION

Oxygen, carbon dioxide and nitrogen concentrations were determined at the exhaust utilizing the continuous emissions monitoring system in accordance with SCAQMD Method 100.1. The inlet concentrations of gases are determined by using GC/NDIR and GC/TCD analysis on grab samples following SCAQMD Method 10.1.

SCAQMD METHOD 4.1 - DETERMINATION OF MOISTURE CONTENT IN STACK GASES

Moisture content at the exhaust was determined using a sampling train consisting of a stainless steel probe, teflon line, four impingers in an ice water bath, leak free pump, vacuum gauge, and temperature compensated dry gas meter. Prior to sampling, a leak check of the sampling train was performed to insure system integrity. Additionally, tare weights of the charged individual impingers were recorded using an electronic top loader balance capable of weighing to the nearest 0.1 grams or less. After sampling, the final weights of each impinger were determined and recorded. Percent moisture content was calculated from the weight of water collected and the dry gas volume sampled.

CALCULATIONS

$$\begin{aligned} &\text{Moisture (B}_{ws}) = \frac{\text{Vwstd}}{\text{Vmstd} + \text{Vwstd}} - \text{X 100} \\ &\text{Where: Vwstd} = \frac{0.0464 \text{ft}^3}{\text{ml}} - \text{X Vol H}_2\text{O Collected (ml)} \\ &\text{Vmstd} = \text{Y Meter x } = \frac{520 \text{°R}}{29.92 \text{ in. Hg}} - \text{x } = \frac{\text{Vol Metered}}{\text{Meter Temp}} - \text{X Pres Meter} \end{aligned}$$

SCAQMD METHOD 5.1 - PARTICULATE EMISSIONS

A series of preliminary measurements were made prior to conducting the particulate test. SCAQMD Methods 1, 2, and 3 were performed to determine location and number of traverse points, average gas velocity, and gas molecular weight, respectively. Percent moisture content was estimated using a psychrometric chart or combustion analysis of the fixed gases. The results of these measurements were used to determine the appropriate nozzle size for isokinetic sampling.

The SCAQMD Method 5.1 apparatus was prepared on site in our mobile emissions laboratory. The absorption train was charged with freshly prepared chemicals (see Field Data Sheets for actual contents), weighed on a calibrated top loader balance to the nearest 0.1 grams, and assembled. The probe was brushed out and rinsed with distilled water and the filter placed in the filter holder. The sampling apparatus was sealed and transported to the sampling site where it was assembled and leak-tested at 15 inches of mercury vacuum. The probe was positioned into the duct at the first traverse point with the nozzle out of the flow path.

The nozzle was positioned into the gas flow and the vacuum pump was started immediately and adjusted to obtain an isokinetic sample rate. A complete traverse was performed while sampling at a minimum of three minutes per sample point (see Field Data Sheets for actual duration). Upon completion of the traverse the vacuum pump was turned off and the probe was transferred into the next sample port where an identical traverse was performed. Duct conditions (temperature, differential pressure) and sampling conditions (meter temperature, meter volume, meter pressure, impinger temperature, and absorption train vacuum) were monitored and recorded regularly for each sample point.

Upon completion of sampling, the apparatus was leak-checked at a vacuum greater than the highest observed vacuum. Any leak was recorded and the apparatus was sealed and transported to the mobile laboratory. The probe-to-impinger line was rinsed with a known amount of distilled water into the first impinger.

ANALYSIS

The nozzle and probe were washed as per SCAQMD Method 5.1 and quantitatively transferred to a clean, labeled bottle.

The filter and any loose particulate were carefully removed from the filter holder with tweezers. The filter was then placed into a labeled petri dish and transported to the Montrose AQS laboratory. The nozzle and probe were rinsed and brushed three times with distilled water. The sample fractions were combined, bottled, labeled, and fluid levels marked for transportation to MAQS laboratory for analysis. Aliquots of distilled water were similarly treated for blank analysis.

The aqueous sample was filtered through the sample filter. The filter was then transferred to an oven and heated at 105°C for 2-3 hours and then placed in a desiccator for 24 hours. The filter was then weighed on a digital analytical balance to the nearest 0.1 mg or one percent of the total filtrate weight (weighed to a constant weight).

An organic extraction was performed on the combined probe and impinger catch. The nozzle and probe wash and impinger sample was transferred to an evaporative dish. The inorganic sample

SCS Field Services – Chiquita Canyon Landfill 2024 Gas Flare No. 1 Source Test

was then evaporated at an elevated temperature - below the boiling point of the wash. The dish and wash residue was then desiccated and weighed to a constant weight.

The net weight of particulate was calculated from the two fractions. Concentrations (gr/dscf) and emissions (lb/hr) or other applicable units were then calculated and reported.

SCAQMD METHOD 25.3

INTRODUCTION

The SCAQMD Method 25.3 is used to collect and analyze low concentrations of volatile organic compounds using a knock-out/canisters for sample collection and analyzed by TCA/FID.

SAMPLING PROCEDURE

The sampling apparatus consists of a stainless steel probe connected by Teflon line to a midget impinger with water (outlet). Upon opening of the flow controller on the canisters, sample gas is drawn through the trap or impinger then into the canister.

On completion of each run, the sample was sealed and immediately transported to the laboratory. The analysis performed by total carbon analysis/flame ionization detector (TCA/FID) gives results of CH_4 , CO_2 and total gaseous non-methane organics (TGNMO) as CH_4 . All non-methane organics are oxidized to CO_2 then reduced back to CH_4 and then measured by flame ionization. All carbon contained in the original non-methane portion is therefore converted to CH_4 and the results are reported as TGNMO as CH_4 .

CALCULATIONS

TGNMO lb/hr = TGNMO PPmv x DSCFM x M.W. x C.F.

Where:

TGNMO PPMv = Total Gaseous Non-Methane Organics Parts Per Million (Volume)
DSCFM = Dry Standard Cubic Feet Per Minute
M.W. = Molecular Weight, Methane 16.04 (lb/lb mole)
C.F. = Conversion Factor = 1.583×10⁻⁷ @ 60°F Std.
= 1.558×10⁻⁷ @ 68°F Std.

SCAQMD METHOD 100.1 CONTINUOUS GASEOUS EMISSIONS SAMPLING

Ref: South Coast Air Quality Management District (SCAQMD), Office of Operations Technical Services Division, March 1989, Method 100.1.

A continuous sample is extracted from the stack through a stainless-steel probe, heated Teflon line, filter, sample conditioner (moisture removal system), sample pump and then delivered to the analyzers through an unheated Teflon line, sample manifold and dedicated flow meters.

Prior to beginning the test, a system leak check is performed. The leak check is accomplished by plugging the probe tip and drawing >25" Hg vacuum on the entire sampling system. When all flow meters indicate 0.000 scfh flow, the system is proven to be free of all leaks.

An analyzer calibration error (CE) check is performed at the beginning of each sampling day. The CE is performed as follows: After zeroing all analyzers with nitrogen, EPA Protocol 1 gases are used to calibrate each analyzer within 80-95% full scale of the selected range. Each analyzer, individually, is then spanned within 40-60% of the selected range by introducing a second EPA Protocol 1 gas.

A system bias check is performed before and after each sampling run by delivering zero and calibration gases to the three-way valve, located between the probe and sample line, and drawing the gases through the sampling system. The bias for each analyzer shall not exceed 5% of the high spanned calibration gas value or the sampling run shall be repeated.

All concentrations from the NO_x, O₂, CO₂, and CO analyzers are recorded on a Yokogawa Model DR240 recorder. The data is continuously recorded by a strip chart and an on-site data acquisition system (DAS). The DAS is reduced by computer in the Montrose AQS Laboratory.

CEMS probe was traversed across the stack in conjunction with particulate testing. A total of 24 points were sampled with 12 points per port by utilizing two test ports.

EQUATIONS:

```
CO ppm = (CO % FS – Average CO Zero) \times \frac{\text{CO Cal Gas Value}}{\text{Average CO Span – Average CO Zero}}
\text{ppm @ 3% O}_2 = \text{ppm obsv. x 17.9/(20.9-\%O}_2 \text{ obsv.)}
\text{ppm @ 15\% O}_2 = \text{ppm obsv. x 5.9/(20.9-\%O}_2 \text{ obsv.)}
\text{lb/hr (NO}_x/\text{CO/NMHC)} = \text{ppm obsv. x 1.581x10-7 x DSCFM calc. x MW (@ 60°F)}
\text{lb/MMbtu} = (\text{ppm x MW x Fd Factor/SV x106 x 20.9/(20.9-\%O}_2) \text{ Or, } = \text{lb/hr/MMBtu/hr}}
```

Molecular Weight (MW) $NO_x = 46$ CO = 28 NMHC as $CH_4 = 16$ SV = 379.5 @ 60°F

APPENDIX D QUALITY ASSURANCE

Appendix D.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (MAQS) ASTM D7036-04 certification, MAQS is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. MAQS quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

Assignment of an Internal QA Officer: MAQS has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: MAQS has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of MAQS QA efforts. The manual is revised upon periodic review and as MAQS adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. MAQS training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the MAQS QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of MAQS emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

Knowledge of Current Test Methods: MAQS maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: MAQS maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to MAQS source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to MAQS office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)
- Flame Resistant Clothing (if required)

The following safety measures are followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	± 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	± 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	± 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	± 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	± 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	± 1.5%

Note: Calibration requirements that meet applicable regulatory agency requirements are used.

Appendix D.2 SCAQMD and STAC Certifications

September 14, 2023

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice

Reference #96LA1220

Dear Mr. Peterson:

We have completed our review of Montrose Air Quality Services' revised renewal application, which was submitted as notification of Montrose's recent acquisition of AirKinetics, Inc. under the South Coast AQMD Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2023, and ending September 30, 2024, for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

South Coast AQMD Methods 1-4 South Coast AQMD Methods 10.1 and 100.1 South Coast AQMD Methods 5.1, 5.2, 5.3, 6.1 (Sampling and Analysis) South Coast AQMD Methods 25.1 and 25.3 (Sampling) Rule 1121/1146.2 Protocol Rule 1420/1420.1/1420.2 - (Lead) Source and Ambient Sampling USEPA CTM-030 and ASTM D6522-00

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler Noritz America Corp. Ajax Boiler, Inc. 1510 North Spring Street 11160 Grace Avenue 2701 S. Harbor Blvd. Fountain Valley, CA 92708 Santa Ana, CA 92704 Los Angeles, CA 90012

VA Laundry Bldg., Greater LA Healthcare Sys. So Cal Gas - Engr Analysis Ctr, Bldg H

508 Constitution Avenue 8101 Rosemead Blvd Los Angeles, CA 90049 Pico Rivera, CA 90660

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Colin Eckerle. He may be reached by telephone at (909) 396-2476, or via e-mail at ceckerle@aqmd.gov.

Sincerely,

D. Sarkar

Dipankar Sarkar Program Supervisor Source Test Engineering

DS:CE Attachment

230914 LapRenewal.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 27th day of February 2024.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 3925.01 Valid to February 28, 2026

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement

Appendix D.3 Individual QI Certifications

Appendix D.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID: 119219

Date(s) Tested: June 27, 2024

Facility Name: Chiquita Canyon Landfill

Equipment Address: 29201 Henry Mayo Drive

Castaic, California 91384

Equipment Tested: Gas Flare No. 1 (John Zink)

Device ID, A/N, P/N: P/N G73696

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm: Montrose Air Quality Services, LLC

Business Address: 1631 E. St. Andrew Pl.

Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in *District Rule 304(k):*

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory;
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts or agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing, or the source testing information provided to the SCAQMD.

Signature:			Date:	8/21/2024
Pete SanJuan	1	Client Project Manager	(714) 279-6777	8/21/2024
(Name)		(Title)	(Phone)	(Date)

FORM ST-110 :stevforl.doc (Revised 11/18/98

APPENDIX E FACILITY PERMIT

Section D Page: 49
Facility ID: 119210
Revision # 11
Date: September 28, 2023

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

PERMIT TO OPERATE

Permit No. G73696 A/N 645450

Equipment Description:

Landfill gas flare system consisting of:.

- 1. 1. Two (2) HDPE Moisture Separators, One (1) 5'- 0" Dia. x 10' 6" H and One (1) 4' 0" Dia. x 10' 0" H, Common with Flare no.1, Flare no.2, and Flare no. 3 (A/N 624296).
- Two (2) Landfill Gas Blowers, 6,000 scfm each, 250 HP each and Two (2) Multi-stage Centrifugal Blowers, 4,000 scfm each, 150 HP each, Common with Flare no.1, Flare no.2, and Flare no. 3 (A/N 624296).
- 3. Condensate injection system with 1 GPM per Nozzle, Electric Condensate Pumps, Common with Flare no.1, Flare no.2, and Flare no. 3 (A/N 624296).
- 4. Automated ignition system with propane gas pilot assembly, ignition transformer, and two 5-gallon capacity propane tanks. Common with Flare no. 1 and Flare no. 2.
- Flare, no. 1, John Zink, Model ZTOF, 11'- 4" Dia. x 50'- 0" H., rated at 4000 scfm capacity, 120 mmBTU per hour with a flanie arrestor, UV scanner, four automatic combustion air dampers and flare alarm system.
- 6. Enclosed flare, no. 2, John Zink, Zink ultra-low emission (ZULE), 12'- 0" Dia. x 50'-0" H., maximum heat input of 120 mmBTU per hour of landfill gas, with a combustion air blower, combustion air/LFG mixing chamber, a flame arrestor, UV scanner, electric igniter, propane gas pilot, louvers, automatic landfill gas flow and flare temperature control system, and an automatic flare shutdown and alarm system.

Conditions:

- Operation of this equipment shall be conducted in compliance with all data and specifications submitted with the
 application under which this permit is issued unless otherwise noted below.

 [Rule 204]
- This equipment shall be properly maintained and kept in good operating condition at all times.
 [Rule 204]
- This equipment shall be operated and maintained by personnel properly trained in its operation.
 [Rule 204]
- 4. Each flare shall be equipped with a temperature indicator and recorder which measures and records the exhaust gas temperature in each flare stack. The temperature indicator and recorder shall operate whenever the flare is in operation. The temperature shall be measured at a location above the flame zone, at least 0.6 second downstream of the burner, and not less than three (3) feet below the top of each stack.

 [Rule 1303(a)(1)-BACT, 3004(a)(4)]

Section D Page: 50 Facility ID: 119219 Revision#: 11 Date: September 28, 2023

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

- 5. Whenever the flare(s) is (are) in operation, a temperature of not less than 1400 degrees Fahrenheit, 15 minute average, as measured by the temperature indicator and recorder shall be maintained except during periods of startup and shutdown. Startup is defined as the period from flare ignition to the time when 1400 degrees Fahrenheit is achieved, not to exceed 30 minutes. Shutdown is the period from when the gas valve begins to be shut and completely shuts off, not to exceed 30 minutes.

 [Rule 1303(a)(1)-BACT]
- 6. A flow indicator and recording device shall be maintained in the landfill gas supply line to each flare to measure and record the quantity of landfill gas (in setin) being burned in each flare.
 [Rule 1303(b)(2)-Offset, 3004(a)(4)]
- All recording devices shall be synchronized with respect to time of the day. [Rule 204]
- The total volume of landfill gas burned in each flare shall not exceed 4,000 standard cubic feet per minute (sofm).
 [Rule 1303(b)(1) and (b)(2)—Modeling and Offset, 1401]
- The maximum heat input rate to each flare shall not exceed 120 mmBTU per hour. A log shall be kept indicating the total heating value of landfill gas burned in each flare based on the recorded flow rate (scfin) and the latest weekly BTU content (BTU/scf) reading.

 [Rule 1303(b)(1) and (b)(2)—Modeling and Offset, 1401]
- 10. The automatic shutdown safety system shall be tested monthly for proper operation of each flare and the results recorded.
 [Rule 1303(a)(1)-BACT]
- 11. Condensate injection total flow rate and heat input rate (BTU/hr), for all of the nozzles, shall be recorded and records shall be maintained on file. Calculated injection rate for each nozzle shall not exceed 0.077 gpm/BTU/hr. [Rule 204]
- 12. The operator shall conduct annual performance source test for each of the flares (within 12 months of the prior source test), at maximum heat input rate, in accordance with South Coast AQMD approved source test protocol. Written notification of the scheduled test date shall be provided to the South Coast AQMD at least seven (7) days prior to the date so that the testing may be observed by South Coast AQMD personnel. The testing shall be conducted when the equipment is in full operation, and shall include, but not limited to, a test of the inlet to the flare and the flare exhaust for:
 - A. Methane
 - B. Total non-methane organic compounds (TNMOC)
 - Carcinogenic and toxic air contaminants (inlet and exhaust) including, but not limited to, compounds listed under Rule 1150.1, Table-1 (Core Group)
 - D. NOx, as NO2 (exhaust only)
 - E. SOx, as SO2 (exhaust only)
 - F. CO (exhaust only)
 - G. PM10 reported as total PM (exhaust only)
 - H. Oxygen
 - Moisture content
 - J. Temperature

Section D Page: 51
Facility ID: 119219
Revision # 11
Date: September 28, 2023

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

K. Flow rate

[Rule 1303(b)(1) and (b)(2)-Modeling and Offset, 1401, 3004(a)(4)]

- 13. The source test report, for each flare shall include,
 - A. Emissions of CO, NOx, TNMOCs, PM10 (total PM) and SOx, in units of lbs/hr and ppmv (except PM10), overall methane and TNMOC destruction efficiency (wt. %) and TNMOC emissions (ppmv), on a dry basis, as hexane at 3% oxygen.
 - B. The test shall be performed by a testing laboratory certified to meet the criteria in South Const AQMD Rule 304(k) (conflict of interest).
 - C. Sampling facilities shall comply with South Coast AQMD "Guidelines for Construction of Sampling and Testing Facilities" pursuant to Rule 217.

[Rule 204, 217, 1150.1, 40 CFR 60 Subpart XXX, 40 CFR 63 Subpart AAAA]

- The maximum flare skin temperature at any location shall not exceed 250 degrees Fahrenheit.
 [Rule 217]
- All landfill gas collected shall be directed to a processing facility, which can adequately process the volume of LFG collected, or to the combustion equipment that has been issued a valid Permit to Construct or Operate by the South Coast AQMD. [Rule 1150.1, 1303(a) (1)-BACT, 40 CFR 60 Subpart XXX, 40 CFR 63 Subpart AAAA]
- 16 Emissions from flare no. I shall not exceed the following:

Pollutant	lbs./hr	
CO	5.6	
NOx as NO2	3,9	
PM10	1.4	
ROG	0.92	
SOx as SO2	2.5	
[Rule 1303(a)(1)-BACT,	1303(b)(1) and (b)(2)-Modelin	g and Offset, 1401]

17 Emissions from flare no. 2 shall not exceed the following:

lbs./hr
7.2
2.4
1.4
1.33
2.5

[Rule 1303(a)(1)-BACT, 1303(b)(1) and (b)(2)-Modeling and Offset, 14011

Section D Page 52 Facility ID: 119219 Revision #: 11 Date: September 28, 2023

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

18. The operator shall operate and maintain this equipment according to the following requirements:

The exhaust temperature shall be maintained at a minimum of 1.400 degrees Fahrenheit (for F-1 & F-2) whenever the equipment it serves is in operation.

Continuous exhaust temperature monitoring and recording system shall be pursuant to the operation and maintenance requirements specified in 40 CFR Part 64.7. Such a system shall have an accuracy of within = 1% of the temperature being monitored and shall be inspected, maintained, and calibrated on an annual basis in accordance with the manufacturer's specifications using an applicable South Coast AQMD or EPA approved method.

For the purpose of this condition, a deviation shall be defined as when a temperature of less than 1,400 degrees. Fahrenheit (for F-1 & F-2) occurs during normal operation except during startups or shutdowns, not to exceed 30 minutes. The exhaust temperature shall be averaged over a 15-minute period,

And hourly average shall be computed from such data points. The operator shall review the records of temperature on a daily basis to determine if a deviation occurs or shall install an alarm system to alert the operator when a deviation occurs.

Semi-annual reporting specified in Condition No. 23 in Section K, whenever a deviation occurs in which the temperature of the flare falls below 1,400 degrees Fahrenheit, the operator shall take necessary corrective actions as expeditiously as practicable in accordance with good air pollution control practices for minimizing emissions. Records of the duration and cause (including unknown cause, if applicable) of the deviation and the corrective actions taken shall be included in the semi-annual reporting.

All deviations shall be reported to the South Coast AQMD on a semi-annual basis pursuant to the requirements specified in 40 CFR Part 64.9 and Condition Nos, 22 and 23 in Section K of this permit.

The operator shall submit an application with a quality improvement plan (QIP) in accordance with 40 CFR Part 64.8 to the South Coast AQMD if an accumulation of deviations exceeds 5 percent duration of this equipment's total operating time for any semi-annual reporting period specified in Condition No. 23 in Section K of this permit. The required QIP shall be submitted to the South Coast AQMD within 90 calendar days after the due date for the semi-annual monitoring report.

The operator shall keep adequate records in a format that is acceptable to the South Coast AQMD to demonstrate compliance with all applicable requirements specified in this condition and 40 CFR Part 64.9 for a minimum of five years.

[40 CFR Part 64]

19. Operation of this equipment shall not result in the release of raw landfill gas into the atmosphere. Any breakdown or malfunction of this equipment resulting in the emission of raw landfill gas shall be reported to the South Coast AQMD within twenty four hours after occurrence and immediate remedial measures shall be undertaken to correct the problem and prevent further emissions into the atmosphere.
[Rule 430]

Section D Page 53 Facility ID, 119219 Revision a: 11 Date: September 28, 2023

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

- 20. The applicant shall conduct a gas leak detection program with a combustible detector calibrated for methane by inspecting the blowers and all equipment downstream of the blowers. This inspection program shall be conducted once a week. All leaks detected above 500 ppm shall be reported to the South Coast AQMD within 24 hours of detection and repaired within 3 working days of detection. A log showing the results of each inspection shall be maintained and shall be available to South Coast AQMD personnel upon request. [Rule 1303(a)(1)-BACT, 402]
- All records shall be kept and maintained for at least five years and shall be made available to South Coast AQMD personnel upon request.
 [Rule 3004(a)(4)]

Emissions and Requirements:

22. This equipment is subject to the applicable requirements of the following rules and regulations:

CO: 2000 ppmv, Rule 407

CO: 0.06 lb/mmBTU heat input - BACT/LAER, flare no. 2 NOx: 0.06 lb/mmBTU heat input-BACT/LAER, flare no. 1 NOx: 0.025 lb/mmBTU heat input-BACT/LAER, flare no. 2

PM: Rule 404, see Appendix B for emissions limits

PM: 0.1 gr/scf, Rule 409

Methane: 99 wt. % destruction efficiency, Rule 1150.1

NMOC: 98 wt. % destruction efficiency or < 20 ppmv, hexane, 3% O2 dry, Rule 1150.1, 40 CFR 60 Subpart

XXX, 40 CFR 63 Subpart AAAA

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. Pete San Juan
Title: Client Project Manager

Region: West

Email: PSanJuan@montrose-env.com

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

Email: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. Pete SanJuan

Title: Client Project Manager

Region: West

Email: PSanjuan@montrose-env.com

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

Email: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

1 2 3 In The Matter Of 4 5 SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT, 6 Petitioner, 7 VS. 8 CHIQUITA CANYON, LLC a Delaware 9 Corporation, [Facility ID No. 119219] 10 Respondent. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28

BEFORE THE HEARING BOARD OF THE
SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

Case No. 6177-4

EXHIBIT R TO DECLARATION OF PATRICK SULLIVAN, BCES, CPP, REPA

Health and Safety Code § 41700, and District Rules 402, 431.1, 3002, 203, 1150

Hearing Date: June 4 and 17, 2025

Hearing Time: 9:30 A.M.
Place: Hearing Board

South Coast Air Quality Management District, 21865 Copley Drive Diamond Bar, CA 91765

SOURCE TEST REPORT FOR 2025 1ST QUARTER LEACHATE AND CONDENSATE VAPOR SAMPLING AT THE CHIQUITA CANYON LANDFILL FACILITY ID: 119219

Prepared For:

SCS Engineers – Chiquita Canyon Landfill 3900 Kilroy Airport Way, Suite 100 Long Beach, California 90806

For Submittal To:

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, California 91765-4178

Prepared By:

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Pete San Juan

Test Date: March 20, 2025
Production Date: April 18 2025

Document Number: W002AS-053154-RT-7193

CONFIDENTIALITY STATEMENT

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.

REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:		Date:	4/18/2025
Name:	Pete SanJuan	Title:	Client Project Manager
appropriate writte the presented ma	en materials contained her	ein. I hereby te, and confo	culations, results, conclusions, and other certify that, to the best of my knowledge, orms to the requirements of the Montrose
Signature:	Sugar	Date:	4/18/2025
Name:	Surya Adhikari	Title:	Senior Reporting QC Specialist

TABLE OF CONTENTS

SEC	CTION		<u>PAGE</u>
1.0	INTR	ODUCTION	5
2.0	FACI	LITY AND SOURCE INFORMATION	6
	2.1	PROCESS EQUIPMENT INFORMATION	6
3.0	TEST	INFORMATION AND METHODOLOGY	7
	3.1	SCAQMD METHOD 1.1 – SAMPLING AND VELOCITY TRAVERSES FOR STATIONARY SOURCES	7
	3.2	SCAQMD METHOD 2.1 – VELOCITY AND VOLUMETRIC FLOW RATE	8
	3.3	SCAQMD METHOD 3.1 – GAS ANALYSIS FOR DRY MOLECULAR WEIGHT AND EXCESS AIR	
	3.4	SCAQMD METHOD 4.1 – DETERMINATION OF MOISTURE CONTENT IN STACK GASES	8
	3.5	SCAQMD METHOD 307-91 – HYDROGEN SULFIDE AND REDUCED SULFU COMPOUNDS	
	3.6	EPA METHOD TO-15 – VOLATILES AND HYDROCARBON COLLECTED IN SUMMA CANISTER	
4.0	RESU	JLTS	9
LIS	T OF A	APPENDICES	
Α	TEST	DATA	11
	A.1	Sample Location Data	12
	A.2	Velocity, Moisture and Flow Rate Data	22
	A.3	Organics and Sulfur Field and Laboratory Data	42
	A.4	Quality Assurance Data	86
В	GEN	ERAL EMISSIONS CALCULATIONS	98
С	QUAI	LITY ASSURANCE	101
	C.1	Quality Assurance Program Summary	102
	C.2	SCAQMD and STAC Certifications	108
	C.3	Individual QI Certifications	111
	C.4	Statement of No Conflict of Interest	115
D	FACI	LITY PERMIT	117
LIS	T OF 1	TABLES	
3-1	TES	T PROCEDURES	7
4-1	H_2S	AND TOTAL REDUCED SULFUR RESULTS	9
4-2	TRA	CE ORGANICS SPECIES RESULTS	10

1.0 INTRODUCTION

Montrose Air Quality Services, LLC (MAQS) was contacted by SCS Engineers (SCS) to conduct quarterly sampling at various locations on the vapor ventilation system located at the Chiquita Canyon Landfill (Chiquita), in Castaic, California. Testing was conducted to comply with Condition 72 of the Modified Stipulated Order for Abatement (SOFA) issued to Chiquita by the South Coast Air Quality Management District (SCAQMD) on April 24, 2024. The tests were conducted according to the test protocol (MAQS Document Number W002AS-056454-PP-1074) and source test protocol evaluation (S/T ID: P24228). The Montrose test team consisted of Pete San Juan and Kyle Thomas. Pete San Juan was the on-site qualified individual for MAQS. MAQS qualifies as an independent testing laboratory under SCAQMD Rule 304 (no conflict of interest) and is certified by the SCAQMD to conduct testing for criteria pollutants according to District Methods.

Equipment and facility information is provided in Section 2.0. Source test information is detailed in Section 3.0. Test results are provided in Section 4.0. Supplemental information is contained in the Appendices.

2.0 FACILITY AND SOURCE INFORMATION

The facility address is:

Physical Address: Chiquita Canyon Landfill

29201 Henry Mayo Drive Castaic, California 91384

Sampling of leachate and condensate vapors was conducted from the following locations:

- The tank vents or manifolds which are representative of a set of tanks;
- The header/manifold from each leachate tank farm or manifold including Tank Farm #2, Tank Farm #6, Tank Farm #7A, Tank Farm #7B, Tank Farm #9A, and Tank Farm #9B, inlet to Zeeco Flare, Flare Station Pre-H2S treatment, and Flare Station Post-H2S treatment. Testing was performed upstream of the piping connection to the LFG Collection and Conveyance System where landfill gas may affect results.

2.1 PROCESS EQUIPMENT INFORMATION

Vapors created from the volatilization of chemicals in the head space in the leachate tanks at tank farms #2, #6, #7A, #7B, #9A and #9B are transferred under vacuum through the wellhead and into the landfill gas collection system then to the flare station for combustion. The pressure and temperature of the vapors in the piping varies based on ambient temperatures during normal operation. The facility operates 24 hours per day.

3.0 TEST INFORMATION AND METHODOLOGY

The pollutants measured and test methodology are summarized in Table 3-1. Volume flow rate measurements were performed before the sample collection.

The field sampling procedures utilized during the test program are described below. The published reference methods provide greater detailed descriptions than in this section. The purpose of this section is to provide an overview of the sampling methods and any variations. The sampling procedures are based on SCAQMD, and EPA Reference Methods.

TABLE 3-1 TEST PROCEDURES TEST PROGRAM OVERVIEW CHIQUITA CANYON LANDFILL LEACHATE AND CONDENSATE VAPOR SAMPLING

Parameter	Sample Medium	Analytical Technique	Reference Method	Number of Replicates
Flow Rate/Temperature	Pitot Tube / TC	Differential Pressure	SCAQMD 2.1	1 for each location
Moisture	Wet Bulb/Dry Bulb	Psychrometric Chart	SCAQMD 4.1	1 for each location
H₂S and TRS	Summa Can	GC/SCD	SCAQMD 307-91	1 for each location
TO-15 (Rule 1150.1)	Summa Can	Summa Can GC/MS		1 for each location

3.1 SCAQMD METHOD 1.1 – SAMPLING AND VELOCITY TRAVERSES FOR STATIONARY SOURCES

A preliminary source test site assessment was performed prior to the source test in order to determine applicable sample point traverse locations. The stack diameter, and the distance from sample ports to disturbances (bends, flanges, etc.), both upstream and downstream, were measured. This information is utilized to determine the minimum number of sampling points per traverse, and the distance from the inner stack wall to each sample point location. All sample locations were located according to the minimum requirements of SCAQMD Method 1.1. Additionally, this method considers cyclonic flow patterns and in-situ stratified pollutant concentrations. Cyclonic flow tests were performed at locations where flow was measurable.

3.2 SCAQMD METHOD 2.1 – VELOCITY AND VOLUMETRIC FLOW RATE

The velocity of the gas stream was determined by using an "S" type or standard pitot tube, a low flow electronic manometer, and type "K" thermocouple with a digital temperature measuring device. The calibrated pitot tube is connected to the calibrated electronic Air Data Multimeter (ADM) manometer and leak checked. A temperature and delta P is obtained at each traverse point, and a duct static pressure is measured and recorded. The dry volumetric flow rate is determined from the gas velocity data, stack pressure, stack gas moisture content, stack gas molecular weight, and cross-sectional area of duct.

3.3 SCAQMD METHOD 3.1 – GAS ANALYSIS FOR DRY MOLECULAR WEIGHT AND EXCESS AIR

Leachate and condensate vapor gases were analyzed by GC for O₂ and CO₂.

3.4 SCAQMD METHOD 4.1 – DETERMINATION OF MOISTURE CONTENT IN STACK GASES

Moisture was measured using a wet bulb/dry bulb and calculated with a psychrometric chart.

3.5 SCAQMD METHOD 307-91 – HYDROGEN SULFIDE AND REDUCED SULFUR COMPOUNDS

Samples for determination of hydrogen sulfide and speciated reduced sulfur compounds were collected in Summa canisters. The samples were analyzed by GC/SCD by AtmAA, Inc., in Calabasas, California, following SCAQMD Method 307-91 protocol. The samples are analyzed within 24 hours of sampling.

3.6 EPA METHOD TO-15 – VOLATILES AND HYDROCARBON COLLECTED IN SUMMA CANISTER

Samples were collected in glass silicate lined Summa canisters. The samples were analyzed by AtmAA Inc., located in Calabasas, California for volatile organics listed in SCAQMD Rule 1150.1 Table 1 list.

Sampling Procedure:

One summa can per location was filled with sample gas using an evacuated cylinder. The sampling probe was connected to the can with Teflon tubing. The samples were collected at a fixed point halfway into the sampling duct.

4.0 RESULTS

The emission results are presented in Tables 4-1 and 4-2. Site schematics are presented in Appendix A.1.

TABLE 4-1
H₂S AND TOTAL REDUCED SULFUR RESULTS
CHIQUITA CANYON LANDFILL
LEACHATE AND CONDENSATE VAPOR SAMPLING
MARCH 20, 2025

Parameter/Units	Tank Farm 6	Tank Farm 9A	Tank Farm 9B	Tank Farm 2	Tank Farm 7A	Tank Farm 7B	ZEECO	Flare Station Pre-H₂S	Flare Station Post-H₂S
N ₂ , %	77.59	74.80	77.27	74.00	76.26	75.93	29.74	17.50	18.76
H ₂ O, %	1.24	0.68	0.76	0.61	0.86	0.86	4.36	2.68	2.64
Flow Rate, scfm	230	190	281	58	214	224	1.164	1,761	1,731
Temperature, °F	81	78	76	77	79	79	165	90	90
O ₂ , %	21.82	21.17	21.88	20.66	21.52	21.29	6.75	4.04	3.64
CO ₂ , %	0.14	2.64	0.14	2.30	0.14	1.92	36.30	42.98	43.53
Sulfur Compounds									
H₂S, ppm	<0.10	10.5	<0.10	<.10	<0.10	0.69	209	301	< 0.40
Carbonyl Sulfide, ppm	<0.10	<0.10	<0.10	0.12	<0.10	<.10	0.71	1.07	0.98
Methyl Mercaptan, ppm	0.12	14.60	<0.10	1.46	<0.10	4.45	104	170	< 0.40
Ethyl Mercaptan, ppm	<0.10	0.22	<0.10	<.10	<0.10	<.10	1.64	2.43	< 0.40
Dimethyl Sulfide, ppm	3.54	49.90	1.76	62.30	1.60	28.90	284	502	495
Carbon Disulfide, ppm	<0.10	<0.10	<0.10	<.10	<0.10	<.10	<0.40	< 0.40	0.45
i-Propyl Mercaptan, ppm	<0.10	0.17	<0.10	<.10	<0.10	<.10	1.72	3.28	< 0.40
t-Butyl Mercaptan, ppm	<0.10	<0.10	<0.10	<.10	<0.10	<.10	< 0.40	< 0.40	< 0.40
n-Propyl Mercaptan, ppm	<0.10	<0.10	<0.10	0.85	<0.10	0.34	4.31	7.01	7.57
s-Butyl Mercaptan, ppm	<0.10	0.76	<0.10	0.94	<0.10	0.29	4.98	9.24	9.27
i-Butyl Mercaptan, ppm	<0.10	<0.10	<0.10	<.10	<0.10	<.10	< 0.40	< 0.40	< 0.40
Dimethyl Disulfide, ppm	<0.10	0.30	<0.10	1.33	<0.10	0.34	0.99	2.22	57.0
Tetrahydrothiophene, ppm	<0.10	0.38	<0.10	0.93	<0.10	0.16	2.07	3.87	4.51
Unidentified S Compounds, ppm	<0.10	2.18	<0.10	5.14	0.14	1.16	10.3	16.4	87.3
Total Sulfur Compounds									
Total Sulfur, ppm	3.66	79.24	1.76	74.38	1.73	36.64	624.2	1019.7	719.4

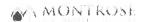
TABLE 4-2 TRACE ORGANICS SPECIES RESULTS CHIQUITA CANYON LANDFILL LEACHATE AND CONDENSATE VAPOR SAMPLING MARCH 20, 2025

Sample Location:	Tank	k Farm 6	Tar	ık Farm 9A	Tank	Farm 9B	Tai	nk Farm 2	Tank F	Farm 7A	Tank	Farm 7B		Zeeco		are Station Pre-H₂S		re Station ost-H₂S
Test No.:		1		1		1		1		1		1		1	1		1	
Start Time:		815		855		855		900	9	935		935		935		1010		1010
Flow Rate, scfm:		230		190	:	281		58	2	214		224		1,164		1,761		1,731
Species		ppb		ppb		opb		ppb	р	pb		ppb		ppb		ppb		ppb
Hydrogen sulfide:	<	100		10,500	<	100	<	100	<	100		685		209,000		300,500	<	400
Benzene:		765		15,400		358		23,650		421		6,500		81,900		127,000		116,000
Benzyl Chloride:	<	30	<	30	<	30	<	45	<	45	<	45	<	5,000	<	5,000	<	5,000
Chlorobenzene:	<	25	<	25	<	25		53.3	<	40	<	40	<	4,500	<	4,500	<	4,500
Dichlorobenzenes*:	<	40	<	40	<	40		214	<	60	<	60	<	6,500	<	6,500	<	6,500
1,1-dichloroethane:	<	30	<	30	<	30	<	45	<	45	<	45	<	5,000	<	5,000	<	5,000
1,2-dichloroethane:	<	30	<	30	<	30		51.6	<	45	<	45	<	5,000	<	5,000	<	5,000
1,1-dichloroethylene:	<	30	<	30	<	30	<	45	<	45	<	45	<	5,000	<	5,000	<	5,000
Dichloromethane:	<	60	<	60	<	60	<	100	<	100	<	100	<	11,000	<	11,000	<	11,000
1,2-dibromoethane:	<	15	<	15	<	15	<	25	<	25	<	25	<	3,000	<	3,000	<	3,000
Perchloroethylene:	<	15	<	15	<	15	<	25	<	25	<	25	<	3,000	<	3,000	<	3,000
Carbon Tetrachloride:	<	35	<	35	<	35	<	60	<	60	<	60	<	6,000	<	6,000	<	6,000
Toluene:		58.3		905		59.0		3,190		96.0		409		8,910		12,400		11,800
1,1,1-trichloroethane:	<	20	<	20	<	20	<	35	<	35	<	35	<	4,000	<	4,000	<	4,000
Trichloroethene:	<	20	<	20	<	20	<	35	<	35	<	35	<	4,000	<	4,000	<	4,000
Chloroform:	<	20	<	20	<	20	<	35	<	35	<	35	<	4,000	<	4,000	<	4,000
Vinyl Chloride:	<	20	<	20	<	20	<	35	<	35	<	35	<	4,000	<	4,000	<	4,000
M+P-xylenes:		36.1		309		49.5		1,535		71.6		156		4,580		5,360		5,440
O-xylene:	<	25		105	<	25		569	<	40		65.4	<	4,500	<	4,500	<	4,500

< - indicates that the species was not detected in the sample above the analytical detection limit for this species.

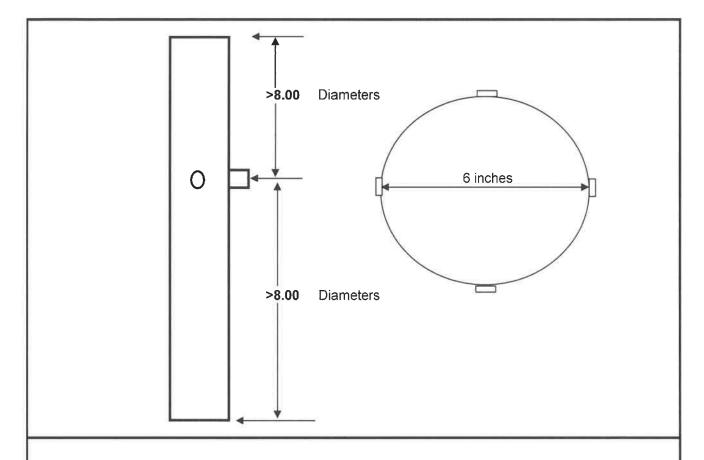
Due to high concentration of certain chemicals present in the sample (such as benzene etc.), affected samples were diluted for the analysis which resulted the elevated detection limits.

The values reported is the detection limit for the species and the actual concentration is lower.


^{*}Total amount containing meta, para, and ortho isomers.

APPENDIX A TEST DATA

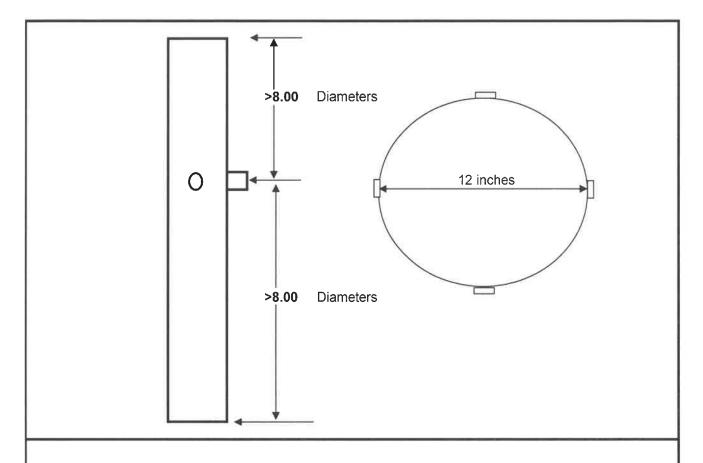
Appendix A.1 Sample Location Data



METHOD 1 DATA SHEET INLET SAMPLE LOCATION

Client: SCS Field Services Date: 3/20/25

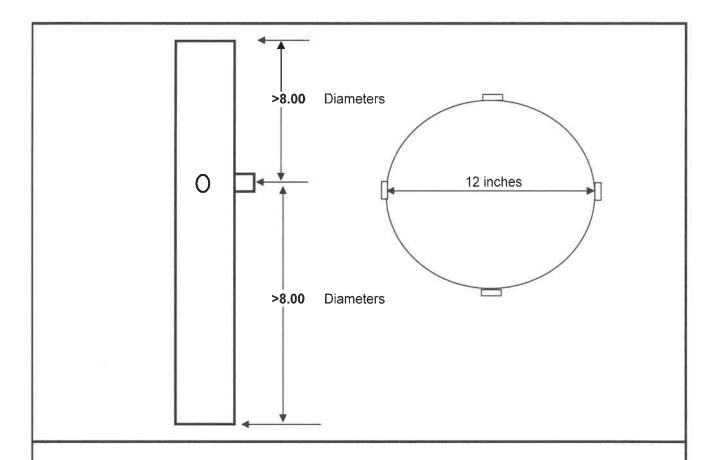
Location: Chiquita TF 6 Performed By: SJ, KT


Diameter (inches)	6.00	Sample	% of	Dist from	Dist from
		Point	Diameter	Wall (inches)	Port (inches)
Upstream (inches)	48.00	1	4.4	0.5	0.5
		2	14.6	0.9	0.9
Downstream (inches)	48.00	3	29.6	1.8	1.8
		4	70.4	4.2	4.2
Coupling (in.)	0.00	5	85.4	5.1	5.1
		6	95.6	5.5	5.5
Stack Area (ft ²)	0.196	·			

METHOD 1 DATA SHEET INLET SAMPLE LOCATION

Client: SCS Field Services Date: 3/20/25

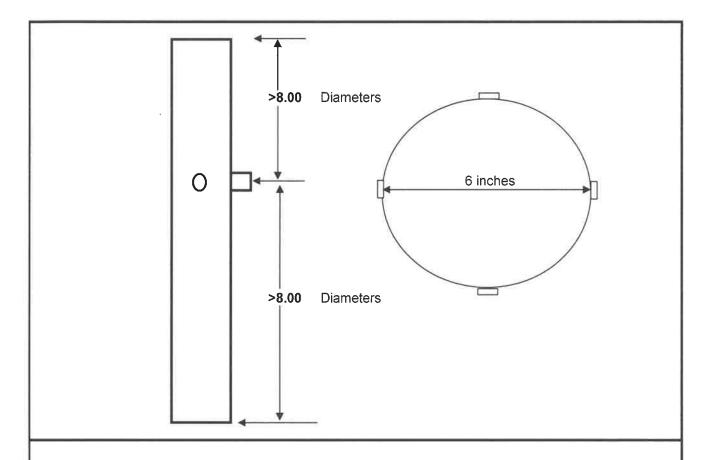
Location: Chiquita TF 9A Performed By: SJ, KT


Diameter (inches)	12.00	Sample	% of	Dist from	Dist from
	-	Point	Diameter	Wall (inches)	Port (inches)
Upstream (inches)	96.00	1	4.4	0.5	0.5
		2	14.6	1.8	1.8
Downstream (inches)	96.00	3	29.6	3.6	3.6
	7	4	70.4	8.4	8.4
Coupling (in.)	0.00	5	85.4	10.2	10.2
		6	95.6	11.5	11.5
Stack Area (ft²)	0.785				

METHOD 1 DATA SHEET INLET SAMPLE LOCATION

Client: SCS Field Services Date: 3/20/25

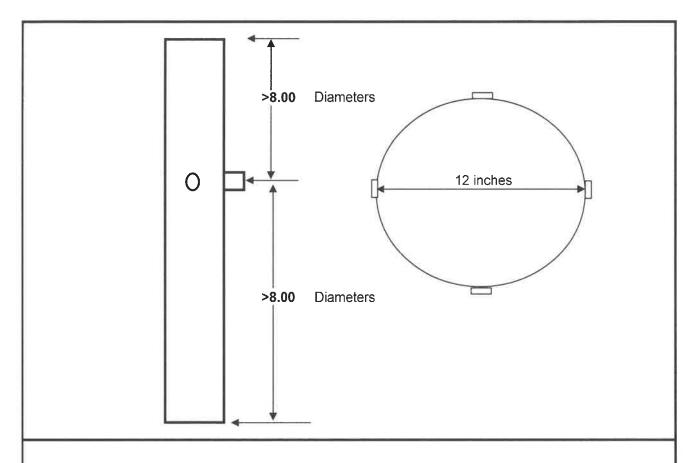
Location: Chiquita TF 9B Performed By: SJ, KT



Diameter (inches)	12.00	Sample	% of	Dist from	Dist from
, , ,		Point	Diameter	Wall (inches)	Port (inches)
Upstream (inches)	96.00	1	4.4	0.5	0.5
		2	14.6	1.8	1.8
Downstream (inches)	96.00	3	29.6	3.6	3.6
		4	70.4	8.4	8.4
Coupling (in.)	0.00	5	85.4	10.2	10.2
		6	95.6	11.5	11.5
Stack Area (ft²)	0.785	-			

Client: SCS Field Services Date: 3/20/25

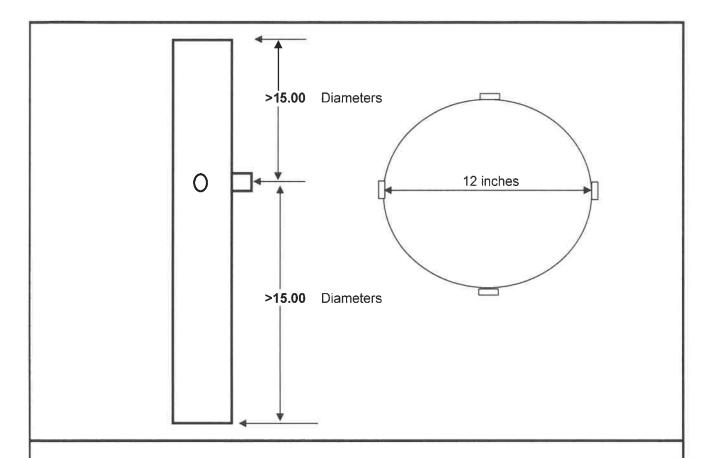
Location: Chiquita TF 2 Performed By: SJ, KT



Diameter (inches)	6.00	Sample	% of	Dist from	Dist from
		Point	Diameter	Wall (inches)	Port (inches)
Upstream (inches)	48.00	1	4.4	0.5	0.5
		2	14.6	0.9	0.9
Downstream (inches)	48.00	3	29.6	1.8	1.8
		4	70.4	4.2	4.2
Coupling (in.)	0.00	5	85.4	5.1	5.1
		6	95.6	5.5	5.5
Stack Area (ft²)	0.196				

Client: SCS Field Services Date: 3/20/25

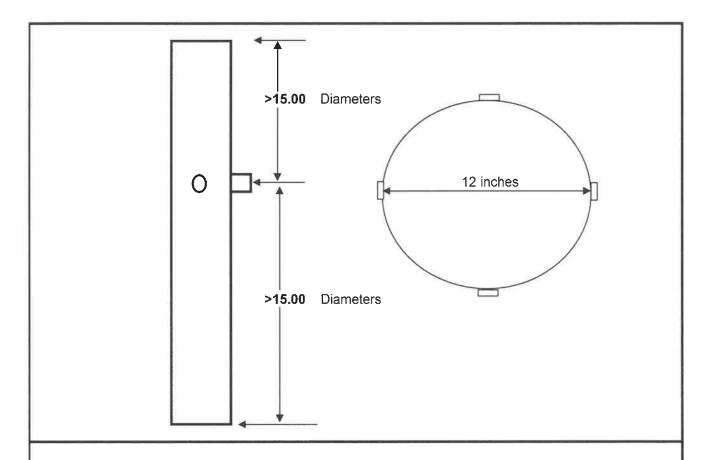
Location: Chiquita TF 7A Performed By: SJ, KT



Diameter (inches)	12.00	Sample	% of	Dist from	Dist from
, ,		Point	Diameter	Wall (inches)	Port (inches)
pstream (inches)	96.00	1	4.4	0.5	0.5
		2	14.6	1.8	1.8
wnstream (inches)	96.00	3	29.6	3.6	3.6
		4	70.4	8.4	8.4
g (in.)	0.00	5	85.4	10.2	10.2
		6	95.6	11.5	11.5
rea (ft²)	0.785				

Client: SCS Field Services Date: 3/20/25

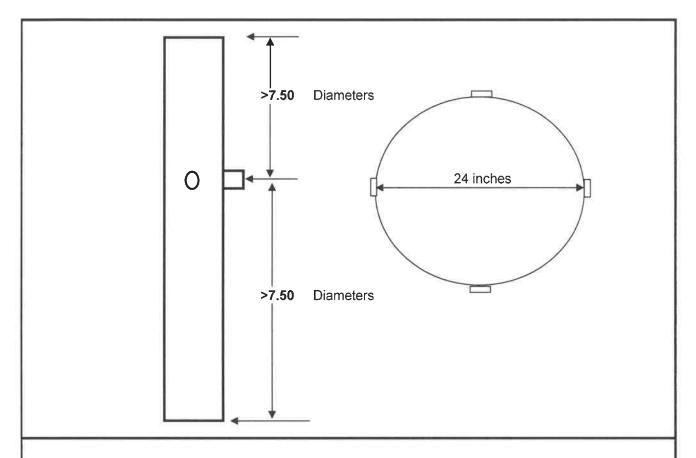
Location: Chiquita TF 7B Performed By: SJ, KT



Diameter (inches)	12.00	Sample	% of	Dist from	Dist from
		Point	Diameter	Wall (inches)	Port (inches)
Upstream (inches)	180.00	1	4.4	0.5	0.5
		2	14.6	1.8	1.8
Downstream (inches)	180.00	3	29.6	3.6	3.6
		4	70.4	8.4	8.4
Coupling (in.)	0.00	5	85.4	10.2	10.2
		6	95.6	11.5	11.5
Stack Area (ft²)	0.785	1			

Client: SCS Field Services Date: 3/20/25

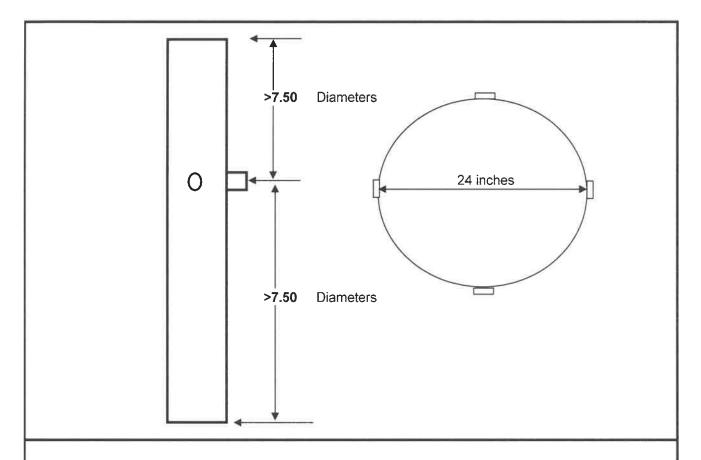
Location: Chiquita Zeeco Flare Inlet Performed By: SJ, KT



12.00	Sample	% of	Dist from	Dist from
V 	Point	Diameter	Wall (inches)	Port (inches)
180.00	1	4.4	0.5	0.5
	2	14.6	1.8	1.8
180.00	3	29.6	3.6	3.6
	4	70.4	8.4	8.4
0.00	5	85.4	10.2	10.2
	6	95.6	11.5	11.5
0.785				
	180.00 180.00 0.00	Point 180.00 1 2 180.00 3 4 0.00 5 6	180.00 Point Diameter 1 4.4 2 14.6 180.00 3 29.6 4 70.4 0.00 5 85.4 6 95.6	Point Diameter Wall (inches) 180.00 1 4.4 0.5 2 14.6 1.8 180.00 3 29.6 3.6 4 70.4 8.4 0.00 5 85.4 10.2 6 95.6 11.5

Client: SCS Field Services Date: 3/20/25

Location: Flare Station Pre-H2S Performed By: SJ, KT



ameter (inches)	24.00	Sample	% of	Dist from	Dist from
		Point	Diameter	Wall (inches)	Port (inches
pstream (inches)	180.00	1	3.2	0.8	0.8
		2	10.5	2.5	2.5
ownstream (inches)	180.00	3	19.4	4.7	4.7
		4	32.3	7.8	7.8
oupling (in.)	0.00	5	67.7	16.2	16.2
		6	80.6	19.3	19.3
tack Area (ft²)	3.142	7	89.5	21.5	21.5
		8	96.8	23.2	23.2

Client: SCS Field Services Date: 3/20/25

Location: Flare Station Post-H2S Performed By: SJ, KT

ameter (inches)	24.00	Sample	% of	Dist from	Dist from
	2 2	Point	Diameter	Wall (inches)	Port (inches)
stream (inches)	180.00	1	3.2	0.8	0.8
		2	10.5	2.5	2.5
ownstream (inches)	180.00	3	19.4	4.7	4.7
		4	32.3	7.8	7.8
oupling (in.)	0.00	5	67.7	16.2	16.2
		6	80.6	19.3	19.3
ack Area (ft²)	3.142	7	89.5	21.5	21.5
		8	96.8	23.2	23.2

Appendix A.2 Velocity, Moisture and Flow Rate Data

MONTROSE AQS <u>Duct Moisture by Wet bulb/Dry bulb Measurements</u>

Facility: Chiquita Canyon Landfill TEST DATE: March 20, 2025

CEM I.D.: T-4

BY: PSJ

$$B_{ws} = \frac{e_a^{"}}{P_a}$$

$$e_a = e'' - \frac{(P_a - e'')[T_{dry} - T_{wet}]}{2800 - 1.3 \times T_{wet}}$$

		Static						
	P_{bar}	Pressure	P_{a}	T_{dry}	T_{wet}	e_a	B_{ws}	e"
		(in. of H ₂ O)						
Tank Farm 6	29.03	-4.50	28.7011	81	61	0.3562	1.24	0.56307
Tank Farm 9A	29.03	-0.007	29.0315	78	55	0.198489	0.68	0.439506
Tank Farm 9B	29.03	-0.009	29.0313	76	55	0.219448	0.76	0.439506
Tank Farm 2	29.03	-0.006	29.0316	77	54	0.178052	0.61	0.419127
Tank Farm 7A	29.03	-0.005	29.0316	79	57	0.249873	0.86	0.480303
Tank Farm 7B	29.03	-0.005	29.0316	79	57	0.249873	0.86	0.480303
Zeeco	29.03	-2.800	28.8261	165	100	1.256142	4.36	1.91137
Flare Station Pre	29.03	-0.020	29.0305	90	76	0.778127	2.68	0.923801
Flare Station Post	29.03	5.200	29.4144	90	76	0.776138	2.64	0.923801

WAS TRAINED	TES	T CONSTA	NTS	Tweet & signa (E 1991). Li
		Station:	Chiquita C	Canyon Landfill
		Unit:	Tank Farr	n 6
	Per	formed By:	3/20/2025	5
		Ср:	0.84	
		T_{ref} :	60	°F
	5	Stack Area:	0.196	ft ²
TEXT DE		T VARIABI		
		Start Date:		
		/End Time:		8:45
		Condition:		
	Barom	. Pressure:		
		Pstack:		iwg
		Pstack:		"Hg
		MW Wet:		lb/lb-mole
		MW Dry:		lb/lb-mole
		4.04	Moisture	5
Moistur	e Content:	1.24		From WbDb
		Fuel Gas		
	O ₂ :	21.82		From canister analysis
	CO ₂ :	0.14	%	From canister analysis
	N_2 :	77.59	%	From canister analysis
	CH₄:	0.14	%	From canister analysis
		MET	HOD 2.1 D	
	dP		Temp	Vel.
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)
1	0.130	0.3606	81	20.96
2	0.150	0.3873	81	22.52
3	0.100	0.3162	81	18.39
4	0.090	0.3000	81	17.44
5	0.120	0.3464	81	20.14
6	0.110	0.3317	81	19.28
1	0.120	0.3464	81	20.14
2	0.160	0.4000	81	23.26
3	0.150	0.3873	81	22.52
4	0.170	0.4123	81	23.97
5	0.150	0.3873	81	22.52
6	0.160	0.4000	81	23.26
Average	0.1329	0.3646	81	21.20
	Flow Rate:	250	wacfm	
	Flow Rate:	230	scfm	
	Flow Rate:	227	dscfm	

1645	TES	T CONSTA	NTS	
		Station:	Chiquita C	Canyon Landfill
		Unit:	Tank Farr	n 9A
	Per	formed By:	3/20/2025	5
		Cp:	0.84	
		T_{ref} :	60	°F
	5	Stack Area:	0.785	ft ²
See I	TES	T VARIAB		
		Start Date:		
		/End Time:		9:25
		Condition:		
	Barom	. Pressure:		
		Pstack:		iwg
		Pstack:		"Hg
		MW Wet:		lb/lb-mole
		MW Dry:		lb/lb-mole
Majahur	- Comtout	0.00	Moisture	Carro MADo
ivioistur	e Content:	0.68		From WbDb
	0.		Composis	
	O ₂ :	21.17		From canister analysis
	CO ₂ :	2.64	%	From canister analysis
	N_2 :	74.80	%	From canister analysis
	CH₄:	0.75	%	From canister analysis
		MET	HOD 2.1 D	
	dΡ		Temp	Vel.
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)
1	0.005	0.0707	78	4.06
2	0.007	0.0837	78	4.80
3	0.006	0.0775	78	4.45
4	0.006	0.0775	78	4.45
5	0.008	0.0894	78	5.13
6	0.005	0.0707	78	4.06
1	0.005	0.0707	78	4.06
2	0.006	0.0775	78 70	4.45
3	0.005	0.0707	78 70	4.06
4	0.007	0.0837	78 70	4.80
5	0.003	0.0548	78 70	3.14
6 Average	0.005	0.0707	78	4.06
Average	0.0056	0.0748	78	4.29
F	Flow Rate:	202	wacfm	
	Flow Rate:	190	scfm	
	Flow Rate:	188	dscfm	

	TEST	CONSTA	NTS			
		Station:	Chiquita C	anyon Landfill		
	Unit: Tank Farm 9B					
	Per	formed By:	3/20/2025	;		
		Ср:	0.84			
		T _{ref} :	60	°F		
	5	Stack Area:	0.785	ft ²		
Res (m)	TES	T VARIAB				
		Start Date:				
		End Time:		9:25		
	Test	Condition:				
	Barom	. Pressure:				
		Pstack:		iwg		
		Pstack:		"Hg		
		MW Wet:		lb/lb-mole		
		MW Dry:		lb/lb-mole		
		0.70	Moisture			
Moisture	e Content:	0.76		From WbDb		
			Composis			
	O ₂ :	21.88		From canister analysis		
	CO ₂ :	0.14	%	From canister analysis		
	N_2 :	77.27	%	From canister analysis		
	CH₄:	0.14	%	From canister analysis		
Dalling		MET	HOD 2.1 D			
	dΡ		Temp	Vel.		
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)		
1	0.013	0.1140	76	6.56		
2	0.013	0.1140	76	6.56		
3	0.013	0.1140	76	6.56		
4	0.010	0.1000	76	5.76		
5	0.013	0.1140	76	6.56		
6	0.012	0.1095	76	6.31		
1	0.012	0.1095	76	6.31		
2	0.012	0.1095	76	6.31		
3	0.013	0.1140	76	6.56		
4	0.012	0.1095	76	6.31		
5	0.011	0.1049	76	6.04		
6	0.012	0.1095	76	6.31		
Average	0.0121	0.1102	76	6.34		
	Flow Rate:	299	wacfm			
	Flow Rate:	281	scfm			
	Flow Rate:	279	dscfm			

5 X 4 X	TES	CONSTA	NTS			
	Station: Chiquita Canyon Landfill					
		Unit:	Tank Farr	n 2		
	Per	formed By:	3/20/2025	5		
		Cp:	0.84			
		T_{ref} :	60	°F		
	5	Stack Area:	0.196	ft ²		
	TES	T VARIAB	LES			
		Start Date:				
		/End Time:		9:30		
		Condition:				
	Barom	. Pressure:				
		Pstack:		iwg		
		Pstack:		"Hg		
		MW Wet:		lb/lb-mole		
		MW Dry:		lb/lb-mole		
	O L L	0.04	Moisture	F W5 D1		
Moistur	e Content:	0.61		From WbDb		
			Composis			
	O ₂ :	20.66		From canister analysis		
	CO ₂ :	2.30		From canister analysis		
	N_2 :	74.00	%	From canister analysis		
	CH₄:	0.14	%	From canister analysis		
10.57		MET	HOD 2.1 D			
	dΡ		Temp	Vel.		
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)		
1	0.006	0.0775	77	4.49		
2	0.007	0.0837	77	4.85		
3	0.007	0.0837	77	4.85		
4	0.009	0.0949	77	5.50		
5	0.010	0.1000	77	5.80		
6	0.013	0.1140	77	6.61		
1	0.008	0.0894	77	5.18		
2	0.009	0.0949	77	5.50		
3	0.007	0.0837	77 	4.85		
4	0.005	0.0707	77	4.10		
5	0.009	0.0949	77 77	5.50		
6	0.010	0.1000	77	5.80		
Average	0.0082	0.0906	77	5.25		
ı	Flow Rate:	62	wacfm			
	Flow Rate:	58	scfm			
	Flow Rate:	58	dscfm			

	TES	T CONSTA	NTS		
Station: Chiquita Canyon Landfill					
		Unit:	Tank Farr	n 7A	
	Per	formed By:	3/20/2025	5	
		Cp:	0.84		
		T_{ref} :	60	°F	
	5	Stack Area:	0.785	ft ²	
		T VARIAB			
		Start Date:			
		/End Time:		10:05	
	Test	Condition:	Normal		
	Barom	. Pressure:	29.03		
		Pstack:	-0.005	iwg	
		Pstack:	29.03	"Hg	
		MW Wet:	28.23	lb/lb-mole	
		MW Dry:	28.32	lb/lb-mole	
			Moisture		
Moisture	e Content:	0.86		From WbDb	
		Fuel Gas	Composis	tion Data	
	O ₂ :	21.52	%	From canister analysis	
	CO ₂ :	0.14	%	From canister analysis	
	N ₂ :	76.26	%	From canister analysis	
	CH ₄ :	0.14	%	From canister analysis	
		MET	HOD 2.1 D		
	dΡ		Temp	Vel.	
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)	
1	0.005	0.0707	79	4.11	
2	0.007	0.0837	79	4.86	
3	0.006	0.0775	79	4.50	
4	0.009	0.0949	79	5.52	
5	0.008	0.0894	79	5.20	
6	0.007	0.0837	79	4.86	
1	0.006	0.0775	79	4.50	
2	0.008	0.0894	79	5.20	
3	0.006	0.0775	79	4.50	
4	0.005	0.0707	79	4.11	
5	0.009	0.0949	79	5.52	
6	0.008	0.0894	79	5.20	
Average	0.0069	0.0833	79	4.84	
	low Rate:	228	wacfm		
	low Rate:	214	scfm		
	low Rate:	212	dscfm		

TEST CONSTANTS					
				Canyon Landfill	
		Unit:	Tank Farr	n 7B	
	Per	formed By:	3/20/2025	5	
		Cp:	0.84		
		T_{ref} :	60	°F	
	5	Stack Area:	0.785	ft²	
		T VARIAB			
		Start Date:			
		/End Time:		10:05	
		Condition:			
	Barom	. Pressure:			
		Pstack:		iwg	
		Pstack:		"Hg	
		MW Wet:		lb/lb-mole	
		MW Dry:		lb/lb-mole	
Maiatura	- 0	0.00	Moisture	France M/h Dh	
Wolstur	e Content:	0.86		From WbDb	
			Composis		
	O ₂ :	21.29		From canister analysis	
	CO ₂ :	1.92	%	From canister analysis	
	N_2 :	75.93	%	From canister analysis	
	CH₄:	0.14	%	From canister analysis	
		MET	HOD 2.1 D	ATA	
	dΡ		Temp	Vel.	
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)	
1	0.007	0.0837	79	4.81	
2	0.009	0.0949	79	5.46	
3	0.008	0.0894	79	5.14	
4	0.009	0.0949	79	5.46	
5	0.008	0.0894	79	5.14	
6	0.007	0.0837	79	4.81	
1	0.006	0.0775	79	4.46	
2	0.009	0.0949	79	5.46	
3	0.010	0.1000	79	5.75	
4	0.011	0.1049	79	6.03	
5	0.006	0.0775	79 70	4.46	
6	0.005	0.0707	79	4.07	
Average	0.0078	0.0884	79	5.09	
	Flow Rate:	240	wacfm		
	Flow Rate:	224	scfm		
	Flow Rate:	222	dscfm		

	TEST CONSTANTS					
		Station:	Chiquita C	Canyon Landfill		
Unit: Zeeco						
	5					
		Cp:	0.84			
		T _{ref} :	60	°F		
	5	Stack Area:	0.785	ft ²		
Prince of the	TES	T VARIAB	LES			
		Start Date:	3/20/25			
	Start	/End Time:	9:35	10:05		
	Test	Condition:	Normal			
	Barom	. Pressure:	29.03			
		Pstack:	-2.80	iwg		
		Pstack:	28.83	"Hg		
		MW Wet:		lb/lb-mole		
		MW Dry:	32.27	lb/lb-mole		
			Moisture			
Moisture Content: 4.36 % From WbDb						
			Composis			
	O ₂ :	6.75	%	From canister analysis		
	CO ₂ :	36.30	%	From canister analysis		
	N ₂ :	29.74	%	From canister analysis		
	CH₄:	36.3	%	From canister analysis		
		MET	HOD 2.1 D	ATA		
	dP		Temp	Vel.		
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)		
1	0.270	0.5196	165	30.84		
2	0.280	0.5292	165	31.40		
3	0.300	0.5477	165	32.50		
4	0.300	0.5477	165	32.50		
5	0.280	0.5292	165	31.40		
6	0.260	0.5099	165	30.26		
1	0.280	0.5292	165	31.40		
2	0.270	0.5196	165	30.84		
3	0.280	0.5292	165	31.40		
4	0.240	0.4899	165	29.07		
5	0.250	0.5000	165	29.67		
6	0.230	0.4796	165	28.46		
Average	0.2696	0.5192	165	30.81		
	Iour Doto:	1 AEO	waster			
	low Rate:	1,452	wacfm			
	low Rate:	1,164 1,113	scfm dscfm			

	TEST CONSTANTS				
		Station:	Chiquita C	Canyon Landfill	
		Unit:	Flare Stat	ion Pre-H2S	
	Per	formed Bv:	3/20/2025	j	
		Cp:			
		T _{ref} :		°F	
				ft ²	
		Stack Area:		II.	
		T VARIAB Start Date:			713
		Start Date: /End Time:		10:10	
				10:40	
		Condition: Pressure:			
	Darvill			ina	
		Pstack:		iwg	
		Pstack: MW Wet:		"Hg lb/lb-mole	
		MW Dry:		fb/lb-mole	
		ועו איזעו ווען.		ID/ID-ITIOIE	
Moistur	e Content:	2.68	Moisture %	From WbDb	
เขาประเนา	e Content.				
(E) (F) / (II)			Composis		
	O ₂ :	4.04		From canister analysis	
	CO ₂ :	42.98		From canister analysis	
	N ₂ :	17.50		From canister analysis	
	CH₄:	28.78	%	From canister analysis	
N. V.	III.	MET	HOD 2.1 D		
	dP	(D)	Temp	Vel.	
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)	
1	0.026	0.1612	90	9.28	
2	0.025	0.1581	90	9.10	
3	0.028	0.1673	90	9.63	
4	0.027	0.1643	90	9.46	
5	0.029	0.1703	90	9.80	
. ^	0.000	0.4070	~~		
6	0.028	0.1673	90	9.63	
7	0.031	0.1761	90	9.63 10.13	
7 8	0.031 0.030	0.1761 0.1732	90 90	9.63 10.13 9.97	
7 8 1	0.031 0.030 0.033	0.1761 0.1732 0.1817	90 90 90	9.63 10.13 9.97 10.46	
7 8 1 2	0.031 0.030 0.033 0.032	0.1761 0.1732 0.1817 0.1789	90 90 90 90	9.63 10.13 9.97 10.46 10.30	
7 8 1 2 3	0.031 0.030 0.033 0.032 0.033	0.1761 0.1732 0.1817 0.1789 0.1817	90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46	
7 8 1 2 3 4	0.031 0.030 0.033 0.032 0.033 0.032	0.1761 0.1732 0.1817 0.1789 0.1817 0.1789	90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46 10.30	
7 8 1 2 3 4 5	0.031 0.030 0.033 0.032 0.033 0.032 0.037	0.1761 0.1732 0.1817 0.1789 0.1817 0.1789 0.1924	90 90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46 10.30 11.07	
7 8 1 2 3 4 5 6	0.031 0.030 0.033 0.032 0.033 0.032 0.037 0.035	0.1761 0.1732 0.1817 0.1789 0.1817 0.1789 0.1924 0.1871	90 90 90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46 10.30 11.07	
7 8 1 2 3 4 5 6 7	0.031 0.030 0.033 0.032 0.033 0.032 0.037 0.035 0.038	0.1761 0.1732 0.1817 0.1789 0.1817 0.1789 0.1924 0.1871 0.1949	90 90 90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46 10.30 11.07 10.77	
7 8 1 2 3 4 5 6 7 8	0.031 0.030 0.033 0.032 0.033 0.032 0.037 0.035 0.038 0.039	0.1761 0.1732 0.1817 0.1789 0.1817 0.1789 0.1924 0.1871 0.1949 0.1975	90 90 90 90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46 10.30 11.07 10.77 11.22	
7 8 1 2 3 4 5 6 7	0.031 0.030 0.033 0.032 0.033 0.032 0.037 0.035 0.038 0.039	0.1761 0.1732 0.1817 0.1789 0.1817 0.1789 0.1924 0.1871 0.1949	90 90 90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46 10.30 11.07 10.77	
7 8 1 2 3 4 5 6 7 8 Average	0.031 0.030 0.033 0.032 0.033 0.032 0.037 0.035 0.038 0.039	0.1761 0.1732 0.1817 0.1789 0.1817 0.1789 0.1924 0.1871 0.1949 0.1975	90 90 90 90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46 10.30 11.07 10.77 11.22	
7 8 1 2 3 4 5 6 7 8 Average	0.031 0.030 0.033 0.032 0.033 0.032 0.037 0.035 0.038 0.039	0.1761 0.1732 0.1817 0.1789 0.1817 0.1789 0.1924 0.1871 0.1949 0.1975	90 90 90 90 90 90 90 90	9.63 10.13 9.97 10.46 10.30 10.46 10.30 11.07 10.77 11.22	

	TES	T CONSTA	NTS	
		Station:	Chiquita C	Canyon Landfill
1		Unit	Flare Stat	ion Post-H2S
	Per	formed By:	3/20/2025	5
		Cp:	0.84	
		T _{ref}	60	°F
	5	Stack Area:		ft ²
		T VARIAB		
		Start Date:	3/20/25	
	Start	/End Time:	10:10	10:40
	Test	: Condition:	Normal	
	Barom	. Pressure:	29.03	
		Pstack:	5.20	iwg
		Pstack:	29.41	"Hg
		MW Wet:	29.41	lb/lb-mole
		MW Dry:	29.72	lb/lb-mole
			Moisture	
Moisture	Content:	2.64		From WbDb
By a chi	West of the	Fuel Gas	Composis	tion Data
	O ₂ :	3.64	%	From canister analysis
	CO ₂ :	43.53	%	From canister analysis
N ₂ : 18.76			· %	From canister analysis
	CH ₄ :	25.95	%	From canister analysis
		MET	HOD 2.1 D	ATA
	dΡ		Temp	Vel.
Point	(in. H ₂ O)	sqrt(dP)	°F	(fps)
1	0.031	0.1761	90	10.06
2	0.027	0.1643	90	9.39
3	0.025	0.1581	90	9.04
4	0.029	0.1703	90	9.73
5	0.028	0.1673	90	9.57
6	0.027	0.1643	90	9.39
7	0.029	0.1703	90	9.73
8	0.030	0.1732	90	9.90
1	0.025	0.1581	90	9.04
2	0.029	0.1703	90	9.73
3	0.031	0.1761	90	10.06
4	0.034	0.1844	90	10.54
5	0.033	0.1817	90	10.38
6	0.036	0.1897	90	10.85
7	0.034	0.1844	90	10.54
8	0.031	0.1761	90	10.06
Average	0.0299	0.1728	90	9.88
	low Rate:	1,862	wacfm	
-	low Rate:	1,731	scfm	
	low Rate:	1,685	dscfm	

FLUE GAS VELOCITY DATA AND WORKSHEET CLIENT: W/C SCS TANK FRAM 6 LOCATION/UNIT: CHIQUITA PERFORMED BY: 55, KT TEST DATE: 3 20 25 BAR. PRESSURE: 29.03 TC READOUT ID: PTC 43 DP INDICATOR ID: ADM 350#9 TCID: LUBS DB DP INDICATOR TYPE: CIECTONIC PITOT TUBE ID: 145 0.84 ZERO: LEVEL: LEAK CHECK PRE- POST-BALANCE CHECK WEIGHT_ Ps: - 4.50 Run #: Run #: Run #: Ps: 0815 0845 Start: Stop: Start: Stop: Start: Stop: Sample Point Vel. Head Vel Head Vel Head Temp, °F Temp, °F Temp, °F Sample Point Sample Point inches H₂O inches H2O inches H2O 20 8 0.130 2 0.150 8 ١ 0-160 8 0 0.09 2 5 0.12 8 3 81 0.11 t 0-12 81 0.16 8 0.15 21 0 0.17 81 5 0.15 81 0-16 81 Heated Line Temp. °F \ Heated Line Temp. °F Heated Line Temp. °F. Chiller Temp. °C Chiller Temp. °C Chiller Temp. °C

FLUE GAS VELOCITY DATA AND WORKSHEET CLIENT: WIC 505 LOCATION/UNIT: CHIDUITA
TEST DATE: 3/20/25
TC READOUT ID: PTC 43 TANK FORM 9A PERFORMED BY: 55 A BAR. PRESSURE: 2903 DP INDICATOR ID: &OM 750#1 TC ID: PB Cp: 0.8 DP INDICATOR TYPE: GEGOONIC ZERO: LEVEL: LEAK CHECK PRE-___POST-BALANCE CHECK WEIGHT_ -0.007 Run #: Run #: Run #: Ps: 0854 0925 Start: Stop: Start: Stop: Stop: Start: Sample Point Vel. Head Vel. Head Vel. Head Temp, °F Temp, °F Temp, °F Sample Point Sample Point inches H₂O inches H₂O inches H₂O 0.005 78 _ 4 0-007 78 3 2 1000 78 ŧ 4 0.006 78 4 5 0.008 78 6 0.005 78 0.005 78 2 78 0.006 0 3 0005 78 2 1000 78 5 8 0.003 78 2 م 0.005 Heated Line Temp. °F Heated Line Temp. °F Heated Line Temp. °F. Chiller Temp. °C Chiller Temp. °C Chiller Temp. °C

CLIENT: W/	LIENT: W/C 5 45 FLUE GAS VELOCITY DATA AND WORKSHEET LOCATION/UNIT: CHIOUITA TANK FARM 9B TEST DATE: 3 20 25							
PERFORMED	JRE: 29.0	14-1		ST DATE: 3 READOUT ID:	20 (23			
DP INDICATO	OR ID: ADW	1750 the	TC	ID: 08	11042			
DP INDICATE	R TYPE:	20 BOUL	PITOT TUB	EID: 145	Cp:	0.84		
ZERO:	LEVEL:		CHECK PRE-	POST-	BAL	ANCE CHECK	WEIGHT	
	Ps:	70.009	Run #:	Ps:		Run #:	Ps:	
Start:	555 Stop:	925	Start:	Stop	:	Start:	Stop:	
Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F
1	0.013	76	10	_				
2	0.03	76	O					
3	0.03	76	l					
4	0.010	76	3					
5	0.013	76						
6	0.012	76	2					
1	0.012	76	7					
2	0.012	76	{					
3	0.013	76	3					
Ψ	0-012	76	1					
5	0-011	76	0					
6	0-012	16	6					
_								
Unntadi	ine Temp. °F	116	Llantadi	ino Towns OF		Hosts - Li-	a Taran or	
				ine Temp. °F			e Temp. °F.	
Chille	er Temp. °C	12/1/	Chille	er Temp. °C		Chille	r Temp. °C	

	CLIENT: W	C 50	5	FL	UE GAS VELO LO	OCITY DATA AN OCATION/UNIT:	ND WORKSHE	ET L TARK	Farm ?	<u>.</u>
	PERFORME	BY: 🛫	551	KT	TE	ST DATE: 3	120/25			
	BAR. PRESS DP INDICATO	DR ID:	27.	1850#9	, TC	READOUT ID:	PIC 4	5		
	DP INDICATO	OR TYPE:	018	STUCKLE	PITOT TUB	EID: 145		0.84		
	ZERO:	LEVEL	-		CHECK PRE-	POST-	BAL	ANCE CHECK	(WEIGHT	
- 1		1	Ps:	-000b	Run #:	Ps:		Run #:	Ps:	
-	Start:	300	Stop:	930	Start: _	Stop):	Start:	Stop:	
Ĭ	Sample Point	Vel. He inches l	1 ₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F
Į	1	0.00	_	77	Hs					
ı	2	0.00	_	77	4					
ı	3	0.00		77	8					
4	4	0.00		77	4					
8	ク ケ	0-00		77	2					
ŀ	b	0-01		77	1					
ŀ	2	0-009		71	6					
		0-009		17	3					
1	3	0.007		77						
ŀ	9	0-005		77	5					
H		0-009		77						
ł	6	0.010		77	2_					
1										
ŀ										
ŀ										
H										
i										
ŀ			_							
ł			-							
ŀ		-								
ł										
ł										
ŀ										
ł										
İ										
Ì										
ı										
ı										
ı										
ı										
Î										
Ì										
ĺ										
ĺ										
ſ	Heated L	ine Temp	o. °F		Heated L	ine Temp. °F		Heated Lin	e Temp. °F.	
ſ		er Temp				er Temp. °C			r Temp. °C	

CLIENT: W/C SCS FLUE GAS VELOCITY DATA AND WORKSHEET LOCATION/UNIT: CHIDUITA TANKFARM 74								
PERFORMED BAR. PRESSI	BY: 55	03	TE	ST DATE: 3[READOUT ID:_	20 (25			
DP INDICATO	RID: AOM	150 Ha	TC	ID: OB	P1 C 45			
DP INDICATO	R TYPE: GLE	ETHONIL	PITOT TUB	EID: 145 POST-	Cp:	0.84		
ZERO:	LEVEL: V	LEAK	CHECK PRE-	POST-	BAL	ANCE CHECK	WEIGHT	
	Ps:	-0.005	Run #:	Ps:		Run #:	Ps:	
Start:	Start: <u>435</u> Stop: 105			Stop	:	Start: Stop:		
Sample Point	Vel. Head inches H₂O	Temp, °F	CYCL: Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H ₂ O	Temp, °F
	0.005	79	30					
2	0-007	79	_ 1					
3	0.006	79	2					
7	0.009	79	2					
5	0-004	79	- [
6	0.007	79	O					
l	0006	79	2					
2	0.008	79	(
3	0.000	79	4					
4	0-005	79	3					
	0.009	79	1					
6	0.008	79	3					
								_
11 1 1				^=				
	ine Temp. °F			ine Temp. °F			e Temp. °F.	
Chille	er Temp. °C	10/1/	[Chille	er Temp. °C		L Chille	r Temp. °C	

CLIENT: W	CLIENT: WC 5CS FLUE GAS VELOCITY DATA AND WORKSHEET LOCATION/UNIT: CHIQUITA TANK FARM 7B							
PERFORMED	BY: 55	Kt	TE	ST DATE: 31	20125			
BAR. PRESSI	URE: 29.	03		READOUT ID:	77-43			
	OR ID: ADA	2500	DITOT TUB	ID: DB	Cn	0.44		
ZERO:	LEVEL:	LEAK	CHECK PRE-	EID: 146 POST-	BAL	ANCE CHECK	(WEIGHT -	
Run #:	Ps:	-0.005	Run #:	Ps:		Run #:	Ps:	
Start:	Stop:	1008	Start:	Stop	:	Start:	Stop:	
Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F
	0.007	79	io*					
2	0009		U					
3	0.006	79	5					
4	0.009	79	1					
5	0.008	79	0					
0	0.007	79						
1	5.006	75	4					
2	0.009	79	2					
9	0.016	79	(
4	0.011	19	3					
5	0.006	79	5					
6	6.005	79	1					
	0,007	· ·						
						-		
								-
								_
		No.						
Heated L	ine Temp. °F	MIN	Heated I	ine Temp. °F		Heated Lin	e Temp. °F.	
Chille	er Temp. °C	12/11		er Temp. °C		9-	r Temp. °C	
Jillio	si rompi O	N .	O THIN	or romp. O		O CITILIO	i romp. O	

CLIENT: WC SCS LOCATION/UNIT: CHI QUITA PECCO								
PERFORMED	JRE: 29	4	TE	ST DATE: READOUT ID:	20/25			
DP INDICATO	RID: CLEC	FRUNK P	+DW85077TC	ID: りB				
DP INDICATO	R TYPE:	CHRAN C	- PITOT TUB	POST-	Cp:	D-84	WEIGHT	
	-							
	Ps:		Run #:	Ps:		Run #:	Ps:	
Start:	135 Stop:	(205)	Start: _	Stop	:	Start:	Stop:	
Sample Point	Vel. Head inches H₂O	Temp, °F	CVCL. Semple Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F
t	0.27	165	0°					
2	0.28	165						
3	0.30	165	2					
4	0.30	145	1					
5	0.28	165	U					
6	0.26	165	0					
2	0.28	165	3					
2	0.27	165	1					
4	0.28	145	0					
2	0.25	165	2					
6	0.23	145	4					
	<i>a</i> 25							
	ine Temp. °F		Heated L	ine Temp. °F		Heated Lin	e Temp. °F.	
	er Temp. °C			er Temp. °C			r Temp. °C	

CLIENT: WIC SCS LOCATION/UNIT; CHIQUITA FIAME STATION PRE 1725								
PERFORMED	BY: 50 K JRE: 24.02	1	TE	ST DATE: 3	20125			
DP INDICATO	RID: AOM	850 49	TO	READOUT ID:	11073			
DP INDICATO	R TYPE: EI	STRONG	PITOT TUB	EID: ITL	Cp: <i>c</i>	18.0		
ZERO:	LEVEL:	LEAK	CHECK PRE-	POST-	BAL	ANCE CHECK	(WEIGHT	
	Ps:	2020	Run #:	Ps:		Run #:	Ps:	
Start:	Stop:	1040	Start:	Stop	·	Start:	Stop:	
Sample Point	Vel. Head inches H₂O	Temp, °F	CYCL. Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F
i	0.026	90	2°	midnes rigo		·	mones rize	
2	0.025	90	D					
3	0.028	90	1					
Y	0021	90	3					
5	0.029	90	b					
6	0.028	90	2					
7	0.031	90	4					
6	0.030	90	7					
•	0.033	90	2					
2	0.032	90	1					
3	0.033	90	3					
4	0.072	90	1					
3	0.037	90	2_					
ь	0.035	90	1					
7	0.038	90	5					
8	0-039	90	4					
	ine Temp. °F			ine Temp. °F			e Temp. °F.	
Chille	er Temp. °C	V V	Chille	er Temp. °C		Chille	r Temp. °C	

CLIENT: WC SCS FLUE GAS VELOCITY DATA AND WORKSHEET LOCATION/UNIT; CHIQUITA FLANE YATION POST H2S TEST DATE: 3 (20/25)								
PERFORMED	BY: STI	7	TE	ST DATE: 3	20/25			
BAR. PRESSI	URE: 290	3	TC	READOUT ID:	146			
DP INDICATO	OR TYPE:	CAMPY	PITOT TUB	: ID: 146 E ID: 146	Cp:	0.784		
ZERO:	LEVEL:	LEAK	CHECK PRE-	POST-	BAL	ANCE CHECK	WEIGHT -	
Run #:	Ps:	7.20	Run #:	Ps:		Run #:	Ps:	
Start: 1010 Stop: 104			Start:	Stop	:	Start:	Stop:	
Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F	Sample Point	Vel. Head inches H₂O	Temp, °F
Ę	0.031	90.	20	IIICHES 112O		- Complete Com	Inches H ₂ O	
2,	0.027	90	60					
3	0.025	90	90					
4	0.029	10	40					
9	0.028	90	3					
6	0.027	90	1					
7	0.029	90	Ż					
*	0030	90	1					
	0.025	40	0					
2	0.027	90	4					
3	0.031	90	4					
4	0.034	90	2					
5	0.033	90	4					
В	0.036	90	1					
7	0.034	90	6					
8	0.031	90	3					
<u> </u>								
		A I E						
	ine Temp. °F			ine Temp. °F		0	e Temp. °F.	
Chille	er Temp. °C	1 (1)	Chille	er Temp. °C		Chille	r Temp. °C	

Appendix A.3 Organics and Sulfur Field and Laboratory Data

Client/Facility: CHLQUITA	_Date:_3(20/25
Unit/Location: TANK FARM 6	Performed By: 5T KT
Barometric Pressure 29-33	Ambient Temperature っ と

SUMMA CANISTER DATA

Test No.		\ \	
Canister ID		51383	
		Time	Vacuum
Pre-Test Leak Check	Start	0740	30
Pre-Test Leak Check	Stop	0750	30
Sample Collection	Start	0815	30
	10	0825	21
	20	0836	12
CUd -7	32	0845	5
Sample Collection	Stop		
Post -Test Leak Check	Start	1050	5
Post-Test Leak Check	Stop	1100	5

FLOWRATE DATA

TEDLAR BAG DATA

Start: _

Stop:

Bag ID: _

Client/Facility: CHOOTA	Date: 3 20 25
Unit/Location: TANK FARM 9A	Performed By: ST KT
Barometric Pressure 29-03	_Ambient Temperature7 క

SUMMA CANISTER DATA

Test No.		T 1	
Canister ID		49442	
		Time	Vacuum
Pre-Test Leak Check	Start	0740	30
Pre-Test Leak Check	Stop	0750	30
Sample Collection	Start	0855	30
	10	0905	22
	20	6915	13
-rend	30	0925	5
Sample Collection	Stop		
Post -Test Leak Check	Start	W50	5
Post-Test Leak Check	Stop	1100	5

_OWRA	TE		$\Gamma \Lambda$
UVVICE		11/	I A

Diameter:	(2"
Upstream:	96"
Downstream:	961

Wet bulb: 78

TEDLAR BAG DATA

Start: Stop:

Bag ID:

Client/Facility: CHOO ITA	Date: 3 20 25
Unit/Location: TANK Farm 93	Performed By: ST 4
Barometric Pressure 21.03	Ambient Temperature <u>1 ໆ ໌</u>

SUMMA CANISTER DATA

Test No.			
Canister ID		4840	09
		Time	Vacuum
Pre-Test Leak Check	Start	0740	30
Pre-Test Leak Check	Stop	0750	30
Sample Collection	Start	0855	30
	10	0905	24
	20	0919	13
Gold >	30	0925	5
Sample	Stop		
Collection Post -Test Leak Check	Start	1050	5
Post-Test Leak Check	Stop	1100	5

	ALK!	-)ATA
⊢।	LIVV	KAI	- 1	IAIA
	~ V V	1 1/-1		// \ I / \

Diameter: 12 '/
Upstream: 96'

Downstream: 96'

Flow Rate: 55

Dry bulb: 76

TEDLAR BAG DATA

Start:
Stop:
Bag ID:

Client/Facility: C	High	UITA	D	ate: 3/20/25
Unit/Location: TANK FARM 2 Performed By: ST KT				
1=+=				mbient Temperature78″
Dai official of 1000	, ui o	1.0		moione romporataro
SUMMA	CANIST	TER DATA		
Test No.				
Canister ID		460	911	
		Time	Vacuum	
Pre-Test Leak	Start			FLOWRATE DATA
Check		0740	30	Diameter: 61
Pre-Test Leak Check	Stop	07:50	30	Upstream:48"
Sample Collection	Start	0700	32	Downstream: Y & ''
	lo	0910	23	Flow Rate:
	20	1920	14	Wet bulb: SY
card >	30	0930	5	Dry bulb: 7フ
				TEDLAR BAG DATA
				Start:
Sample	Stop			Stop:
Collection		.060		
Post -Test Leak Check	Start	1040	9	Bag ID:
Post-Test Leak Check	Stop	1630	5	

Client/Facility: CH LOS	ンバア	_Date: 3/20/25	
Unit/Location: TANK	FARM 7A	Performed By: ST Kt	
Barometric Pressure	29.07	Ambient Temperature 2 3	0

SUMMA CANISTER DATA

Test No.		1	
Canister ID		477	28
		Time	Vacuum
Pre-Test Leak Check	Start		
Officer		0740	30
Pre-Test Leak Check	Stop	०७४०	30
Sample Collection	Start	0938	30
	10	0945	22
	20	0955	14
and 9	30	1005	5
Sample Collection	Stop		
Post -Test Leak Check	Start	loso	5
Post-Test Leak Check	Stop	1100	5

FLOWRATE DATA

Diameter: 12'(
Upstream: 76')

Downstream: 76''

Flow Rate: ______

Wet bulb: 57

Dry bulb: 79

TEDLAR BAG DATA

DS1987152

Start:
Stop:
Bag ID:

W002AS-053154-RT-7193

47 of 120

Client/Facility: CHt QUITA	Date: 3 20 25
Unit/Location: TANK FARM 1B	Performed By: 37 Kt
Barometric Pressure 29.03	Ambient Temperature 78

SUMMA CANISTER DATA

Test No.			
Canister ID		488	64
		Time	Vacuum
Pre-Test Leak Check	Start	0740	30
Pre-Test Leak Check	Stop	0750	30
Sample Collection	Start	0935	30
	10	0945	21
	20	0955	13
end-	30	1005	5
Sample Collection	Stop		
Post -Test Leak Check	Start	1050	5
Post-Test Leak Check	Stop	1100	5

)WR/	TE		$\Gamma \Lambda$
ノVVげくと	4 I F	1JA	IΑ

TEDLAR BAG DATA

Start:
Stop:
Bag ID:

Client/Facility: CH (QU ITA	Date:
Unit/Location: ZEEW	Performed By: ST KT
Barometric Pressure 24-03	Ambient Temperature 78

SUMMA CANISTER DATA

Test No.		1	
Canister ID		51	25
		Time	Vacuum
Pre-Test Leak	Start		
Check		0740	30
Pre-Test Leak Check	Stop	0750	30
Sample	Start	man.	30
Collection		0935	30
	w	0945	22
	20	0958	14
and >	30	1005	5
Sample Collection	Stop		
Post -Test Leak Check	Start	1050	5
Post-Test Leak Check	Stop	1100	5

	OWF		D^{V}	$\Gamma \Lambda$
Γ	LIVVE	\sim	120	_

TEDLAR BAG DATA

Start:
Stop:
Bag ID:

Client/Facility: CH Q	UITA	_Date:_3	20	25
Unit/Location: FLANE	STATION PREF	<u></u>	d By:_	37 KF
Barometric Pressure	29-03	_Ambient T	empe	rature78 ~

SUMMA CANISTER DATA

Test No.			
Canister ID		49	439
		Time	Vacuum
Pre-Test Leak Check	Start	0740	30
Pre-Test Leak Check	Stop	0750	30
Sample Collection	Start	1010	න
	10	1020	2-3
	20	ال ال	13
and 7	30	1040	5
Sample Collection	Stop		
Post -Test Leak Check	Start	1050	5
Post-Test Leak Check	Stop	100	5

	~\ 1 A		$\overline{}$		- A
⊢.	f 11/1	$I \mapsto \Delta$	3 ⊢	1 1 1 1 1	ΙΔ.
	. U V	V I V \		DAT	

Diameter:	24"
Upstream:	18011
Downstream:	180"
Flow Rate:	
Wet bulb:	l b
Dry bulb:	10

TEDLAR BAG DATA

Start: _______Bag ID: _____

Client/Facility: CHIQ	UMA	_Date:3/20	125	
Unit/Location: Flance	SATION POST H	رے Performed By:	35	KT
Barometric Pressure	29.0>	_Ambient Tempe	erature	78°

SUMMA CANISTER DATA

Test No.		1	
Canister ID		46611	
		Time	Vacuum
Pre-Test Leak Check	Start	6740	30
Pre-Test Leak Check	Stop	0750	30
Sample Collection	Start	1010	30
	10	1020	23
	20	1270	13
end >	30	1040	5
Sample Collection	Stop		
Post -Test Leak Check	Start	1050	9
Post-Test Leak Check	Stop	1 (00)	5

FLOWRA	ATE DATA
	*** *** ***

TEDLAR BAG DATA

Start:
Stop:
Bag ID:

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

Permanent Gases Analysis in Silco Canister Samples by Method ASTM D1946-90

Report Date: April 14, 2025

Client: Montrose AQS

Project Location: Chiquita Landfill

Project No.: PROJ-053154 Date Received: March 20, 2025 Date Analyzed: March 21, 2025

ANALYSIS DESCRIPTION

Permanent gases were measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90.

	AtmAA Lab No.: Sample I.D.:	20795-31 Tank Farm 6	20795-32 Tank Farm 9A	20795-33 Tank Farm 9B
Components		(Concentration in %	,v)
Nitrogen		77.59	74.80	77.27
Oxygen		21.82	21.17	21.88
Methane		< 0.14	0.75	< 0.14
Carbon dioxid	e	< 0.14	2.64	< 0.14

The reported oxygen concentration includes any argon present in the sample. Calibration is based on a standard atmosphere containing 20.95% oxygen and 0.93% argon. The accuracy of permanent gas analysis by TCD/GC is +/- 2%, actual results are reported. Actual analysis results are reported on a "wet" basis.

Brian W. Fung

Laboratory Director

Project Location: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 21, 2025

Components	Sample ID	Run #1	Analysis Run #2 entration in	Mean Conc.	% RPD
Nitrogen	Tank Farm 6	77.98	77.19	77.59	1.0
Oxygen	Tank Farm 6	21.86	21.77	21.82	0.41
Methane	Tank Farm 6	<0.14	<0.14		
Carbon dioxide	Tank Farm 6	<0.14	<0.14	Spirit Specimen	all and the

Three Silco canister samples, laboratory numbers 20795-(31-33), were analyzed for permanent gases. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 2 repeat measurements from three Silco canister samples is 0.72%.

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

Speciated Hydrocarbons Analysis in Silco Canister Samples

Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Project No.: PROJ-053154
Date Received: March 20, 2025
Date Analyzed: March 21, 2025

Laboratory Temp: 73.5 °F Barometric Pressure: 29.95 inHg

ANALYSIS DESCRIPTION

Hydrocarbon speciation analysis was performed by flame ionization detection/gas chromatography (FID/GC), modified EPA-18. Methane was measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90

AtmAA Lab No.:	20795-31	20795-32	20795-33
Sample ID:	Tank Farm 6	Tank Farm 9A	Tank Farm 9B
Component	•	itration in ppmv, con	nponent)
Methane	300	7500	26.4
Ethene	< 0.30	6.48	<0.20
Acetylene	< 0.30	< 0.30	<0.20
Ethane	<0.30	7.12	<0.20
Non-methane hydrocarbons			
analysis by carbon			
number grouping			
C3	<0.10	22.3	< 0.10
C4	70.0	75.5	31.9
C5	60.0	71.3	29.5
C6	42.0	96.3	21.7
C7	7.57	36.0	5.18
C8	7.29	29.4	4.69
C9	4.90	29.0	8.17
C10	9.27	26.5	23.1
C11	1.28	5.35	7.17
C12	0.65	3.12	6.87
C13	0.24	2.03	9.36
C14	<0.06	0.51	2.16
	(C	oncentration in ppm	vC)
TNMHC	1105	2473	1096

TNMHC - total non-methane hydrocarbons as ppmvC. Actual analysis results are reported on a "wet" basis.

Brian W. Fung Laborator Director

Project Location: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 21, 2025

Component	Sample ID	Run #1	Analysis Run #2	Mean Conc.	% RPD
Methane	Tank Farm 6	254	254	254	0.08
Ethene	Tank Farm 6	<0.30	<0.30	<0.30	
Acetylene	Tank Farm 6	<0.30	<0.30	<0.30	
Ethane	Tank Farm 6	<0.30	<0.30	<0.30	no est her
non-methane hydrocarbons analysis by carbon number grouping					
C3	Tank Farm 6	<0.10	<0.10	<0.10	MARK NO.
C4	Tank Farm 6	70.0	69.9	70.0	0.09
C5	Tank Farm 6	60.0	60.1	60.0	0.17
C6	Tank Farm 6	42.0	41.9	42.0	0.26
C7	Tank Farm 6	7.70	7.45	7.57	3.3
C8	Tank Farm 6	7.44	7.13	7.29	4.2
C9	Tank Farm 6	4.86	4.95	4.90	1.7
C10	Tank Farm 6	9.17	9.37	9.27	2.1
C11	Tank Farm 6	1.08	1.48	1.28	31
C12	Tank Farm 6	0.61	0.69	0.65	12
C13	Tank Farm 6	0.24	0.25	0.24	4.5
C14	Tank Farm 6	<0.06	<0.06	<0.06	
		(Conce	ntration in p	pmvC)	
TNMHC	Tank Farm 6	1103	1107	1105	0.32

Three Silco canister samples, laboratory numbers 20795-(31-33), were analyzed for hydrocarbon speciation, EPA Method 18. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 12 repeat measurements from three Silco canister samples is 5.0%.

LABORATORY ANALYSIS REPORT

Hydrogen Sulfide and Reduced Sulfur Compounds Analysis in Silco Canister Sample by SCAQMD Method 307.91

Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Project No.: PROJ-053154
Date Received: March 20, 2025
Date Analyzed: March 20, 2025

ANALYSIS DESCRIPTION

Total sulfur analysis measured by gas chromatography with sulfur chemiluminescence detector (SCD), SCAQMD 307.91.

AtmAA Lab No.: Sample I.D.;	20795-31 Tank Farm 6	20795-32 Tank Farm 9A	20795-33 Tank Farm 9B
Components	(C	Concentration in ppmv)
Hydrogen sulfide	<0.10	10.5	<0.10
Carbonyl sulfide	<0.10	<0.10	<0.10
Methyl mercaptan	0.12	14.6	<0.10
Ethyl mercaptan	<0.10	0.22	<0.10
Dimethyl sulfide	3.54	49.9	1.76
Carbon disulfide	<0.10	<0.10	<0.10
i-Propyl mercaptan	<0.10	0.17	<0.10
t-Butyl mercaptan	< 0.10	<0.10	< 0.10
n-Propyl mercaptan	< 0.10	<0.10	<0.10
s-Butyl mercaptan	< 0.10	0.76	<0.10
i-Butyl mercaptan	< 0.10	<0.10	< 0.10
Dimethyl disulfide	< 0.10	0.30	< 0.10
Tetrahydrothiophene	< 0.10	0.38	<0.10
Unidentified sulfurs	<0.10	2.18	<0.10
	(Conc	entration in ppmv, as	H ₂ S)
Total Sulfur	3.66	79.24	1.76

Brian W. Fung

Laboratory Offector

Project Location: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 20, 2025

	Sample		Analysis	Mean	%
Commencents	ID	Run #1	Run #2	Conc.	RPD
Components		(Conce	entration in	ppmv)	
Hydrogen sulfide	Tank Farm 6	<0.10	<0.10	600, 100c std.	
riyarogen samae	Tank Farm 9A	10.6	10.4	10.5	1.9
	Tank Farm 9B	<0.10	<0.10	10.5	1.3
	raint aim 35	VO. 10	70.10		ne to de
Carbonyl sulfide	Tank Farm 6	<0.10	<0.10		MCSA ex
	Tank Farm 9A	< 0.10	< 0.10		
	Tank Farm 9B	< 0.10	< 0.10		
Methyl mercaptan	Tank Farm 6	0.12	0.12	0.12	0.00
	Tank Farm 9A	14.6	14.5	14.6	0.69
	Tank Farm 9B	< 0.10	< 0.10	***	***
Ethyl mercaptan	Tank Farm 6	< 0.10	< 0.10		
	Tank Farm 9A	0.22	0.22	0.22	0.00
	Tank Farm 9B	< 0.10	< 0.10	40 m-a-	
Dimethyl sulfide	Tank Farm 6	3.55	3.52	3.54	0.85
	Tank Farm 9A	50.3	49.5	49.9	1.6
	Tank Farm 9B	1.77	1.74	1.76	1.7
Carbon disulfide	Tank Farm 6	<0.10	<0.10	40.00-40	
	Tank Farm 9A	<0.10	<0.10		
	Tank Farm 9B	<0.10	<0.10		to se or
		-			
i-Propyl mercaptan	Tank Farm 6	<0.10	<0.10		
	Tank Farm 9A	0.17	0.16	0.17	6.1
	Tank Farm 9B	<0.10	< 0.10		
t Dutil morphoton	Taul: France	-0.10	-0.40		
t-Butyl mercaptan	Tank Farm 6 Tank Farm 9A	<0.10 <0.10	<0.10		
	Tank Farm 9B		<0.10 <0.10	40.40 46	lán mó lop
	Talik Fallii 9D	<0.10	~ 0.10		
n-Propyl mercaptan	Tank Farm 6	<0.10	<0.10		****
ii i iopyi meicapian	Tank Farm 9A	<0.10	<0.10		***
	Tank Farm 9B	<0.10	<0.10		
	rgim rgiiii gu	-0.10	-0.10	****	-
s-Butyl mercaptan	Tank Farm 6	<0.10	< 0.10	***	ann iass ean
	Tank Farm 9A	0.76	0.75	0.76	1.3
	Tank Farm 9B	< 0.10	< 0.10		April 605 mas

QUALITY ASSURANCE SUMMARY (Repeat Analyses) (continued)

Components	Sample ID	Repeat A Run #1 (Concer	Analysis Run #2 ntration in p	Mean Conc. opmv)	% RPD
i-Butyl mercaptan	Tank Farm 6 Tank Farm 9A Tank Farm 9B	<0.10 <0.10 <0.10	<0.10 <0.10 <0.10	***	
Dimethyl disulfide	Tank Farm 6 Tank Farm 9A Tank Farm 9B	<0.10 0.31 <0.10	<0.10 0.29 <0.10	0.30	6.7
Tetrahydrothiophene	Tank Farm 6 Tank Farm 9A Tank Farm 9B	<0.10 0.38 <0.10	<0.10 0.37 <0.10	0.38	2.7
Unidentified sulfurs	Tank Farm 6 Tank Farm 9A Tank Farm 9B	<0.10 2.19 <0.10	<0.10 2.16 <0.10	2.18 	1.4

Three Silco canister samples, laboratory numbers 20795-(31-33), were analyzed for total sulfur compounds. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 12 repeat measurements from three Silco canister samples is 2.1%.

Report Date: April 14, 2025

Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: March 20, 2025
Date Analyzed: March 21, 2025
AtmAA Lab #: 20795-31

Sample ID: Tank Farm 6

Component	Mole %	Wt %	C,H,O,N,	S, Wt.%	
Methane	0.00	0.00	Carbon	0.05	
Carbon dioxide	0.00	0.00	Hydrogen	0.01	
Nitrogen	78.04	75.45	Oxygen	23.21	
Oxygen	21.01	23.21	Nitrogen	75.46	
Argon	0.93	1.28	Argon	1.28	
Hydrogen (CH ₂) _n	0.00 0.020	0.00 0.06	Sulfur	0.00	
Specific Volume		13.091			
BTU/ft3 (Dry @60F, 14.696 psia)		0.8850	(HHV)	0.8189	(LHV
BTU/ft3 (Water Saturated @ 0.256	36 psia)	0.8695	(HHV)	0.8046	(LHV
BTU/lb (Dry @60F, 14.696 psia)	•	11.59	(HHV)	10.72	(LHV
Compressibility Factor (@60F, 14.6	696 psia)	0.9996	, ,		
Wobbe Index	. ,	0.8907			
Specific Gravity		0.9871			

	Specific	volume
Component	reference	e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: March 20, 2025

Date Analyzed: March 21, 2025 AtmAA Lab #: 20795-32 Sample ID: Tank Farm 9A

Component	Mole %	Wt %	C,H,O,N,	S, Wt.%	
Methane	0.75	0.41	Carbon	1.50	
Carbon dioxide	2.66	3.99	Hydrogen	0.12	
Nitrogen	75.25	71.95	Oxygen	25.19	
Oxygen	20.39	22.29	Nitrogen	71.95	
Argon	0.90	1.24	Argon	1.24	
Hydrogen (CH ₂) _n	0.00 0.041	0.00 0.12	Sulfur	0.00	
Specific Volume BTU/ft3 (Dry @60F, 14.696 psia) BTU/ft3 (Water Saturated @ 0.256 BTU/lb (Dry @60F, 14.696 psia) F _d (factor) F _w (factor) F _c (factor) Compressibility Factor (@60F, 14 Wobbe Index		12.948 9.596 9.429 124.25 9895 11805 3874 0.9996 9.6014	(HHV) (HHV) (HHV)	8.691 8.540 112.53	(LH (LH (LH
Specific Gravity		0.9989			

Component		volume e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: March 20, 2025
Date Analyzed: March 21, 2025
AtmAA Lab #: 20795-33
Sample ID: Tank Farm 9B

Component	Mole %	Wt %	C,H,O,N,	S, Wt.%	
Methane	0.00	0.00	Carbon	0.05	
Carbon dioxide	0.00	0.00	Hydrogen	0.01	
Nitrogen	77.92	75.31	Oxygen	23.34	
Oxygen	21.13	23.34	Nitrogen	75.31	
Argon	0.94	1.29	Argon	1.29	
Hydrogen	0.00	0.00	Sulfur	0.00	
(CH ₂) _n	0.015	0.05			
Specific Volume		13.088			
BTU/ft3 (Dry @60F, 14.696 psia)		0.8666	(HHV)	0.8034	(LH
BTU/ft3 (Water Saturated @ 0.25	636 psia)	0.8515	(HHV)	0.7894	(LH
BTU/lb (Dry @60F, 14.696 psia)		11.34	(HHV)	10.52	(LH
Compressibility Factor (@60F, 14	.696 psia)	0.9996	. ,		,
Wobbe Index	, ,	0.8715			
Specific Gravity		0.9888			

	Specific	volume
Component	reference	e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

LABORATORY ANALYSIS REPORT

Permanent Gases Analysis in Silco Canister Samples by Method ASTM D1946-90

Report Date: April 14, 2025 Client: Montrose AQS Project Location: Chiquita Landfill

Project No.: PROJ-053154
Date Received: March 20, 2025
Date Analyzed: March 21, 2025

ANALYSIS DESCRIPTION

Permanent gases were measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90.

	AtmAA Lab No.: Sample I.D.:	20795-34 Tank Farm 2	20795-35 Tank Farm 7A	20795-36 Tank Farm 7B
Components		(C	oncentration in %	,v)
Nitrogen		74.00	76.26	75.93
Oxygen		20.66	21.52	21.29
Methane		< 0.14	< 0.14	< 0.14
Carbon dioxid	e	2.30	< 0.14	1.92

The reported oxygen concentration includes any argon present in the sample. Calibration is based on a standard atmosphere containing 20.95% oxygen and 0.93% argon. The accuracy of permanent gas analysis by TCD/GC is +/- 2%, actual results are reported. Actual analysis results are reported on a "wet" basis.

Brian W. Fung Laboratory Director

LABORATORY ANALYSIS REPORT

Speciated Hydrocarbons Analysis in Silco Canister Samples

Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Project No.: PROJ-053154
Date Received: March 20, 2025
Date Analyzed: March 21, 2025
Laboratory Temp: 73.5 °F
Barometric Pressure: 29.95 inHg

ANALYSIS DESCRIPTION

Hydrocarbon speciation analysis was performed by flame ionization detection/gas chromatography (FID/GC), modified EPA-18. Methane was measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90.

AtmAA Lab No.:	20795-34	20795-35	20795-36
Sample ID:	Tank Farm 2	Tank Farm 7A	Tank Farm 7B
Component	(Concert	tration in ppmv, com	ponent)
Methane	1015	77.7	695
Ethene	< 0.30	< 0.30	2.90
Acetylene	< 0.30	< 0.30	<0.20
Ethane	<0.30	<0.30	2.18
Non-methane hydrocarbons			
analysis by carbon			
number grouping			
C3	17.1	<0.10	6.16
C4	167	66.2	91.7
C5	277	99.3	203
C6	301	60.9	132
C7	129	9.66	242
C8	89.1	6.49	18.8
C9	116	8.12	15.0
C10	149	34.4	38.7
C11	24.1	9.50	15.5
C12	14.3	8.33	5.88
C13	5.38	5.18	9.01
C14	<0.06	1.29	0.87
	(Co	oncentration in ppmv	C)
TNMHC	8567	1953	4934

TNMHC - total non-methane hydrocarbons as ppmvC. Actual analysis results are reported on a "wet" basis.

Brian W. Fung Laboratory Director

LABORATORY ANALYSIS REPORT

Hydrogen Sulfide and Reduced Sulfur Compounds Analysis in Silco Canister Sample by SCAQMD Method 307.91

Report Date: April 14, 2025

Client: Montrose AQS

Project Location: Chiquita Landfill

Project No.: PROJ-053154 Date Received: March 20, 2025

Date Analyzed: March 20, 2025

ANALYSIS DESCRIPTION

Total sulfur analysis measured by gas chromatography with sulfur chemiluminescence detector (SCD), SCAQMD 307.91.

AtmAA Lab No.: Sample I.D.: Components	20795-34 Tank Farm 2	20795-35 Tank Farm 7A Concentration in ppmv)	20795-36 Tank Farm 7B
Hydrogen sulfide	<0.10	<0.10	0.69
Carbonyl sulfide	0.12	< 0.10	< 0.10
Methyl mercaptan	1.46	<0.10	4.45
Ethyl mercaptan	<0.10	<0.10	<0.10
Dimethyl sulfide	62.3	1.60	28.9
Carbon disulfide	<0.10	<0.10	<0.10
i-Propyl mercaptan	<0.10	<0.10	<0.10
t-Butyl mercaptan	<0.10	<0.10	< 0.10
n-Propyl mercaptan	0.85	<0.10	0.34
s-Butyl mercaptan	0.94	<0.10	0.29
i-Butyl mercaptan	<0.10	<0.10	<0.10
Dimethyl disulfide	1.33	<0.10	0.34
Tetrahydrothiophene	0.93	<0.10	0.16
Unidentified sulfurs	5.14	0.14	1.16
	(Cond	centration in ppmv, as I	H ₂ S)
Total Sulfur	74.38	1.73	36.64

Brian W. Fung

Laboratory Director

Project Location: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 20, 2025

	Sample ID	Repeat Run #1	Analysis Run #2	Mean Conc.	%
Components	IU		entration in		RPD
Ochiponento		(001100	and doon in	ppiiiv)	
Hydrogen sulfide	Tank Farm 2	< 0.10	< 0.10		
, ,	Tank Farm 7A	< 0.10	< 0.10	60. 300 KM	
	Tank Farm 7B	0.69	0.68	0.69	1.5
Carbonyl sulfide	Tank Farm 2	0.11	0.12	0.12	8.7
	Tank Farm 7A	< 0.10	< 0.10	and 100 pts	
	Tank Farm 7B	< 0.10	< 0.10	***	
Methyl mercaptan	Tank Farm 2	1.43	1.49	1.46	4.1
	Tank Farm 7A	< 0.10	< 0.10		Official Spa
	Tank Farm 7B	4.49	4.41	4.45	1.8
Ethyl mercaptan	Tank Farm 2	< 0.10	< 0.10		
	Tank Farm 7A	< 0.10	< 0.10	98 Val 40-	
	Tank Farm 7B	< 0.10	< 0.10		
Dimethyl sulfide	Tank Farm 2	61.8	62.8	62.3	1.61
	Tank Farm 7A	1.60	1.59	1.60	0.63
	Tank Farm 7B	28.9	28.9	28.9	0.17
Carbon disulfide	Tank Farm 2	< 0.10	< 0.10		999 4ar HK
	Tank Farm 7A	< 0.10	< 0.10		
	Tank Farm 7B	<0.10	< 0.10	direction steps	MIC MATCHES
i-Propyl mercaptan	Tank Farm 2	<0.10	<0.10		
	Tank Farm 7A	<0.10	<0.10		
	Tank Farm 7B	<0.10	<0.10		***
15.11					
t-Butyl mercaptan	Tank Farm 2	< 0.10	<0.10		
	Tank Farm 7A	<0.10	< 0.10		
	Tank Farm 7B	<0.10	<0.10		
- Describerance	T E. C	0.05			
n-Propyl mercaptan	Tank Farm 2	0.85	0.85	0.85	0.00
	Tank Farm 7A	<0.10	<0.10		
	Tank Farm 7B	0.34	0.34	0.34	0.00
s-Butyl mercaptan	Tank Farm 2	0.94	0.04	0.94	0.00
5-butyi mercaptan	Tank Farm 7A	<0.10	0.94 <0.10	0.94	0.00
	Tank Farm 7B	0.29	0.29	0.29	0.00
	Tally Failli / D	0.23	0.25	0.29	0.00

Page 2 of 3

QUALITY ASSURANCE SUMMARY (Repeat Analyses) (continued)

Components	Sample ID	Run #1	Analysis Run #2 entration in p	Mean Conc. opmv)	% RPD
i-Butyl mercaptan	Tank Farm 2 Tank Farm 7A Tank Farm 7B	<0.10 <0.10 <0.10	<0.10 <0.10 <0.10	2000 2000	
Dimethyl disulfide	Tank Farm 2	1.32	1.33	1.33	0.75
	Tank Farm 7A	<0.10	<0.10		
	Tank Farm 7B	0.34	0.34	0.34	0.00
Tetrahydrothiophene	Tank Farm 2	0.92	0.94	0.93	2.2
	Tank Farm 7A	<0.10	<0.10		
	Tank Farm 7B	0.17	0.15	0.16	13
Unidentified sulfurs	Tank Farm 2	5.10	5.17	5.14	1.4
	Tank Farm 7A	0.14	0.13	0.14	7.4
	Tank Farm 7B	1.16	1.16	1.16	0.00

Three Silco canister samples, laboratory numbers 20795-(34-36), were analyzed for total sulfur compounds. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 18 repeat measurements from three Silco canister samples is 2.4%.

Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: March 20, 2025
Date Analyzed: March 21, 2025
AtmAA Lab #: 20795-34
Sample ID: Tank Farm 2

Component	Mole %	Wt %	C,H,O,N,5	6, Wt.%	
Methane	0.00	0.00	Carbon	1.33	
Carbon dioxide	2.37	3.55	Hydrogen	0.07	
Nitrogen	76.22	72.62	Oxygen	24.75	
Oxygen	20.38	22.18	Nitrogen	72.62	
Argon	0.90	1.23	Argon	1.23	
Hydrogen (CH ₂) _n	0.00 0.133	0.00 0.43	Sulfur	0.00	
Specific Volume		12.900			
BTU/ft3 (Dry @60F, 14.696 psia)		6.949	(HHV)	6.439	(LHV)
BTU/ft3 (Water Saturated @ 0.256	36 psia)	6.828	(HHV)	6.326	(LHV)
BTU/lb (Dry @60F, 14.696 psia)	, , ,	89.64	(HHV)	83.06	(LHV)
Compressibility Factor (@60F, 14.	696 psia)	0.9996			` ′
Wobbe Index		6.941			
Specific Gravity		1.0023			

	Specific	volume
Component	referenc	e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

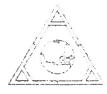
Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: March 20, 2025
Date Analyzed: March 21, 2025

AtmAA Lab #: 20795-35 Sample ID: Tank Farm 7A

Component	Mole %	Wt %	C,H,O,N,S	S, Wt.%	
Methane	0.00	0.00	Carbon	0.08	
Carbon dioxide	0.00	0.00	Hydrogen	0.02	
Nitrogen	77.97	75.34	Oxygen	23.27	
Oxygen	21.07	23.27	Nitrogen	75.34	
Argon	0.93	1.29	Argon	1.29	
Hydrogen (CH ₂) _n	0.00 0.032	0.00 0.10	Sulfur	0.00	
Specific Volume		13.086			
BTU/ft3 (Dry @60F, 14.696 psia)		1.576	(HHV)	1.460	(LHV)
BTU/ft3 (Water Saturated @ 0.256)	36 psia)	1.549	(HHV)	1.435	(LHV)
BTU/lb (Dry @60F, 14.696 psia)	• •	20.63	(HHV)	19.11	(LHV)
Compressibility Factor (@60F, 14.6	96 psia)	0.9996			, ,
Wobbe Index	, ,	1.586			
Specific Gravity		0.9884			

	Specific	volume
Component	reference	e values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F



Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: March 20, 2025
Date Analyzed: March 21, 2025
AtmAA Lab #: 20795-36
Sample ID: Tank Farm 7B

Component	Mole %	Wt %	C,H,O,N,	5, Wt.%	
Methane	0.00	0.00	Carbon	1.00	
Carbon dioxide	1.94	2.91	Hydrogen	0.04	
Nitrogen	76.53	73.16	Oxygen	24.56	
Oxygen	20.55	22.45	Nitrogen	73.16	
Argon	0.91	1.24	Argon	1.24	
Hydrogen	0.00	0.00	Sulfur	0.00	
$(CH_2)_n$	0.079	0.24			
Specific Volume		12.945			
BTU/ft3 (Dry @60F, 14.696 psia)		3.928	(HHV)	3.638	(LH)
BTU/ft3 (Water Saturated @ 0.256	36 psia)	3.859	(HHV)	3.575	(LH
BTU/lb (Dry @60F, 14.696 psia)	, ,	50.84	(HHV)	47.10	(LH)
Compressibility Factor (@60F, 14.	696 psia)	0.9996	-		
Wobbe Index	. ,	3.929			
Specific Gravity		0.9993			

	Specific	volume
Component	reference	values *
Methane	23.7	(ft³/lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

Permanent Gases Analysis in Silco Canister Samples by Method ASTM D1946-90

Report Date: April 14, 2025

Client: Montrose AQS

Project Location: Chiquita Landfill

Project No.: PROJ-053154 Date Received: March 20, 2025 Date Analyzed: March 21, 2025

ANALYSIS DESCRIPTION

Permanent gases were measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90.

	AtmAA Lab No.:	20795-37	20795-38	20795-39
	Sample I.D.;	Zeeco Inlet	Flare Station Pre H2S	Flare Station Post H2S
Components	:		(Concentration in %,	<i>(</i>)
Nitrogen		29.74	17.50	18.76
Oxygen		6.75	4.04	3.64
Methane		22.39	28.78	25.95
Carbon dioxide	Э	36.30	42.98	43.53
Hydrogen		1.82	2.84	3.38

The reported oxygen concentration includes any argon present in the sample. Calibration is based on a standard atmosphere containing 20.95% oxygen and 0.93% argon. The accuracy of permanent gas analysis by TCD/GC is +/- 2%, actual results are reported. Actual analysis results are reported on a "wet" basis.

Brian W. Fung

Laboratory Director

Project Location: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 21, 2025

Components	Sample ID	Repeat / Run #1 (Conc	Analysis Run #2 entration in	Mean Conc.	% RPD
Nitrogen	Zeeco Inlet	29.78	29.69	29.74	0.30
Oxygen	Zeeco Inlet	6.75	6.74	6.75	0.15
Methane	Zeeco inlet	22.47	22.30	22.39	0.76
Carbon dioxide	Zeeco Inlet	36.30	36.30	36.30	0.00
Hydrogen	Zeeco Inlet	1.78	1.85	1.82	3.9

Three Silco canister samples, laboratory numbers 20795-(37-39), were analyzed for permanent gases. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 5 repeat measurements from three Silco canister samples is 1.0%.

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

Speciated Hydrocarbons Analysis in Silco Canister Samples

Report Date: April 14, 2025 Client: Montrose AQS Project Location: Chiquita Landfill Project No.: PROJ-053154 Date Received: March 20, 2025 Date Analyzed: March 21, 2025 Laboratory Temp: 73.5 °F

Barometric Pressure: 29.95 inHg

ANALYSIS DESCRIPTION

Hydrocarbon speciation analysis was performed by flame ionization detection/gas chromatography (FID/GC), modified EPA-18. Methane was measured by thermal conductivity detection/gas chromatography (TCD/GC), ASTM D1946-90.

AtmAA Lab No.:	20795-37	20795-38	20795-39
Sample ID:	Zeeco Inlet	Flare Station Pre H2S Fla	are Station Post H2S
0			
Component	(Conce	entration in ppmv, compo	onent)
Methane	223900	287800	259500
Ethene	< 0.30	< 0.30	<0.20
Acetylene	< 0.30	< 0.30	<0.20
Ethane	48.4	55.9	59.9
Non-methane hydrocarbons			
analysis by carbon			
number grouping			
C3	211	223	221
C4	1040	1422	1872
C5	1240	1324	1703
C6	939	952	2251
C7	294	1110	708
C8	211	341	510
C9	221	321	464
C10	227	311	168
C11	47.5	49.1	18.6
C12	17.0	28.9	12.6
C13	10.4	11.2	5.94
C14	1.98	0.68	2.02
	ſ	Concentration in ppmvC	1
TNMHC	25622	оопсеннавол трртто, 36332	/ 45638
THOU SO	20022	30332	+5056

TNMHC - total non-methane hydrocarbons as ppmvC. Actual analysis results are reported on a "wet" basis.

Laboratog Director

Project Location: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 21, 2025

	Sample ID	Run #1	Analysis Run #2	Mean Conc.	% RPD
Component		(Conc. in	ppmv, con	ponent)	
Methane	Zeeco Inlet	224700	223000	223850	0.76
Ethene	Zeeco Inlet	<0.30	<0.30	<0.30	Marie 40
Acetylene	Zeeco Inlet	<0.30	<0.30	<0.30	
Ethane	Zeeco Inlet	48.2	48.7	48.4	1.0
non-methane hydrocarbons analysis by carbon number grouping					
C3	Zeeco Inlet	215	207	211	3.5
C4	Zeeco Inlet	1106	974	1040	13
C5	Zeeco Inlet	1312	1168	1240	12
C6	Zeeco Inlet	977	901	939	8.2
C7	Zeeco Inlet	295	293	294	0.85
C8	Zeeco Inlet	213	210	211	1.1
C9	Zeeco Inlet	223	220	221	1.2
C10	Zeeco Inlet	233	221	227	5.5
C11	Zeeco Inlet	48.1	47.0	47.5	2.3
C12	Zeeco Inlet	16.6	17.3	17.0	4.3
C13	Zeeco Inlet	10.4	10.3	10.4	0.77
C14	Zeeco Inlet	1.96	2.00	1.98	2.1
		(Conce	ntration in p	pmvC)	
TNMHC	Zeeco Inlet	26582	24663	25622	7.5

Three Silco canister samples, laboratory numbers 20795-(37-39), were analyzed for hydrocarbon speciation, EPA Method 18. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 15 repeat measurements from three Silco canister samples is 4.2%.

LABORATORY ANALYSIS REPORT

Hydrogen Sulfide and Reduced Sulfur Compounds Analysis in Silco Canister Sample by SCAQMD Method 307.91

Report Date: April 14, 2025

Client: Montrose AQS

Project Location: Chiquita Landfill

Project No.: PROJ-053154 Date Received: March 20, 2025

Date Analyzed: March 20, 2025

ANALYSIS DESCRIPTION

Total sulfur analysis measured by gas chromatography with sulfur chemiluminescence detector (SCD), SCAQMD 307.91.


AtmAA Lab No.:	20795-37	20795-38	20795-39
Sample I.D.:	Zeeco Inlet	Flare Station Pre H2S	Flare Station Post H2S
Components		(Concentration in ppm)	1)
Hydrogen sulfide	209	301	< 0.40
Carbonyl sulfide	0.71	1.07	0.98
Methyl mercaptan	104	170	< 0.40
Ethyl mercaptan	1.64	2.43	< 0.40
Dimethyl sulfide	284	502	495
Carbon disulfide	< 0.40	< 0.40	0.45
i-Propyl mercaptan	1.72	3.28	< 0.40
t-Butyl mercaptan	< 0.40	< 0.40	< 0.40
n-Propyl mercaptan	4.31	7.01	7.57
s-Butyl mercaptan	4.98	9.24	9.27
i-Butyl mercaptan	< 0.40	< 0.40	< 0.40
Dimethyl disulfide	0.99	2.22	57.0
Tetrahydrothiophene	2.07	3.87	4.51
Unidentified sulfurs	10.3	16.4	87.3
	(Co	oncentration in ppmv, as	H ₂ S)
77 (100 10	0040	4040 7	740.4

Total Sulfur 624.2 1019.7 719.4

> Brian W. Fung Laboratory Director

Project Location: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 20, 2025

	Sample		Analysis	Mean	%
	ID	Run #1	Run #2	Conc.	RPD
Components		(Conc	entration in p	opmv)	
Lludrogon culfido	Zooco Inlot	213	205	209	3.8
Hydrogen sulfide	Zeeco Inlet Flare Station Pre H2S	299	302	301	1.0
	Flare Station Post H2S	< 0.40	< 0.40	301	1.0
	Tible Station Fost 1125	70.40	~O. ~ O		
Carbonyl sulfide	Zeeco Inlet	0.70	0.71	0.71	1.4
odiooity. odinoo	Flare Station Pre H2S	1.07	1.07	1.07	0.00
	Flare Station Post H2S	1.00	0.95	0.98	5.1
	ridio otalioni ribori illo	1,00	0.00	0,00	-,,
Methyl mercaptan	Zeeco Inlet	106	102	104	3.8
, , , , , , , , , , , , , , , , , , , ,	Flare Station Pre H2S	169	171	170	1.2
	Flare Station Post H2S	< 0.40	< 0.40		del martina
Ethyl mercaptan	Zeeco Inlet	1.67	1.61	1.64	3.7
	Flare Station Pre H2S	2.39	2.47	2.43	3.29
	Flare Station Post H2S	< 0.40	< 0.40		No. of the last
Dimethyl sulfide	Zeeco Inlet	289	278	284	3.9
	Flare Station Pre H2S	500	503	502	0.60
	Flare Station Post H2S	511	479	495	6.5
Carbon disulfide	Zeeco Inlet	< 0.40	<0.40	and tab We	are too her
	Flare Station Pre H2S	< 0.40	< 0.40	40 40740	THE REPORT
	Flare Station Post H2S	0.45	0.44	0.45	2.2
i-Propyl mercaptan	Zeeco Inlet	1.73	1.70	1.72	1.7
	Flare Station Pre H2S	3.28	3.27	3.28	0.31
	Flare Station Post H2S	< 0.40	<0.40		-
t-Butyl mercaptan	Zeeco Inlet	< 0.40	< 0.40		adicalli bits
	Flare Station Pre H2S	< 0.40	< 0.40		
	Flare Station Post H2S	<0.40	<0.40		
B It as a second	7	4.40	4.04	4.04	4.4
n-Propyl mercaptan	Zeeco Inlet	4.40	4.21	4.31	4.4
	Flare Station Pre H2S	6.96	7.06	7.01	1.4
	Flare Station Post H2S	7.80	7.34	7.57	6.1
s-Butyl mercaptan	Zeeco inlet	5.04	4.92	4.98	2.4
a-butyi mercaptan	Flare Station Pre H2S	9.23	9.25	9.24	0.22
	Flare Station Post H2S	9.54	8.99	9.27	5.9
	Fight Glations Ost 120	0.04	0.00	0.21	ψ. ψ

QUALITY ASSURANCE SUMMARY (Repeat Analyses) (continued)

Components	Sample ID	Run #1	Analysis Run #2 entration in p	Mean Conc.	% RPD
i-Butyl mercaptan	Zeeco Inlet Flare Station Pre H2S Flare Station Post H2S	<0.40 <0.40 <0.40	<0.40 <0.40 <0.40		
Dimethyl disulfide	Zeeco Inlet	1.02	0.96	0.99	6.1
	Flare Station Pre H2S	2.20	2.24	2.22	1.8
	Flare Station Post H2S	58.7	55.2	57.0	6.1
Tetrahydrothiophene	Zeeco Inlet	2.07	2.06	2.07	0.48
	Flare Station Pre H2S	3.86	3.88	3.87	0.52
	Flare Station Post H2S	4.56	4.46	4.51	2.2
Unidentified sulfurs	Zeeco Inlet	10.1	10.5	10.3	3.8
	Flare Station Pre H2S	15.9	16.9	16.4	6.4
	Flare Station Post H2S	89.9	84.7	87.3	6.0

Three Silco canister samples, laboratory numbers 20795-(37-39), were analyzed for total sulfur compounds. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 30 repeat measurements from three Silco canister samples is 3.1%.

Report Date: April 14, 2025 Client: Montrose AQS Project Location: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 21, 2025

AtmAA Lab #: 20795-37 Sample ID: Zeeco Inlet

Component	Mole %	Wt %	C,H,O,N,	S, Wt.%	
Methane	22.97	11.78	Carbon	24.11	
Carbon dioxide	37.25	52.40	Hydrogen	3.28	
Nitrogen	30.51	27.32	Oxygen	44.88	
Oxygen	6.63	6.78	Nitrogen	27.32	
Argon	0.29	0.38	Argon	0.38	
Hydrogen (CH ₂) _n	1.86 0.463	0.12 1.21	Sulfur	0.02	
Specific Volume BTU/ft3 (Dry @60F, 14.696 psia) BTU/ft3 (Water Saturated @ 0.2563 BTU/lb (Dry @60F, 14.696 psia) F _d (factor) F _w (factor) F _c (factor)	, ,	12.126 259.1 254.5 3141 10194 12210 2464	(HHV) (HHV) (HHV)	233.5 229.4 2831	(LHV) (LHV) (LHV)
Compressibility Factor (@60F, 14.6 Wobbe Index Specific Gravity	96 psia)	0.9978 249.60 1.0772			

	Specific volume			
Component	referenc	e values *		
Methane	23.7	(ft³/lb)		
Carbon dioxide	8.62			
Nitrogen	13.5			
Oxygen	11.9			
Argon	9.52			
Hydrogen	188.2			

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: April 14, 2025

Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: March 20, 2025
Date Analyzed: March 21, 2025

AtmAA Lab #: 20795-38

Sample ID: Flare Station Pre H2S

Component	Mole %	Wt %	C,H,O,N,	S, Wt.%	
Methane	29.74	15.19	Carbon	29.85	
Carbon dioxide	44.41	62.39	Hydrogen	4.27	
Nitrogen	18.08	16.17	Oxygen	49.46	
Oxygen	4.00	4.08	Nitrogen	16.17	
Argon	0.18	0.23	Argon	0.23	
Hydrogen (CH ₂) _n	2.93 0.635	0.19 1.72	Sulfur	0.03	
Specific Volume		12.100			
BTU/ft3 (Dry @60F, 14.696 psia)	339.8	(HHV)	306.2	(LH
BTU/ft3 (Water Saturated @ 0.2	.5636 psia)	333.9	(HHV)	300.8	(LH
BTU/lb (Dry @60F, 14.696 psia) F _d (factor)		4112 9907	(HHV)	3705	(LH
F _w (factor)		11910			
F _c (factor)		2330			
Compressibility Factor (@60F, 1	4.696 psia)	0.9972			
Wobbe Index		327.0			
Specific Gravity		1.0797			

	Specific	volume
Component	referenc	e values *
Methane	23.7	(ft /lb)
Carbon dioxide	8.62	
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

Report Date: April 14, 2025
Client: Montrose AQS
Project Location: Chiquita Landfill
Date Received: March 20, 2025
Date Analyzed: March 21, 2025

AtmAA Lab #: 20795-39

Sample ID: Flare Station Post H2S

Component	Mole %	Wt %	C,H,O,N,8	S, Wt.%	
Methane	27.01	13.63	Carbon	29.17	
Carbon dioxide	45.32	62.88	Hydrogen	3.98	
Nitrogen	19.53	17.25	Oxygen	49.40	
Oxygen	3.63	3.66	Nitrogen	17.25	
Argon	0.16	0.20	Argon	0.20	
Hydrogen (CH ₂) _n	3,52 0,832	0.22 2.15	Sulfur	0.00	
Specific Volume BTU/ft3 (Dry @60F, 14.696 psia) BTU/ft3 (Water Saturated @ 0.25636 p BTU/lb (Dry @60F, 14.696 psia) F _d (factor) F _w (factor) F _c (factor) Compressibility Factor (@60F, 14.696 psia) Wobbe Index		11.95 322.0 316.4 3848 10088 12086 2433 0.9972 307.8	(HHV) (HHV) (HHV)	290.2 285.2 3469	(LH' (LH'
Compressibility Factor (@60F, 14.696	psia)		0.9972 307.8	0.9972 307.8	0.9972

Component		volume e values *
Component Methane	23.7	(ft ³ /lb)
Carbon dioxide	8.62	(it hb)
Nitrogen	13.5	
Oxygen	11.9	
Argon	9.52	
Hydrogen	188.2	

^{*} reference, Rev. 2016, GPA-2145 Midstream Standard, Selected Hydrocarbons 60°F

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

SCAQMD Rule 1150.1 Components Analysis in Silco Canister Samples

Report Date: April 14, 2025
Client: Montrose AQS
Project Name: Chiquita Landfill
Project No.: PROJ-053154

Date Received: March 20, 2025 Date Analyzed: March 20-21, 2025

AtmAA Lab No.: Sample I.D.:	20795-31 Tank Farm 6	20795-32 Tank Farm 9A	20795-33 Tank Farm 9B
Components	((Concentration in ppby	<i>(</i>)
Componente			
Hydrogen sulfide	<100	10500	<100
Benzene	765	15400	358
Benzyl chloride	<30	<30	<30
Chlorobenzene	<25	<25	<25
Dichlorobenzenes*	<40	<40	<40
1,1-dichloroethane	<30	<30	<30
1,2-dichloroethane	<30	<30	<30
1,1-dichloroethylene	<30	<30	<30
Dichloromethane	<60	<60	<60
1,2-dibromoethane	<15	<15	<15
Perchloroethylene	<15	<15	<15
Carbon tetrachloride	<35	<35	<35
Toluene	58.3	905	59.0
1,1,1-trichloroethane	<20	<20	<20
Trichloroethene	<20	<20	<20
Chloroform	<20	<20	<20
Vinyl chloride	<20	<20	<20
m+p-xylenes	36.1	309	49.5
o-xylene	<25	105	<25

Toxic air contaminants (TAC) compounds were analyzed by GC/MS, EPA TO-15. Hydrogen sulfide was analyzed by SCD/GC, SCAQMD 307.91.

Brian W. Fung Laboratory Director

^{*} total amount containing meta, para, and ortho isomers

specialized air assessment laboratory atmaa.com

LABORATORY ANALYSIS REPORT

SCAQMD Rule 1150.1 Components Analysis in Silco Canister Samples

Report Date: April 14, 2025
Client: Montrose AQS
Project Name: Chiquita Landfill
Project No.: PROJ-053154
Date Received: March 20, 2025

Date Analyzed: March 20-21, 2025

 AtmAA Lab No.:
 20795-34
 20795-35
 20795-36

 Sample I.D.:
 Tank Farm 2
 Tank Farm 7A
 Tank Farm 7B

(Concentration in ppbv) Components <100 685 Hydrogen sulfide <100 6500 23650 421 Benzene <45 Benzyl chloride <45 <45 <40 <40 Chlorobenzene 53.3 <60 <60 Dichlorobenzenes* 214 <45 <45 <45 1,1-dichloroethane <45 <45 51.6 1,2-dichloroethane <45 <45 1.1-dichloroethylene <45 <100 <100 Dichloromethane <100 <25 <25 1,2-dibromoethane <25 <25 <25 Perchioroethylene <25 <60 <60 <60 Carbon tetrachloride 409 3190 96.0 Toluene 1,1,1-trichloroethane <35 <35 <35 <35 <35 Trichloroethene <35 <35 <35 Chloroform <35 <35 <35 Vinyl chloride <35 156 71.6 m+p-xylenes 1535 569 <40 65.4 o-xylene

Toxic air contaminants (TAC) compounds were analyzed by GC/MS, EPA TO-15. Hydrogen sulfide was analyzed by SCD/GC, SCAQMD 307.91.

Brian W. Fund Laboratory Director

^{*} total amount containing meta, para, and ortho isomers

specialized air assessment laboratory atmaa.com

SCAQMD Rule 1150.1 Components Analysis in Silco Canister Samples

LABORATORY ANALYSIS REPORT

Report Date: April 18, 2025

Client: Montrose AQS

Project Name: Chiquita Landfill

Project No.: PROJ-053154

Date Received: March 20, 2025

Date Analyzed: March 20-21, 2025

AtmAA Lab No.:

20795-37

20795-38

20795-39

Sample I.D.:

Zeeco Inlet

Flare Station Pre H2S Flare Station Post H2S

(Concentration in ppbv)

Com	ponen	ts

Components			
Hydrogen sulfide	209000	300500	<400
Benzene	81900	127000	116000
Benzyl chloride	<5000	<5000	<5000
Chlorobenzene	<4500	<4500	<4500
Dichlorobenzenes*	<6500	<6500	<6500
1,1-dichloroethane	<5000	<5000	<5000
1,2-dichloroethane	<5000	<5000	<5000
1,1-dichloroethylene	<5000	<5000	<5000
Dichloromethane	<11000	<11000	<11000
1,2-dibromoethane	<3000	<3000	<3000
Perchloroethylene	<3000	<3000	<3000
Carbon tetrachloride	<6000	<6000	<6000
Toluene	8910	12400	11800
1,1,1-trichloroethane	<4000	<4000	<4000
Trichloroethene	<4000	<4000	<4000
Chloroform	<4000	<4000	<4000
Vinyl chloride	<4000	<4000	<4000
m+p-xylenes	4580	5360	5440
o-xylene	<4500	<4500	<4500

Toxic air contaminants (TAC) compounds were analyzed by GC/MS, EPA TO-15. Hydrogen sulfide was analyzed by SCD/GC, SCAQMD 307.91.

^{*} total amount containing meta, para, and ortho isomers

Project Name: Chiquita Landfill Date Received: March 20, 2025 Date Analyzed: March 20-21, 2025

	Sample ID	Repeat	Analysis Run #2	Mean Conc.	% RPD
Components			entration in		
Hydrogen sulfide	Tank Farm 2	<100	<100		
Benzene	Tank Farm 2	24500	22800	23650	7.2
Benzyl chloride	Tank Farm 2	<45	<45		
Chlorobenzene	Tank Farm 2	53.4	53.2	53.3	0.38
Dichlorobenzenes	Tank Farm 2	207	221	214	6.5
1,1-dichloroethane	Tank Farm 2	<45	<45		
1,2-dichloroethane	Tank Farm 2	52.0	51.2	51.6	1.6
1,1-dichloroethylene	Tank Farm 2	<45	<45	200 MP 000	40-10-00
Dichloromethane	Tank Farm 2	<100	<100	***	
1,2-dibromoethane	Tank Farm 2	<25	<25		dia siarah
Perchloroethylene	Tank Farm 2	<25	<25		***
Carbon tetrachloride	Tank Farm 2	<60	<60		and but any
Toluene	Tank Farm 2	3280	3100	3190	5.6
1,1,1-trichloroethane	Tank Farm 2	<35	<35	wi w no	
Trichloroethene	Tank Farm 2	<35	<35		WIN
Chloroform	Tank Farm 2	<35	<35	# W M	
Vinyl chloride	Tank Farm 2	<35	<35		***
m+p-xylenes	Tank Farm 2	1540	1530	1535	0.65
o-xylene	Tank Farm 2	576	562	569	2.5

Nine Silco canister samples, laboratory numbers 20795-(31-39), were analyzed for SCAQMD Rule 1150.1 components. Agreement between repeat analyses is a measure of precision and is shown above in the column "% RPD". The average % RPD for 7 repeat measurements from nine Silco canister samples is 3.5%.

18/00/2

	?				Special Remarks	# 62%	H95 #	* 548	LCG #	¥ 566	* 362	4 60]		Date Time	Date Time	Date Time 3 (2) (2) (1.55	<		C		laa.com
	ANALYSES REQUESTED	7.0	76-0- 25/12 58/5	אסייי	75	X	×		·		×	X				(Signatúre)	Analytical Laboratory	AtmAA Inc.	23917 Craftsman Rd.	Calabasas, CA 91302 TEL: (818) 223-3277	Email Address: info@atmaa.com
CORD		38.	98 VS)	2	S	X	X	X	<i>χ</i>	X	X	X	1, /	Received by: (Signature)	Received by: (Signature)	Received for Laboratory by (Signature		Thesall		LANGUAS	The second secon
HAIN OF CUSTODY RECORD	7.6	BUITA CAMPFULL	Ľ	Standard 10 day	Sampling Sampling	0 %	2880	0865	0460	2632	2835	1 10935	>	Time Receive	Time Receive	Time Receive	ort to:	Company: Now The SE	Street Address	City/State/Zip:	₽ ∥
CHAIN OF	Project Location:	HOUSTA C	Purchase Order Number:	Turnaround Times:	AA Lab	20795-31	.33	. 33	ye.	.35	-36	-37		Date 25/25/	Date	Date	Send Report to:		51	City	enre
	Proj))	Purc	Tum	Type of Sample		74942	69 484	11694	82174	48864	\$2115		(e)	(e)	re.)		MonthesE	421 & STIMMER	626 617 6313	e e
	Client/Project Name:	Monteose 425	Project Number:	Sampler	Client Sample	K	74NE FAMA 94	rank failey 9B	TONG FRAM 2	The more yours	THINK EARLY 713	ZEECO INSET		Relinquished by: (Signature)	Relinquished by: (Signature)	Relinquished by: (Signature)	Company Info:	ompany:	Street Address	City/State/Zip: Telephone No.:	1

CHOOKS

	CHAIN OF	CUSTO	CHAIN OF CUSTODY RECORD			2	
Client/Project Name:	Project Location: OHIQUITA CANDEIL	CANDE		ANALYSES REQUESTED	EQUESTED		
Project Number:	Purchase Order Number:	10		15 to 10 00 00 00 00 00 00 00 00 00 00 00 00	_	_	
Sampler: (Signature)	Turnaround Times:	Standard 10 day		S 100 31 8	_	_	
	Expedited: 24hr / 48	24hr / 48hr / 72hr / 5 day		777	/	_	
Client Sample Type of Sample Identification Canister ID	AtmAA Lab Number	Sampling Date	Sampling / Time	1 5 4 2 1	/	Special Remarks	marks
FLAME STATION POETHZS 49439	20195-38	3/20/25	0101			# 58(
FLACESTATOR POTHES 46611	39	Ź	0101			4 516	
)					
						•	
4							
	Ÿ						
Relinquished by: (Signature)	5 20 (5)	Time	Received by: (Signature)	nture)		Date	Time
Relinquished by: (Signature)	Date	Time	Received by: (Signature)	ıture)		Date	Time
Relinquished by: (Signature)	Date	Time	Received for labora	Received for abbratory by (Signature)		3/3v/2s	Time 11:2で
Company Info:	Send Report to:	ort to:		Analytical Laboratory	oratory	« 	
Company:		Company:	, ,	AtmAA Inc.			//
Street Address	Str	Street Address		23917 Craftsman Rd.	nan Rd.	H	1
City/State/Zip:	ij	City/State/Zip:		Calabasas, CA 91302	A 91302	3) \\	× R
Telephone No.:	Proje	Project Manager:		TEL: (818) 223-3277	23-3277		
Email Address:	EM	Email Address:		Email Addres	Email Address: info@atmaa.com	a.com	

Appendix A.4 **Quality Assurance Data**

Barometric Pressure Determination

Date: 03/20/25	- ÷
Time: <u>7:30</u>	- :
Data By: SJ, KT	-
Reference:	https://forecast.weather.gov/MapClick.php?lat=33.6873&l
Lat: 34.42972°NLon: 118.66712°WElev: 1278.0ft.	
Reference Barometer ID	
Reference Barometer Location	DEL VALLE (DLVC1)
Reference Barometer Other Info.	
Reference Barometer Indication, corrected to sea level	30.03
Reference Barometer Reference Elevation	1278
Reference Barometer Actual Pressure	28.75
Test Barometer Location/Site	Chiquita Canyon
Location/Site Elevation	997
Location/Site Barometric Pressure	29.03
Sampling Location Height (above/below site elevation)	1
Sampling Location Barometric Pressure	29.03

Thermocouple ID: TC-WB

Date: 1/3/2025 Performed By: JS/JS/JL

Calibrated Digital Temperature Readout ID: PTC-69

T1 Reference Thermometer ID: 2788
T2 Reference Thermometer ID: 2736
T3 Reference Thermometer ID: 0514-1120

ĺ	T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence	
ı	I.D.	Readout		C	F.			0	F				
l	TC-WB	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
I	T3 (~ 370 F)	PTC-69	367	367	367	367	370	370	370	370	3.0	0.4%	Pass
ı	T2 (~ 212 F)	PTC-69	215	215	215	215	212	212	212	212	3.0	0.4%	Pass
ı	T1 (~ 32 F)	PTC-69	33	33	33	33	32	32	32	32	1.0	0.2%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

4/17/2025

²⁾ Pass if all Differences are less than 1.5% (°R)

Thermocouple ID: TC-DB

Date: 1/3/2025 Performed By: JS/JS/JL

Calibrated Digital Temperature Readout ID: PTC-69

T1 Reference Thermometer ID: 2788 T2 Reference Thermometer ID: 2736 T3 Reference Thermometer ID: 0514-1120

ſ	T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence	
١	I.D.	Readout		C	F			0	F				
L	TC-DB	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)	
I	T3 (~ 370 F)	PTC-69	371	371	371	371	370	370	370	370	1.0	0.1%	Pass
ı	T2 (~ 212 F)	PTC-69	215	215	215	215	212	212	212	212	3.0	0.4%	Pass
L	T1 (~ 32 F)	PTC-69	32	32	32	32	32	32	32	32	0.0	0.0%	Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

Thermocouple ID: 145

Date: 1/3/2025 Performed By: JS/JS/JL

Calibrated Digital Temperature Readout ID: PTC-69

T1 Reference Thermometer ID: 2788
T2 Reference Thermometer ID: 2736
T3 Reference Thermometer ID: 0514-1120

Γ	T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence
L	I.D.	Readout		0	F			o	F			
L	145	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)
Г	T3 (~ 370 F)	PTC-69	368	368	368	368	370	370	370	370	2.0	0.2%
ı	T2 (~ 212 F)	PTC-69	212	212	212	212	212	212	212	212	0.0	0.0%
L	T1 (~ 32 F)	PTC-69	33	33	33	33	32	32	32	32	1.0	0.2%

Pass Pass Pass

4/17/2025

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

Thermocouple ID: 146

Date: 1/3/2025 Performed By: JS/JS/JL

Calibrated Digital Temperature Readout ID: PTC-69

T1 Reference Thermometer ID: 2788
T2 Reference Thermometer ID: 2736
T3 Reference Thermometer ID: 0514-1120

T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence
I.D.	Readout		0	'F			ا°	F			
146	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)
T3 (~ 370 F)	PTC-69	366	366	366	366	370	370	370	370	4.0	0.5%
T2 (~ 212 F)	PTC-69	212	212	212	212	212	212	212	212	0.0	0.0%
T1 (~ 32 F)	PTC-69	34	34	34	34	32	32	32	32	2.0	0.4%

Pass Pass Pass

¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: PTC-43

Readout Description: Handheld

Date: 1/3/2025

Performed By: JS, JS, JI

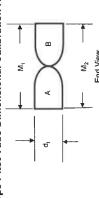
Calibrated Thermocouple ID: TC-Cal T1 Reference Thermometer ID: 2788 T2 Reference Thermometer ID: 2736 T3 Reference Thermometer ID: 0514-1120

T/C			T/C - F	Readout			Reference T	hermometer		Diffe	erence
I.D.	Readout		C	F			c	F			
TC-Cal	I.D.	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)
T3 (~ 370 F)	PTC-43	370	370	370	370	370	370	370	370	0.0	0.0%
T2 (~212 F)	PTC-43	213	213	213	213	212	212	212	212	1.0	0.1%
T1 (~ 32 F)	PTC-43	32	32	32	32	32	32	32	32	0.0	0.0%

1) Difference % (°R) = Difference (°F) / (Average Tref + 460)

Thermocouple Source Readings

			T/C - F	Readout			T/C S	Source		Diffe	erence	1
	T/C Source		(F .			C	'F				1
	S/N	Reading 1	Reading 2	Reading 3	Average	Reading 1	Reading 2	Reading 3	Average	°F	%, (°R)]
T4 (~650 F)	129462	648	648	648	648	650	650	650	650	2.0	0.2%	Pass
T3 (~370 F)	129462	370	370	370	370	370	370	370	370	0.0	0.0%	Pass
T2 (~212 F)	129462	212	212	212	212	212	212	212	212	0.0	0.0%	Pass
T1 (~32 F)	129462	32	32	32	32	32	32	32	32	0.0	0.0%	Pass


¹⁾ Difference % (°R) = Difference (°F) / (Average Tref + 460)

²⁾ Pass if all Differences are less than 1.5% (°R)

²⁾ Pass if all Differences are less than 1.5% (°R)

S Type Pitot Tube Dimensional Calibration Record

170				
***	1	<u> </u>]	-
	Ĭ.	\succ	/ \ §	End View
-	ļ	∢]	_
		ซี		

Top View

	Status	Pass	Pass	
1.05 Dt < P < 1.5 Dt	Ratio of P/Dt	1.2	1.5	
5 degrees	Average Face Opening Plane Frontal Angle from parallel to Longitudinal Axis	-1.4	0.0	
10 degrees	Average Face Opening Plane Angle, offset from perpendicular to transverse	0.3	0.0	
n/a	Me	0.365	0.290	
n/a	MS	0.349	0.290	
n/a	M4	0.655	1.100	
n/a	M3	0.638	1.100	
n/a	M2	0.650	1.100	
n/a	M.	0.653	1.100	
"3/16" < Dt < 3/8"	Tubing Diameter, dt	0.268	0.375	
Yes	Pa = Pb	>	>	
z < 1/8" w < 1/32"	Side View, Side View, Impact Impact Properlings Properly aligned, z < aligned, x < 11/8".	٨	>	
2 < 1/8"	Side View, Impact openings Properly aligned, z < 1/8"	\	>	
iteria	Calibrated By	JAC	JAC	
Acceptability Criteria	Date	1/3/25	1/3/25	
	Pitot ID	145	146	

Reference "A Type-S Pitot Tube Calibration Study", Robert F. Vollaro, October 15, 1975 If tube is not visibly deformed it is assumed that Pa = Pb = .5 x avg. of M1 & M2, and that average face opening plane angles represent individual angles to tube axis Notes:

Side View

DIFFERENTIAL PRESSURE CALIBRATION

Semi-annual

Description: Air Data Multimeter (ADM 850) Display ID: ADM 9

Calibration Date: 1/3/2025 Serial Number: M14140

Reference Device ID: Microtector Calibrated By: K. Thomas Reference Serial Number: \$270

Pacitoration	٥		7 21		Individual Dua Doculte	
Calibration Natige	ש				IIIMINIANAI PAII PESAILS	
Scale: 0 - 0.050	.050	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.010	0.010	0.010	0.0000	0.00%	Pass
Target 40%	0.020	0.020	0.020	0.0000	0.00%	Pass
Target 60%	0.030	0:030	0:030	0.0000	0.00%	Pass
Target 80%	0.040	0.040	0.040	0.0000	0.00%	Pass
Target 100%	0.050	0.050	0.050	0.000	%00:0	Pass
Calibration Range	e e	Ru	Run 2		Individual Run Results	
•						

Pass/ Fail

% Difference

Absolute Value

Reference Value (inches W.C.) 0.010 0.020 0.030 0.040

Measured Value (inches W.C.)

0 - 0.050

Scale:

inches H₂O

Farget 20%

0.020 0.010

0.010 0.020 0.030 0.040 0.050

Target 40% Target 60%

Farget 100% Target 80%

0.040

Pass Pass Pass

0.00% 0.00% 0.00% 0.00%

0.0000 0.0000 0.0000 0.0000

Pass

Pass

0.00%

Calibration Range	əbi	Run 3	n 3		Individual Run Results	
Scale: 0 - 0.050 inches H ₂ O	0.050	Measured Value (inches W.C.)	Reference Value (inches W.C.)	Absolute Value	% Difference	Pass/ Fail
Target 20%	0.010	0.010	0.010	0.0000	0:00%	Pass
Target 40%	0.020	0.020	0.020	0.0000	0.00%	Pass
Target 60%	0.030	0.030	0.030	0.0000	0.00%	Pass
Target 80%	0.040	0.040	0.040	0.0000	%00.0	Pass
Target 100%	0.050	0.050	0.050	0.0000	%00.0	Pass
					Average results for three runs	for three runs

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

Pass/Fail

% Difference

0.00%

Pass

WY MONIKOSE

Pass/Fail Pass

% Difference 0.58%

DIFFERENTIAL PRESSURE CALIBRATION

Semi-annual

Description: Air Data Multimeter (ADM 850) Serial Number: M14140 Display ID: ADM 9

Calibration Date: 1/3/2025

Reference Device ID: Microtector Reference Serial Number: \$270

Calibrated By: K. Thomas

Calibration Range	nge	Ru	Run 1		Individual Run Results	
Scale: 0 -	0 - 0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.020	0.020	0.020	0.0000	0.00%	Pass
Target 40%	0.040	0.040	0.040	0.0000	0.00%	Pass
Target 60%	090.0	0.059	090.0	0.0010	1.67%	Pass
Target 80%	080.0	0.079	0.080	0.0010	1.25%	Pass
Target 100%	0.100	0.100	0.100	0.0000	0.00%	Pass
Calibration Range	nge	Ru	Run 2		Individual Run Results	
Scale: 0 -	0 - 0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.020	0.020	0.020	0.0000	0.00%	Pass
Target 40%	0.040	0.040	0.040	0.0000	0.00%	Pass
Target 60%	090.0	0.059	0.060	0.0010	1.67%	Pass
Target 80%	080'0	0.079	0.080	0.0010	1.25%	Pass
Target 100%	0.100	0.100	0.100	0.0000	0.00%	Pass
Calibration Range	nge	Ru	Run 3		Individual Run Results	
Scale: 0 -	0 - 0.100	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.020	0.020	0.020	0.0000	%00.0	Pass
Target 40%	0.040	0.040	0.040	0.0000	%00.0	Pass
Target 60%	090'0	0.059	090'0	0.0010	1.67%	Pass
Target 80%	080.0	0.079	0.080	0.0010	1.25%	Pass
Target 100%	0.100	0.100	0.100	0.0000	0.00%	Pass
					Average results for three runs	for three runs

MONIROSE STATEMENT

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

DIFFERENTIAL PRESSURE CALIBRATION

Semi-annual

Display ID: ADM 9 Description: Air Dat

Display ID: ADM 9 Description: Air Data Serial Number: M14140 Calibration Date: 1/3/2025	ADM 9 Air Data Mu M14140 1/3/2025	Display ID: ADM 9 Description: Air Data Multimeter (ADM 850) rial Number: M14140 vration Date: 1/3/2025			Reference Device ID: Microtector Reference Serial Number: S270 Calibrated By: K. Thomas	crotector 770 Thomas
Calibration Range	Jge J	Run 1	11		Individual Run Results	
Scale: 0 -	0 - 1.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.200	0.200	0.200	0.0000	%00.0	Pass
Target 40%	0.400	0.401	0.400	0.0010	0.25%	Pass
Target 60%	0.600	0.602	0.600	0.0020	0.33%	Pass
Target 80%	0.800	0.800	0.800	0.0000	0.00%	Pass
Target 100%	1.000	1.000	1.000	0.0000	%00.0	Pass

Calibration Range	ige	Ru	Run 2		ndividual Run Results	
Scale: 0 - 1.000 inches H ₂ O	1.000	Measured Value (inches W.C.)	Reference Value (inches W.C.)	Absolute Value	% Difference	Pass/ Fail
Target 20%	0.200	0.200	0.200	0.0000	0.00%	Pass
Target 40%	0.400	0.401	0.400	0.0010	0.25%	Pass
Target 60%	0.600	0.602	0.600	0.0020	0.33%	Pass
Target 80%	0.800	0.801	0.800	0.0010	0.13%	Pass
Target 100%	1.000	1.000	1.000	0.0000	0.00%	Pass

Calibration Range	ge	Run 3	13		Individual Run Results	
Scale: 0 - 1	0 - 1.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
inches H ₂ O		(inches W.C.)	(inches W.C.)			
Target 20%	0.200	0.200	0.200	0.0000	%00.0	Pass
Target 40%	0.400	0.401	0.400	0.0010	0.25%	Pass
Target 60%	0.600	0.602	0.600	0.0020	0.33%	Pass
Target 80%	0.800	0.800	0.800	0.0000	%00.0	Pass
Target 100%	1.000	1.000	1.000	0.0000	%00.0	Pass

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within $5.0\,\%$.

Average results for three runs

Pass/Fail Pass

% Difference

0.13%

DIFFERENTIAL PRESSURE CALIBRATION

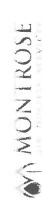
Semi-annual

Reference Device ID: Dwyer 0 - 10" Manometer

Calibrated By: K. Thomas

Reference Serial Number: CC-2

Display ID: ADM 9
Description: Air Data Multimeter (ADM 850)


Serial Number: M14140 Calibration Date: 1/3/2025

Pass/ Fail Pass Pass Pass Pass Individual Run Results % Difference 2.25% 0.37% 0.17% 0.56% 1.00% Absolute Value 0.0450 0.0150 0.0100 0.0450 0.1000 Reference Value (inches W.C.) 2.000 8.000 10.000 Run 1 Measured Value (inches W.C.) 1.955 4.015 6.010 8.045 10.100 2.000 4.000 6.000 8.000 0 - 10.000 Calibration Range inches H₂O Target 60% Target 80% Target 100% Scale: Target 20% Target 40%

Calibration Range	ge	Ru	Run 2		Individual Run Results	
cale: 0 - inches H ₂ O	Scale: 0 - 10.000 inches H ₂ O	Measured Value (inches W.C.)	Reference Value (inches W.C.)	Absolute Value	% Difference	Pass/ Fail
	2.000	1.995	2.000	0.0050	0.25%	Pass
	4.000	4.035	4.000	0.0350	0.88%	Pass
	000.9	6.095	6.000	0.0950	1.58%	Pass
	8.000	8.055	8.000	0.0550	%69.0	Pass
	10.000	10.100	10.000	0.1000	1.00%	Pass

Calibration Range	ıge	Run 3	13		Individual Run Results	
Scale: 0 -	0 - 10.000	Measured Value	Reference Value	Absolute Value	% Difference	Pass/ Fail
O ² H selución		(inches W.C.)	(inches W.C.)			
Target 20%	2.000	1.990	2.000	0.0100	0.50%	Pass
Target 40%	4.000	4.090	4.000	0.0900	2.25%	Pass
Target 60%	000.9	6.095	6.000	0.0950	1.58%	Pass
Target 80%	8.000	8.040	8.000	0.0400	0.50%	Pass
Target 100%	10.000	10.050	10.000	0.0500	0.50%	Pass

Criteria: Each individual measured value within + or - 5.0% of reference value. Percent difference of three run average within 5.0 %.

APPENDIX B GENERAL EMISSIONS CALCULATIONS

GENERAL EMISSIONS CALCULATIONS

I. Stack Gas Velocity

A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$$

$$MW_{wet} = MW_{dry} * (1 - B_{wo}) + 18 * B_{wo}$$

B. Absolute stack pressure, iwg

$$P_s = P_{bar} + \frac{P_{sg}}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_s = 2.9 * C_p * \sqrt{\Delta P} * \sqrt{T_s} * \sqrt{\frac{29.92 * 28.95}{P_s * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_m * \left(P_{bar} + \frac{\Delta H}{13.6}\right) * \frac{T_{ref}}{T_m} * Y_d$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{ic} * \frac{T_{ref}}{528^{\circ}R}$$

C. Moisture content, dimensionless

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

III. Stack Gas Volumetric Flow Rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_s * A_s * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$

Nomenclature:

stack area, ft2 A_s B_{wo} flue gas moisture content, dimensionless particulate grain loading, gr/dscf corrected to 12% CO₂ $C_{12\%CO2}$ particulate grain loading, gr/dscf С C_p pitot calibration factor, dimensionless = nozzle diameter, inches Dn = F fuel F-Factor, dscf/MMBtu @ 0% O₂ = orifice differential pressure, iwg Н % isokinetics 1 M_n mass of collected particulate, mg = mass emission rate of specie i, lb/hr Mi = MW molecular weight of flue gas, lb/lb-mole molecular weight of specie i: M_{wi} = SO₂: 64 NO_x: 46 CO: 28 HC: 16 0 sample time, minutes average velocity head, iwg = $(\sqrt{\Delta P})^2$ ΛP = barometric pressure, inches Hg P_{bar} = stack absolute pressure, inches Hg stack static pressure, iwb P_{sg} = wet stack flow rate at actual conditions, wacfm Q = Q_{sd} dry standard stack flow rate, dscfm SV specific molar volume of an ideal gas at standard conditions, ft3/lb-mole meter temperature, °R T_{m} = reference temperature, °R $\mathsf{T}_{\mathsf{ref}}$ = stack temperature, °R T_{s} = V_s stack gas velocity, ft/sec volume of liquid collected in impingers, ml V_{lc} uncorrected dry meter volume, dcf V_{m} = dry meter volume at standard conditions, dscf V_{mstd} = volume of water vapor at standard conditions, scf V_{wstd} =

meter calibration coefficient

 Y_d

APPENDIX C QUALITY ASSURANCE

Appendix C.1 Quality Assurance Program Summary

QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (Montrose) ASTM D7036-04 certification, Montrose is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. Montrose quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: Montrose has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

<u>Internal Quality Assurance Manual</u>: Montrose has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of Montrose's QA efforts. The manual is revised upon periodic review and as Montrose adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. Montrose training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the Montrose QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

Equipment Maintenance and Calibration: All laboratory and field equipment used as a part of Montrose's emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

Knowledge of Current Test Methods: Montrose maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.

<u>Chain-of-Custody</u>: Montrose maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to Montrose source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to Montrose office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

ASTM D7036-04 Required Information

Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

Performance Data

Performance data are available for review.

Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

Plant Entry and Safety Requirements

Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.

Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)
- Flame Resistant Clothing (if required)

The following safety measures are followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.

TABLE 1 EQUIPMENT MAINTENANCE SCHEDULE

Equipment	Acceptance Limits	Frequency of Service	Methods of Service
Pumps	Absence of leaks Ability to draw manufacturers required vacuum and flow	As recommended by manufacturer	 Visual inspection Clean Replace parts Leak check
Flow Meters	Free mechanical movement	As recommended by manufacturer	 Visual inspection Clean Calibrate
Sampling Instruments	Absence of malfunction Proper response to zero span gas	As recommended by manufacturer	As recommended by manufacturer
Integrated Sampling Tanks	1. Absence of leaks	Depends on nature of use	Steam clean Leak check
Mobile Van Sampling System	1. Absence of leaks	Depends on nature of use	 Change filters Change gas dryer Leak check Check for system contamination
Sampling Lines	Sample degradation less than 2%	After each test series	Blow dry, inert gas through line until dry

TABLE 2
MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Sampling Equipment	Calibration Frequency	Calibration Procedure	Acceptable Calibration Criteria
Continuous Analyzers	Before and After Each Test Day	3-point calibration error test	< 2% of analyzer range
Continuous Analyzers	Before and After Each Test Run	2-point sample system bias check	< 5% of analyzer range
Continuous Analyzers	After Each Test Run	2-point analyzer drift determination	< 3% of analyzer range
CEMS System	Beginning of Each Day	leak check	< 1 in. Hg decrease in 5 min. at > 20 in. Hg
Continuous Analyzers	Semi-Annually	3-point linearity	< 1% of analyzer range
NO _x Analyzer	Daily	NO ₂ -> NO converter efficiency	> 90%
Differential Pressure Gauges (except for manometers)	Semi-Annually	Correction factor based on 5-point comparison to standard	± 5%
Differential Pressure Gauges (except for manometers)	Bi-Monthly	3-point comparison to standard, no correction factor	± 5%
Barometer	Semi-Annually	Adjusted to mercury-in- glass or National Weather Service Station	± 0.1 inches Hg
Dry Gas Meter	Semi-Annually	Calibration check at 4 flow rates using a NIST traceable standard	± 2%
Dry Gas Meter	Bi-Monthly	Calibration check at 2 flow rates using a NIST traceable standard	± 2% of semi-annual factor
Dry Gas Meter Orifice	Annually	4-point calibration for $\Delta H@$	
Temperature Sensors	Semi-Annually	3-point calibration vs. NIST traceable standard	± 1.5%

Note: Calibration requirements that meet applicable regulatory agency requirements are used.

Appendix C.2 SCAQMD and STAC Certifications

September 26, 2024

Mr. John Peterson Montrose Air Quality Services, LLC 1631 E. Saint Andrew Place Santa Ana, CA 92705

Subject: LAP Approval Notice Reference # 96LA1220

Dear Mr. Peterson:

We have completed our review of Montrose Air Quality Services' revised renewal application, which was submitted as notification of Montrose's recent acquisition of AirKinetics, Inc. under the South Coast AQMD Laboratory Approval Program (LAP). We are pleased to inform you that your firm is approved for the period beginning September 30, 2024, and ending September 30, 2025, for the following methods, subject to the requirements in the LAP Conditions For Approval Agreement and conditions listed in the attachment to this letter:

South Coast AQMD Methods 1-4
South Coast AQMD Methods 10.1 and 100.1
South Coast AQMD Methods 5.1, 5.2, 5.3, 6.1 (Sampling and Analysis)
South Coast AQMD Methods 25.1 and 25.3 (Sampling)
Rule 1121/1146.2 Protocol
Rule 1420/1420.1/1420.2 – (Lead) Source and Ambient Sampling
USEPA CTM-030 and ASTM D6522-00

Your LAP approval to perform nitrogen oxide emissions compliance testing for Rule 1121/1146.2 Protocols includes satellite facilities located at:

McKenna Boiler Noritz America Corp. Ajax Boiler, Inc.
1510 North Spring Street 11160 Grace Avenue 2701 S. Harbor Blvd.
Los Angeles, CA 90012 Fountain Valley, CA 92708 Santa Ana, CA 92704

VA Laundry Bldg., Greater LA Healthcare Sys. So Cal Gas - Engr Analysis Ctr, Bldg H 508 Constitution Avenue 8101 Rosemead Blvd

508 Constitution Avenue 8101 Rosemead Blvd Los Angeles, CA 90049 Pico Rivera, CA 90660

Thank you for participating in the LAP. Your cooperation helps us to achieve the goal of the LAP: to maintain high standards of quality in the sampling and analysis of source emissions. You may direct any questions or information to LAP Coordinator, Colin Eckerle. He may be reached by telephone at (909) 396-2476, or via e-mail at ceckerle@aqmd.gov.

Sincerely,

D. Sarkar

Dipankar Sarkar Program Supervisor Source Test Engineering

DS:CE Attachment

240926 LapRenewal.doc

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

MONTROSE AIR QUALITY SERVICES

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 3925.01

Valid to February 28, 2026

Presented this 27th day of February 2024

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

Appendix C.3 Individual QI Certifications

Appendix C.4 Statement of No Conflict of Interest

STATEMENT OF NO CONFLICT OF INTEREST AS AN INDEPENDENT TESTING LABORATORY

(To be completed by authorized source testing firm representative and included in source test report)

The following facility and equipment were tested by my source testing firm and are the subjects of this statement:

Facility ID: 119219
Date(s) Tested: March 20, 2025
Facility Name: Chiquita Canyon Landfill
Equipment Address: 29201 Henry Mayo Drive
Castaic, California 91384
Equipment Tested: Leachate and Condensate Sampling System

I state, as its legally authorized representative, that the source testing firm of:

Source Test Firm: Montrose Air Quality Services, LLC

Business Address: 1631 E. St. Andrew Pl.

Santa Ana, California 92705

is an "Independent Testing Laboratory" as defined in District Rule 304(k):

For the purposes of this Rule, when an independent testing laboratory is used for the purposes of establishing compliance with District rules or to obtain a District permit to operate, it must meet all of the following criteria:

- (1) The testing laboratory shall have no financial interest in the company or facility being tested, or in the parent company, or any subsidiary thereof -
- (2) The company or facility being tested, or parent company or any subsidiary thereof, shall have no financial interest in the testing laboratory;
- (3) Any company or facility responsible for the emission of significant quantities of pollutants to the atmosphere, or parent company or any subsidiary thereof shall have no financial interest in the testing laboratory; and
- (4) The testing laboratory shall not be in partnership with, own or be owned by, in part or in full, the contractor who has provided or installed equipment (basic or control), or monitoring systems, or is providing maintenance for installed equipment or monitoring systems, for the company being tested.

Furthermore, I state that any contracts of agreements entered into by my source testing firm and the facility referenced above, or its designated contractor(s), either verbal or written, are not contingent upon the outcome of the source testing, or the source testing information provided to the SCAQMD.

Signature:		Date:	4/18/2025
Pete SanJuan	Client Project Manager	(714) 279-6777	4/18/2025
(Name)	(Title)	(Phone)	(Date)

FORM ST-110 :stevforl.doc (Revised 11/18/98

APPENDIX D FACILITY PERMIT

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

PERMIT TO CONSTRUCT/OPERATE

Permit No. G66132 A/N 613131

Equipment Description:

Modification of an existing Landfill Gas Condensate and Leachate Collection/Storage System consisting of:

- Condensate storage tank, 5,000-gallon capacity, at Canyon B.
- Condensate storage tank, 10,000-gallon capacity, at Primary Canyon.
- Condensate storage tanks, three (3), each 6,650-gallon capacity, at flare station.
- Leachate collection tanks, up to (4), each 10,000-gallon capacity, and one 1,600-gallon capacity, with associated sump pump and transfer pumps.

By removal of:

One 1,600-gallon capacity leachate collection tank [under item 4].

By addition of:

One 10,000-gallon capacity leachate collection tank [to Item 4].

Conditions:

- Operation of this equipment shall be conducted in accordance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.

 [Rule 204]
- This equipment shall be properly maintained and kept in good operating condition at all times. [Rule 204]
- This equipment shall be operated and maintained by personnel properly trained in its operation.
 [Rule 204]
- 4. This equipment shall be vented to air pollution control equipment which is in full operation and has been issued a valid Permit to Construct or Operate by the South Coast AQMD.

 [Rule 1303(a)(1)-BACT]
- This equipment shall be used only for the storage of landfill gas condensate and leachate collection.

 [Rule 204]
- 6. All connectors, valves and openings shall be properly sealed or closed at all times to prevent landfill gas condensate vapors from entering into the atmosphere unless disposal of the condensate/leachate is taking place or during maintenance or repairs.
 [Rule 204]

South Coast Air Quality Management District 21865 Copley Drive, Diamond Bar, CA 91765-4178

Section D Page 21 Facility ID 110219 Revision #: 11 Date: September 28, 2023

FACILITY PERMIT TO OPERATE CHIQUITA CANYON LLC

- 7. Any breakdown or malfunction of the landfill gas condensate/leachate storage system shall be reported to South Coast AQMD within one hour after occurrence, or within one hour of the time personnel knew or reasonably should have known of its occurrence, per Rule 430 requirements, and remedial measures shall be undertaken to correct the problem and prevent further emissions into the atmosphere in a timely manner.
 [Rule 430]
- 8. The operator shall keep and maintain adequate records for this equipment to verify compliance with the conditions of this permit. These records shall be prepared in a format which is acceptable to the South Coast AQMD. Records shall be kept for at least five years and made available to South Coast AQMD personnel upon request.
 [Rule 204]
- This permit shall expire if construction of this equipment is not complete within one year from the date of issuance of this permit unless an extension is granted by the Executive Officer. [Rule 204]

THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

Name: Mr. Pete SanJuan

Title: Client Project Manager

Region: West

Email: PSanjuan@montrose-env.com

Phone: (714) 279-6777

Name: Mr. Matt McCune

Title: Regional Vice President

Region: West

Email: <u>MMccune@montrose-env.com</u>

Phone: (714) 279-6777

1 2 3 In The Matter Of 4 5 SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT, 6 Petitioner, 7 VS. 8 CHIQUITA CANYON, LLC a Delaware 9 Corporation, [Facility ID No. 119219] 10 Respondent. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28

BEFORE THE HEARING BOARD OF THE SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

Case No. 6177-4

EXHIBIT S TO DECLARATION OF PATRICK SULLIVAN, BCES, CPP, REPA

Health and Safety Code § 41700, and District Rules 402, 431.1, 3002, 203, 1150

Hearing Date: June 4 and 17, 2025

Hearing Time: 9:30 A.M.
Place: Hearing Board

South Coast Air Quality Management District, 21865 Copley Drive Diamond Bar, CA 91765 Archived: Friday, December 20, 2024 9:24:22 AM

From: Viswanathan, Srividhya

Mail received time: Sat, 14 Dec 2024 03:33:27 **Sent:** Friday, December 13, 2024 7:33:34 PM

To: <u>bchen@aqmd.gov</u> <u>ndickel@aqmd.gov</u> <u>Christina</u> <u>Ojeda</u> Cc: <u>Jones, Art Sullivan, Pat rrauls@montrose-env.com</u>

Subject: CCL: Condition 72 Recommendation

Importance: Normal Sensitivity: None

[EXTERNAL SENDER: Use caution with links/attachments]

All,

Below please find the Reaction Committee's recommendation on additional vapor flow testing pursuant to Condition 72(c) of the Stipulated Order for Abatement with South Coast AQMD in Case No. 6177-4.

Per Condition 72(c) of the SOFA, CCL is required to respond to the AQMD by December 13, 2024, with a recommendation on testing for concentrations of chemical constituents that may be present in the gaseous-phase emissions being recovered from the leachate storage tanks. This is referred to as "vapor flow testing" in the language under Condition 72(c) of the modified SOFA. As a reminder, the head space in these leachate storage tanks is under vacuum and the vapor are being recovered and introduced into the landfill gas (LFG) collection system for combustion at the existing control devices.

The Reaction Committee is proposing to conduct monthly field testing to collect methane (CH4), carbon dioxide (CO2), oxygen (O2), and balance gas concentrations of the gaseous-phase emissions that may be present in the head space of the leachate storage tanks, also known as "leachate vapor flow from the leachate tanks". Based on the testing conducted in October 2024, the concentrations of constituents of interest in the leachate vapors are much lower than constituent concentrations present in the raw LFG. Additionally, the flow (quantities) of these leachate vapors is being measured and recorded with dedicated flow meters for the leachate tanks, after which the collected leachate vapors are comingled with the LFG before being combusted in the flares. Sampling and analysis of LFG at the flare station is conducted after the leachate vapors are co-mingled into the gas stream, thus these data also reflect the contribution of leachate vapors to these contaminant concentrations.

Due to the low concentrations and relatively low flow quantities of leachate vapors compared to the concentrations and quantities of the LFG being collected and controlled at the facility, the Reaction Committee recommends that measurement of constituent concentrations within the leachate vapor flow on a monthly frequency is adequate to properly monitor and characterize leachate vapor concentrations.

Thank you!

Thanks, Vidhya

Srividhya Viswanathan, P.E.*

*Licensed in CA, NV, AZ and OK

Direct: <u>(858)-583-7757</u> Cell: (858) 524-9525

Email: sviswanathan@scsengineers.com

1 BEFORE THE HEARING BOARD OF THE 2 SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 3 In The Matter Of Case No. 6177-4 4 5 SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT, 6 **REPA** Petitioner, 7 VS. 8 CHIQUITA CANYON, LLC a Delaware 9 Hearing Date: Corporation, Hearing Time: [Facility ID No. 119219] 10 Place: Respondent. 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

28

EXHIBIT T TO DECLARATION OF PATRICK SULLIVAN, BCES, CPP,

Health and Safety Code § 41700, and District Rules 402, 431.1, 3002, 203, 1150

June 4 and 17, 2025

9:30 A.M. Hearing Board

South Coast Air Quality Management District, 21865 Copley Drive Diamond Bar, CA 91765 **Archived:** Friday, May 23, 2025 9:06:14 AM

From: Viswanathan, Srividhya

Sent: Friday, May 16, 2025 7:43:40 PM

To: <u>Baitong Chen Nathaniel Dickel Christina Ojeda</u>
Cc: <u>Jones, Art Sullivan, Pat rrauls@montrose-env.com</u>

Subject: Case No. 6177-4: Condition 72(c) Leachate and Condensate Vapor Sampling

Importance: Normal Sensitivity: None

[EXTERNAL SENDER: Use caution with links/attachments]

All,

Below please find the Reaction Committee's further recommendations on additional vapor flow testing pursuant to Condition 72(c) of the Stipulated Order for Abatement with South Coast AQMD in Case No. 6177-4.

Per Condition 72(c) of the modified SOFA, the Reaction Committee may submit further recommendations regarding additional vapor flow testing within 30 days of the additional source test report. The most recent source test was submitted on April 18, 2025. As such, below are the recommendations of the Reaction Committee regarding the additional vapor flow testing based on a review of the April 2025 and prior reports.

The Reaction Committee is proposing to conduct monthly field testing to collect methane (CH4), carbon dioxide (CO2), oxygen (O2), and balance gas concentrations of the gaseous-phase emissions that may be present in the head space of the leachate storage tanks, also known as "leachate vapor flow from the leachate tanks". In addition, the Reaction Committee recommends adding monitoring for volatile organic compounds (VOCs) using a photoionization detector (PID), and hydrogen sulfide (H2S) using Draeger tubes to the monthly field monitoring program.

Based on the testing conducted in October 2024, and subsequently in March 2025, the concentrations of constituents of interest in the leachate vapors continue to remain much lower than constituent concentrations present in the raw landfill gas (LFG). The March 2025 testing results indicate that the composition of the vapors in the headers/manifolds across Tank Farms 6, 9A, 9B, 2 and 7 range between approximately 74 – 78 percent (%) nitrogen, and 20.66 – 21.88% oxygen, which is similar to the composition of air.

Additionally, the flow (quantities) of these leachate vapors is being measured and recorded with dedicated flow meters for the leachate tanks, after which the collected leachate vapors are comingled with the LFG before being combusted in the thermal oxidizers (TOX) and flares. Sampling and analysis of LFG at the flare station is conducted after the leachate vapors are co-mingled into the gas stream, thus these data also reflect the contribution of leachate vapors to these contaminant concentrations.

Due to the low concentrations and relatively low flow quantities of leachate vapors compared to the concentrations and quantities of the LFG being collected and controlled at the facility, the Reaction Committee maintains the recommendation to measure constituent concentrations within the leachate vapor flow on a monthly frequency with a modification to the monitoring procedures as described above. We also recommend moving to an annual schedule for the formal source testing.

Thanks, Vidhya

Srividhya Viswanathan, P.E.*

Direct: (858)-583-7757
Cell: (858) 524-9525
Email: sviswanathan@scsengineers.com