1 2 3 4 5 6 7 8	Diamond Bar, California 91765 TEL: 909-396-3400 • FAX: 909-396-2961	UT DISTRICT NG BOARD OF THE		
9 10	In The Matter Of			
10		Case No. 6259-1		
11	SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT,	PETITION FOR ORDER FOR ABATEMENT		
12	Petitioner,			
13	VS.	Date:August 8, 2024Time:9:30 amPlace:Hearing Board		
15	VALLEY PLATING WORKS INC.,	Place: Hearing Board South Coast Air Quality Management District		
16	[Facility ID No. 109562]	21865 Copley Drive Diamond Bar, CA 91765		
17	Respondent.	Diamond Bar, CA 91705		
18	SOUTH COAST AIR QUALITY MANAG	GEMENT DISTRICT (hereinafter referred to as		
19	"District" or "Petitioner" or "South Coast AQMD")			
20	to as "Hearing Board") for an Order for Abateme			
21	Inc. (hereinafter referred to as "Respondent" or "	Valley Plating") with a facility located at 5900		
22	Sheila Street Commerce, CA 90040. The District a	alleges as follows:		
23	1. Petitioner is a body corporate and po	olitic established and existing pursuant to		
24	California Health and Safety Code § 40000, et seq.	and § 40400, et seq., and is the sole and		
25	exclusive local agency with the responsibility for co	omprehensive air pollution control in the South		
26	Coast Basin.			
27	2. Respondent operates a facility that e	lectroplates a variety of products including		
28	automotive parts and institutional furniture (Facility	y ID No. 109562) located at 5900 Sheila Street		
	Petition for Order for Abatement			

1

Valley Plating Works Inc. Facility ID #109562

Commerce, CA 90040 (the "Facility"), within and subject to the jurisdiction of the District. 1 Respondent is permitted to conduct ceramic coating operations and metal plating operations, 2

including nickel and decorative chromium electroplating. The facility uses metals subject to Rules 3 1426 and 1469. 4

Rules

Rule 201 provides, in relevant part, "A person shall not build, erect, install, alter or 3. 6 replace any equipment or agricultural permit unit, the use of which may cause the issuance of air 7 contaminants or the use of which may eliminate, reduce or control the issuance of air contaminants 8 without first obtaining written authorization for such construction from the Executive Officer." 9

Rule 203(a) provides, in relevant part, "A person shall not operate or use any 4. 10 equipment or agricultural permit unit, the use of which may cause the issuance of air contaminants, 11 or the use of which may reduce or control the issuance of air contaminants, without first obtaining a 12 written permit to operate from the Executive Officer." 13

Rule 203(b) provides, "The equipment or agricultural permit unit shall not be 14 5. operated contrary to the conditions specified in the permit to operate." 15

Rule 1469 serves to reduce hexavalent chromium emissions from facilities that 6. 16 perform chromium electroplating or chromic acid anodizing operations. 17

Rule 1426 serves to reduce hexavalent chromium, nickel, cadmium and lead 7. 18 emissions from facilities that perform metal finishing. 19

20

5

Background

Valley Plating has two permitted lines: Valley Plating's strip line (Permit to Operate 8. 21 ("Permit") F98812) and decorative chrome plating line (Permit G51339). (Attached as Exhibits 1 22 and 2 are true and correct copies of Permits F98812 and G51339, respectively). South Coast 23 AQMD inspectors inspected the Facility on May 27, 2022; June 2, 2022; September 21, 2022; 24 December 2, 2022; February 2, 2023; May 26, 2023; September 13, 2023; November 28, 2023; and

25 February 20, 2024. On one or more of those inspections, South Coast AQMD inspectors observed

26

the following violations (and other violations not at issue in this petition) listed in Table 1, attached 27

as Exhibit 3. Though facility managers listened to explanations of the violations and appeared to 28

Commerce, CA 90040 (the "Facility"), within and subject to the jurisdiction of the District. 1 2 Respondent is permitted to conduct ceramic coating operations and metal plating operations, 3 including nickel and decorative chromium electroplating. The facility uses metals subject to Rules 1426 and 1469. 4 5 Rules 3. Rule 201 provides, in relevant part, "A person shall not build, erect, install, alter or 6 7 replace any equipment or agricultural permit unit, the use of which may cause the issuance of air contaminants or the use of which may eliminate, reduce or control the issuance of air contaminants 8 9 without first obtaining written authorization for such construction from the Executive Officer." 10 4. Rule 203(a) provides, in relevant part, "A person shall not operate or use any equipment or agricultural permit unit, the use of which may cause the issuance of air contaminants, 11 12 or the use of which may reduce or control the issuance of air contaminants, without first obtaining a 13 written permit to operate from the Executive Officer." Rule 203(b) provides, "The equipment or agricultural permit unit shall not be 14 5. operated contrary to the conditions specified in the permit to operate." 15 6. 16 Rule 1469 serves to reduce hexavalent chromium emissions from facilities that 17 perform chromium electroplating or chromic acid anodizing operations. 18 7. Rule 1426 serves to reduce hexavalent chromium, nickel, cadmium and lead emissions from facilities that perform metal finishing. 19 20 Background 8. 21 Valley Plating has two permitted lines: Valley Plating's strip line (Permit to Operate 22 ("Permit") F98812) and decorative chrome plating line (Permit G51339). (Attached as Exhibits 1 23 and 2 are true and correct copies of Permits F98812 and G51339, respectively). South Coast AQMD inspectors inspected the Facility on May 27, 2022; June 2, 2022; September 21, 2022; 24 25 December 2, 2022; February 2, 2023; May 26, 2023; September 13, 2023; November 28, 2023; and 26 February 20, 2024. On one or more of those inspections, South Coast AQMD inspectors observed

27 the following violations (and other violations not at issue in this petition) listed in Table 1, attached

28 as **Exhibit 3**. Though facility managers listened to explanations of the violations and appeared to

1 table below details the ongoing violations.

•					
2	Permit G51339 Equipment Description	Label on Tank ²	Photograph Attachment Nos.		
3	Tank No. 5, Brass Electrocleaner, Sodium Hydroxide,	T-5 Drag Out	4.6		
4	Silisic Acid, Sodium Carbonate, Sodium	Purified Water			
5	Phosphate, with a Max. 5,000 Ampere Rectifier Shared with Tank No. 19 and 24, Heated and Vented to				
5	Air Pollution Control Equipment.				
6	Tank No. 10, Deoxidizer, Ferric Sulfate, Sulfuric Acid,	T-10 Rinse	4.11		
7	Nitric Acid, Hydrofluosilic Acid, Heated and Vented to	Purified Water			
8	Air Pollution Control Equipment. Tank No. 34, Acid Activator, Sulfuric Acid, Ambient.	T-34 Rinse Tri	4.36		
0		Chrome Rinse			
9	Not listed in permit	T-39 Hex Pre-	4.41		
10		Drip Chrome 6,944 ppm			
	Not listed in permit	T-43 Chrome	4.43		
11		Rinse ³	_		
12	Not listed in permit	T-44 Rinse Hex	4.44		
13	Tank No. 47, Activator, Sodium Hydroxide.	Chrome Rinse T-47 Rinse	4.47		
		Purified Water	т.т/		
14	Tank 54, Passivate, Brass Lacquer, Potassium	T-54 Spray	4.54		
15	Dichromate, with a Max. 500 Ampere Rectifier.	Rinses Purified			
16		Water			
17	12. In addition, Tank 28 is in violation of Rule	203(b). Permit G513	39 condition 1. The		
18	permit states in relevant part, "Tank No. 28 Two Max.				
		· •	× · ·		
	Permit G51339, p. 2, equipment description no. 14.) Howe				
20	28, has a stated maximum ampere of 14,000 amps. (Exhib	it 6, Attachment 4.1	35).		
21					
22	Row 4: Strip Line, Violations of Rule 203(a)				
23	13. Tanks 11 and 12 do not appear separately in Permit F98812's equipment				
24	description. In some instances, rinse tanks are exempt from permitting. (Rule 219(d)(16)(D).) But,				
25	here, Tanks 11 and 12 are rinse tanks that follow nickel tar	iks, and thus would	contain nickel.		
26					
27	² The entire content of the label shown in the photographs are available in Exhibit 5 .				
28	³ Some letters were behind a bar; it can be inferred what w	as written.			
	-4-				
	Petition for Order for Abat	ement			

Petition for Order for Abatement Valley Plating Works Inc. Facility ID #109562 Therefore, these tanks are not exempt from permitting because they are air sparged and contain
 nickel. (Rule 219(d)(16)(D) ("This exemption does not include any rectified, air sparged or heated
 tank that contains chromium, nickel, lead or cadmium.").) Thus, the Facility is violating Rule
 203(a) for operating these tanks without a permit.

5

Row 5: Strip Line, Violations of Rule 203(b), Permit F98812, Condition 5C

6

14. Condition 5C of the strip line permit (Permit F98812) states, "Air sparging,

7 rectification, and/or heating shall not be conducted except in tanks where these operations are

8 specifically identified in the equipment description. . . ." (Capitalization removed for ease of

9 reading.) The tanks listed in the chart below were heated or air sparged in violation of the permit.

10 The chart below indicates the action in violation of Rule 203(b), Permit F98812, Condition 5.

11 12	Equipment Description per Strip Line, PTO #F98812	Equipment Description Upon Inspection (Including Tank Labels)	Action in Violation of Permit
13 14	Tank No. 4, Electroclean Associated Drag-out and Rinse Tanks	T-4 Steel Electrocleaner Alk. Unlabeled (T-5 Rinse Purified Water)	Heated Air sparged
14	Associated Drag-out and Rinse Tanks Associated Drag-out and Rinse	T-7 Rinse Purified Water T-10 Rinse Purified Water	Air sparged
16	Tanks Associated Drag-out and Rinse	T-11 Rinse Purified Water	Air sparged Air sparged
17 18	Tanks Associated Drag-out and Rinse Tanks	T-12 Rinse Purified Water	Air sparged

19

20

15. Tank Nos. 5, 7 and 11 - 12 (rinse tanks) were air sparged and Tank No. 4 was heated in violation of Rule 203(b), Permit Condition 5C. Associated rinse tanks are not specified

²¹ in the permit to be air sparged, and thus are not allowed to be air sparged. Rinse tanks can

²² accumulate toxic metals over time from the residual surface material on the parts. Therefore, rinse

23 tanks should not be air sparged, contrary to the permit. The rectification process in Tank 4

²⁴ generates heat as a byproduct and provides a maximum operating temperature. The permit does

²⁵ not allow Tank 4 to be heated in addition to being rectified.

²⁶ **Row 6, Chrome Plating Line, Violations of Rule 203(b), Permit G51339, Condition 5**

27

16.

Condition 5 of the chrome plating line permit (Permit G51339) states, in relevant

 28 part, "Air sparging, rectification, and/or heating shall not be conducted except in tanks where these $^{-5-}$

operations are specifically modified in the equipment description." The chart below indicates the
 violations of Rule 203(b), Permit F98812, Condition 5.

3

ł	Equipment Description per	Equipment Description Upon Inspection	Violation of	
	PTO #G51339	(Including Tank Labels)	Permit	
	Tank No. 10, Deoxidizer	T-10 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-11 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-13 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-14 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-15 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-16 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-20 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-22 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-23 Rinse Purified Water	Air Sparged	
ĺ	Tank No. 25, Sour Dip	T-25 Sour Dip	Air Sparged	
l	Tank No. 26, Sour Dip	T-26 Sour Dip	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-30 Rinse Purified Water	Air Sparged	
	Tank No. 99, Woods Nickel Plating	T-99 Wood's Nickel Plating	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-31 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-32 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-33 Rinse Purified Water	Air Sparged	
	Tank No. 34, Acid Activator	T-34 Rinse Tri Chrome Rinse	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-36 Rinse Tri Chrome Rinse	Air Sparged	
		T-37 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-38 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-44 Rinse Hex Chrome Rinse 132 ppm	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-45 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-46 Rinse Purified Water	Air Sparged	
	Tank No. 47, Activator	T-47 Rinse Purified Water	Air Sparged	
	Associated Drag-out and Rinse Tanks	T-49 Rinse Purified Water	Air Sparged	

Equipment Description per PTO #G51339	Equipment Description Upon Inspection (Including Tank Labels)	Violation of Permit
Associated Drag-out and Rinse Tanks	T-50 Rinse Purified Water	Air Sparged
Associated Drag-out and Rinse Tanks	T-51 Rinse Purified Water	Air Sparged
Associated Drag-out and Rinse Tanks	T-52 Rinse Purified Water	Air Sparged
Associated Drag-out and Rinse Tanks	T-53 Rinse Purified Water	Air Sparged
Associated Drag-out and Rinse Tanks	T-55 Rinse Purified Water	Air Sparged
Associated Drag-out and Rinse Tanks	T-56 Rinse Purified Water	Air Sparged
Associated Drag-out and Rinse Tanks	T-57 Rinse Purified Water	Air Sparged
Associated Drag-out and Rinse Tanks	T-58 Rinse Purified Water	Air Sparged
Associated Drag-out and Rinse Tanks	T-59 Rinse Purified Water	Heated
Associated Drag-out and Rinse Tanks	T-60 Rinse Purified Water	Heated

13

Row 7: Decorative Chrome Plating Line, Violation of Rule 1469(f)(3) and (f)(4)

14

Rule 1469(f)(3) (housekeeping requirements) states, "An owner or operator of a 17. chromium electroplating or chromic acid anodizing facility shall . . . [c]lean using an approved 15 cleaning method, or contain, using a drip tray or other containment device, any liquid or solid 16 material that may contain hexavalent chromium that is spilled immediately and no later than one 17 hour after being spilled". Rule 1469(f)(4) states, "Clean, using an approved cleaning method, 18 surfaces within the enclosed storage area, open floor area, walkways around a Tier I, Tier II, or Tier 19 III Hexavalent Chromium Tank, or any surface potentially contaminated with hexavalent 20 chromium or surfaces that potentially accumulate dust weekly." On May 27, 2022, May 27, 2022, 21 June, 2, 2022, September 21, 2022, December 2, 2022, February 2, 2023, May 26, 2023, September 22 13, 2023, November 28, 2023, and February 20, 2024, South Coast AQMD inspectors observed 23 liquids and solids that may contain hexavalent chromium were not contained or cleaned 24 immediately in violation of Rule 1469(f)(3) or weekly in violation of Rule 1469(f)(4). The area of 25 the unpermitted dust collector showed an accumulation of dust. (See Exhibit 5, Attachment 4.1). 26 Containers, floors, and other surfaces show an accumulation of liquids and solids. (See Exhibit 5, 27 28 Attachment 4.105).

-7-

1	Row 8: Decorative Chrome Plating Line, Violations of Rules 1469(f)(3) and/or 1469(g)(1)(A);						
2	or in the alternative, Rules 1426(e)(3) and/or 1426(f)(1).						
3	18. Rule 1469(g) provides best management practices. Rule 1469(g)(1) states:						
4 5 6 7 8 9	The owner or operator of a facility shall minimize dragout from a Tier I, Tier II, or Tier III Hexavalent Chromium Tank, according to the implementation schedule in Appendix 11 – Implementation Schedule, for: (A) An automated line by installing a drip tray, or other containment device between a Tier I, Tier II, or Tier III Hexavalent Chromium Tank such that liquid does not fall through the space between tanks. The trays shall capture and return the liquid to the tank(s), and be cleaned such that there is no accumulation of visible dust or residue on the drip tray or other containment device potentially contaminated with hexavalent chromium.						
10	19. Similarly, Rule 1426(f)(1) requires that a facility "Minimize Dragout from						
11	a Process Tank or Rinse Tank in an automated line by installing a drip tray or other						
12	collection or containment device between a Process tank or Rinse Tank such that liquid is						
13	collected and does not fall through the space between tanks."						
14	20. Rules $1469(f)(3)$ and $1426(e)(3)(A)$ each requiring cleaning immediately						
15	and no later than one hour after a spill that may contain hexavalent chromium or metal,						
16	respectively.						
17	21. Valley Plating is in violation of Rules 1469(f)(3) and/or 1469(g)(1)(A), or						
18	in the alternative, Rules 1426(e)(3) and/or 1426(f)(1). There are no drip trays or						
19	containment devices installed at any tank in the facility. Specifically, there may be heavy						
20	metal containing liquid residue near Tanks T-38, T-39, T-40, ⁴ T-41, T-43, T-44, T-45, T-						
21	46, T-47, T-48, T-49, T-50, T-51, T-52, T-53, T-54, T-55, T-56, T-57, T-58, T-59, T-60,						
22	and T-61.						
23	Row 9: Decorative Chrome Plating Line, Violations of Rule 1469(g)(3)						
24	22. Rule 1469(g)(3) states, "Beginning January 1, 2019, the owner or operator of a						
25	facility shall maintain clear labeling of each tank within the tank process area with a tank number						
26 27	or other identifier, SCAQMD permit number, bath contents, maximum concentration (ppm) of						
28	⁴ This tank was previously labeled with a different tank number.						
	-8-						
	Petition for Order for Abatement Valley Plating Works Inc. Facility ID #109562						

hexavalent chromium, operating temperature range, any agitation methods used, and designation of 1 2 whether it is a Tier I, Tier II, or Tier III Hexavalent Chromium Tank, if applicable." Valley Plating 3 is in violation of Rule 1469(g)(3) because labels in the tank process areas were missing SCAQMD 4 permit number, bath contents, operating temperature range, any agitation methods used, and/or 5 designation of whether they were a Tier I, II, or III hexavalent chromium tank. The following are tanks with improper labels that are part of the decorative chrome plating line: Tanks T 1A, T 2, T 3, 6 7 T-5, T-6, T-7, T-8, T-9, T-10, T-11, T-12, T-13, T-14, T-15, T-16, T-17, T-18, T-19, T-20, T-20, T-21, T-22, T-23, T-24, T-99, T-26, T-27, Tank # 28, T-29, T-30, T-31, T-32, T-33, T-34, T-35, T-8 36, T-37, T-38 (no label), T-39, T-41, T-43, T-44, T-45, T-46, T-47, T-48, T-49, T-50, T-51, T-52, 9 T-53, T-54, T-55, T-56, T-57, T-58, T-59, T-60, and T-61.⁵ 10

11 **Row 10: Decorative Chrome Plating Line, Violation of Rule 1469(g)(2)**

23. Rule 1469(g)(2) states, in relevant part, "the owner or operator . . . shall not spray
rinse parts or equipment that were previously in a Tier I, Tier II, or Tier III Hexavalent Chromium
Tank, unless the parts or equipment are fully lowered inside a tank where the liquid is captured
inside the tank." If a low pressure spray nozzle is used, the water would still need to flow off the
part and into the tank. (*See* Rule 1469(g)(2)(B).) Valley Plating violates Rule 1469(g)(2) because
staff were spray rinsing parts/equipment previously in a tiered tank without fully lowering them
inside a tank/capturing the liquid.

19

Row 11: Decorative Chrome Plating Line, Violation of Rule 1469(j)(1) (re certification)

20 24. Rule 1469(j) states, "[c]hromium electroplating and chromic acid anodizing
21 personnel responsible for environmental compliance, maintaining electroplating bath chemistries,
22 and testing and recording electroplating bath surface tension data shall complete a SCAQMD
23 approved training program every two years and receive a certification issued by the Executive
24 Officer." A Rule 1469 certification provided by the Facility was for Miriam Isabeles. The current
25 facility staff member with these responsibilities is Diana Secundino and no certificate was provided

26

-9-

 $[\]begin{bmatrix} 27 \\ 28 \end{bmatrix}$ ⁵ The tank names are taken from the labels when available, so may have names that are inconsistent with each other, i.e., "Tank # 28" or with or without a dash.

1 for her.

2 <u>Rows 12, 13, and 14: Decorative Chrome Plating Line, Violations of Rule 1469(1)(3), Rule</u> 3 <u>1469(m)(2)(A), Rule 1469(m)(2)(C)(i) and (ii), Permit G51339, Conditions 11 and 15 (re fume</u> 4 suppressant)

5 25. Rule 1469(1)(3) states, "The owner or operator of a facility shall use a certified
6 wetting agent chemical fume suppressant in accordance with the certification and applicable
7 manufacturer's specifications." Rule 1469(m)(2)(A) states, in relevant part, "The surface tension
8 shall be maintained below the respective value established in the list of certified wetting agent
9 chemical fume suppressants pursuant to subdivision (1), or at or below a value specified in the
10 SCAQMD Permit to Operate." Permit G51339, Condition 11 states in relevant part, the operator
11 shall comply with "usage conditions as determined and published by the SCAQMD."

12 26. Valley Plating violates Rule 1469(1)(3), Rule 1469(m)(2)(A), and Rule

13 1469(m)(2)(C)(i) and (ii) and Permit G51339, Conditions 11 and 15 because the measured surface

14 tension for Tank 41 was greater than the CARB and South Coast AQMD certification: 25 dynes /

15 cm for Hunter Chemical LLC's HCA-8.4. South Coast AQMD, Chemical Fume Suppressants,

16 available at http://www.aqmd.gov/home/programs/business/business-detail?title=fume-

17 suppressants. The rule requirement, which was amended in 2021, supersedes the 2018 permit

18 condition of 45.0 dynes / cm. The surface tension requirement has been explained to facility staff

19 on at least 5 occasions, in addition to being notified by a Notice to Comply and Notices of

20 Violation. On February 20, 2024, the surface tension reported was 32 dynes / cm and above.

Higher surface tension means it would be more likely that hexavalent chromium would be released
into the air.⁶

23

27. Rule 1469(m)(2)(C) states, "If at any time the surface tension required by

subparagraph (m)(2)(A) is not maintained, the owner or operator of a facility shall measure the

- 24
- 25

 ⁶ A reduced surface tension reduces the size of any gas bubbles generated during electrolysis and these smaller bubbles travel more slowly through solution and have less energy when arriving at the solution's surface. Second, lower surface tension reduces the energy which resulting droplets are ejected into the air. Combined, these two effects reduce the emission of or from droplets.

surface tension: (i) Daily for 20 consecutive operating days; and (ii) Resume the measurement 1 2 schedule pursuant to subparagraph (m)(2)(B) [facility shall measure the surface tension every third 3 operating day but not less than once per week]." Permit G51339, Condition 15 states, "The 4 owner/operator shall maintain records of the monitoring data that are used to demonstrate 5 compliance with the surface tension requirements. Daily records shall be kept and maintained on site regarding surface tension measurements for the first 20 days of operation and weekly 6 7 thereafter, if there are no further exceedances. In the event that a new chemical fume suppressant is added to the Decorative Chrome Tank No. 41, the owner/operator shall start a new 20-day 8 monitoring cycle." 9

28. Valley Plating violates Rule 1469(m)(C) and Permit G51339, Condition 15 because
it was not monitoring the surface tension daily, even though the surface tension exceeded the
certification tension.

13

Conclusion

29. The Facility is currently in violation of Rule 201 and Rule 203(a) by installing or
and operating equipment without permits. In addition, the Facility is in violation of Rule 203(b) for
operating equipment contrary to its permits to operate: decorative chrome plating line permit
(Permit G51339), strip line permit (Permit F98812), and air pollution control system permit (Permit
F9881). Lastly, the Facility is in violation of multiple provisions of Rules 1469 and/or 1426.

19 30. It is not unreasonable to require Respondent to comply with District rules and its20 permit.

31. The issuance of the prayed for Order for Abatement is not expected to result in the
closing or elimination of an otherwise lawful endeavor, but if it does result in such closure or
elimination, it would not be without a corresponding benefit in reducing air contaminants.

24

32. An Order for Abatement is not intended to be, nor will it act as, a variance.

25 33. An Order for Abatement, upon a fully noticed hearing, will not constitute a taking of
26 property without due process of law.

27

28

-11-

1	MANA	H COAST AIR QUALITY AGEMENT DISTRICT
2		d \mathcal{O}
3	D + DU	Ame Un NE P. HSU
4	Princip	bal Deputy District Counsel
5		ey for Petitioner
6 7		
8		
o 9		
10		
11		
12		
13		
14		
15	5	
16	6	
17	7	
18	8	
19	9	
20	20	
21	21	
22	22	
23	23	
24	24	
25	25	
26	26	
27	27	
28		
	-12- Petition for Order for A	
	Valley Plating Works Inc. Fac	ility ID #109562

EXHIBITS

- 1. Exhibit 1: Permit F98812
- 2. Exhibit 2: Permit G51339
- 3. Exhibit 3: Table 1
- 4. Exhibit 4: Rule 1401
- 5. Exhibit 5: 4.1-4.147
- 6. Exhibit 6: 10.1-10.75
- 7. Exhibit 7: VPW Photos

EXHIBIT 1

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar, CA 91765

PERMIT TO OPERATE

Page 1
Permit No.
F98812
A/N 318246

This initial permit must be renewed ANNUALLY unless the equipment is moved, or changes ownership. If the billing for annual renewal fee (Rule 301.f) is not received by the expiration date, contact the District.

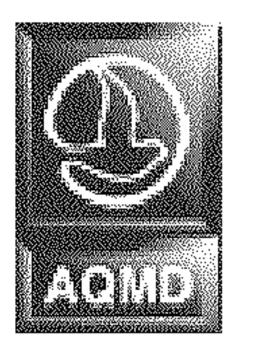
LEGAL OWNER OR OPERATOR:

VALLEY PLATING WORKS, INC. 5900 E SHEILA ST COMMERCE, CA 90040-2403 ID 109562

Equipment Location: 5900 E SHEILA ST, COMMERCE, CA 90040-2403

Equipment Description:

STRIP LINE CONSISTING OF:


- 1. TANK NO. 1, IMMERSION STRIP, 4'-2" W. X 15'-0" L. x 8'-7" H.
- 2. TANK NO. 4, ELECTROCLEAN, SODIUM HYDROXIDE, SODIUM CARBONATE, SODIUM PHOSPHATE AND SILISIC ACID, 4'-0" W. X 15'-0" L. x 8'-7" H., WITH A 4000 AMP RECTIFIER.
- TANK NO. 9, SULFURIC STRIP, SULFURIC ACID AND COPPER SULFATE, NICKEL SULFATE, 4'-2"
 W. X 15'-0" L. x 8'-7" H., WITH A 4000 AMP RECTIFIER.
- 4. TANK NO. 13, NITRIC STRIP, NITRIC ACID AND NICKEL SULFATE, 3'-6" W. X 15'-0" L. X 5'-0" H.
- 5. ASSOCIATED RINSE TANKS.

Conditions:

- 1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW.
- 2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES.
- 3. TANK NOS 4, 9 AND 13 SHALL NOT BE OPERATED UNLESS VENTED TO AIR POLLUTION CONTROL EQUIPMENT WHICH IS IN FULL USE AND ISSUED A VALID PERMIT BY THE EXECUTIVE OFFICER.

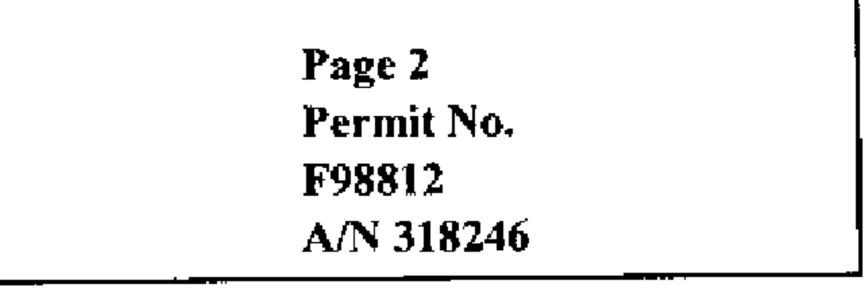
4. THIS EQUIPMENT SHALL COMPLY WITH RULE 1426 AS APPLICABLE.

- 5. THIS PERMIT IS SUBJECT TO THE FOLLOWING REQUIREMENTS:
 - A. TANK NOS 4, 9 AND 13 SHALL BE CLEARLY IDENTIFIED AND LABELED WITH THE APPROPRIATE TANK NUMBERS AS DESIGNATED IN THE EQUIPMENT DESCRIPTION. THE

South Coa	ist Air Quality Mana	agement District
	Certified Copy	7
	<u> </u>	

TANKS IN THIS LINE SHALL ONLY CONTAIN THE CHEMICALS AND COMPOUNDS Β. SPECIFICALLY IDENTIFIED IN THE EQUIPMENT DESCRIPTION OF THIS PERMIT.

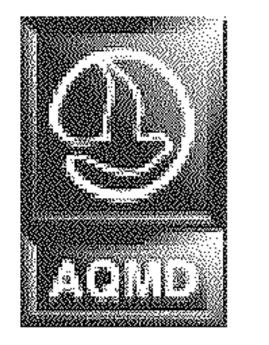
CONTINUATION OF PERMIT TO OPERATE


EACH TANK AND SHALL BE CLEARLY VISIBLE AND LEGIBLE.

IDENTIFICATION AND/OR LABELING OF EACH TANK SHALL BE DIRECTLY AFFIXED TO

SOUTH COAST AIR QUALITY MANAGEMENT DISTR	ICT
21865 Copley Drive, Diamond Bar, CA 91765	ı

- AIR SPARGING, RECTIFICATION, AND/OR HEATING SHALL NOT BE CONDUCTED С. EXCEPT IN TANKS WHERE THESE OPERATIONS ARE SPECIFICALLY IDENTIFIED IN THE EQUIPMENT DESCRIPTION. DISCONTINUATION OF SUCH OPERATIONS SHALL NOT CONSTITUTE A MODIFICATION FOR PERMITTING PURPOSES.
- THE OPEN PROCESS TANKS IN THIS LINE SHALL BE OPERATED AT OR BELOW THE PARAMETER 6. LIMITS INDICATED IN THE FOLLOWING TABLE:


TANK NO.	CHEMICAL	MAXIMUM CHEMICAL CONCENTRATION	MAXIMUM ANNUAL AMPERE- HOURS (CALENDAR YEAR)	MAXIMUM OPERATING TEMP. (DEGREES FAHRENHEIT)	MAXIMUM SURFACE AREA (SQUARE FEET PER TANK)
	SODIUM HYDROXIDE	3.13% BY WEIGHT			

MATERIALS PROCESSED IN THIS EQUIPMENT SHALL NOT CONTAIN ANY CARCINOGENIC COMPOUNDS IDENTIFIED IN RULE 1401, TABLE I, WITH AN EFFECTIVE DATE OF DECEMBER 7,

	SILISIC ACID	1.88% BY WEIGHT			
4	SODIUM CARBONATE	1.25% BY WEIGHT	N/A	190	N/A
	SODIUM PHOSPHATE	0.31% BY WEIGHT			
	NICKEL SULFATE	2.7% BY WEIGHT			
9	COPPER SULFATE	1.3% BY WEIGHT	N/A	190	N/A
	SULFURIC ACID	70% BY WEIGHT			
	NICKEL NITRATE	3.0% BY WEIGHT		→ + / ↓	
13	NITRIC ACID	25% BY WEIGHT	N/A	N/A	N/A

1990 OR EARLIER.

A LOG CONCERNING THE OPERATION OF THIS EQUIPMENT SHALL BE KEPT ON FILE FOR A 8. MINIMUM OF FIVE YEARS. THE PAST TWO YEARS RECORDS SHALL BE KEPT ON SITE AND SHALL BE MADE AVAILABLE UPON REQUEST OF DISTRICT PERSONNEL. THIS LOG SHALL CONTAIN THE FOLLOWING INFORMATION:

South Coast Air Quality Management District	
Certified Copy FUE COPY	
<u>FILE COPY</u>	

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 Copley Drive, Diamond Bar, CA 91765

PERMIT TO OPERATE

Page 3
Permit No.
F98812
A/N 318246

CONTINUATION OF PERMIT TO OPERATE

- THE WEIGHT CONCENTRATION OF CHEMICALS AND COMPOUNDS IN THE Α. APPROPRIATE TANKS LISTED IN CONDITION NUMBER 5 AS DETERMINED EACH MONTH BY QUANTITATIVE ANALYSIS.
- RECORDS OF QUANTITIES OF MATERIALS USED DURING CHEMICAL ADDITIONS AND В.

TANK REPLENISHMENTS.

MATERIAL SAFETY DATA HEETS (MSDS) FOR ALL MATERIALS CHARGED TO EACH С. PROCESS TANK AT THIS FACILITY.

NOTICE

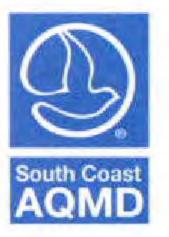
IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR COPY SHALL BE POSTED ON OR WITHIN 8 METERS OF THE EQUIPMENT.

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT CANNOT BE CONSIDERED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF OTHER GOVERNMENT AGENCIES.

EXECUTIVE OFFICER

Ans a leiley

By Dorris M. Bailey/SB04 9/3/2008


South Coast Air Quality Management District	
Certified Copy	
<u>FILE CODV</u>	
TILL COLL	

. . . .

Comparing a grant of the first second s

[10] A. B. M. Market and M. Market and M. Market and M. Market and Phys. Rev. Lett. 10, 1000 (1990).

EXHIBIT 2

PERMIT TO OPERATE

Page 1	
Permit No.	
G51339	
A/N 578026	

This initial permit must be renewed ANNUALLY unless the equipment is moved, or changes ownership. If the billing for the annual renewal fee (Rule 301.f) is not received by the expiration date, contact the District.

Legal Owner or Operator:

VALLEY PLATING WORKS INC 5900 SHEILA ST COMMERCE, CA 90040-2403


Equipment Location: 5900 SHEILA ST, COMMERCE, CA 90040-2403

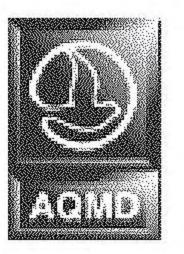
Equipment Description :


ID 109562

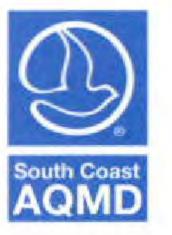
Decorative Chrome Plating Line Consisting of:

- 1. Tank No. 1, Alkaline Soak, Sodium Hydroxide, Sodium Phosphate, Heated with Mechanical Sparging.
- 2. Tank No. 2, Alkaline Soak, Sodium Hydroxide, Sodium Phosphate, Heated with Mechanical Sparging.
- 3. Tank No. 3, Alkaline Soak, Sodium Hydroxide, Sodium Phosphate, Heated with Mechanical Sparging.
- Tank No. 5, Brass Electrocleaner, Sodium Hydroxide, Silisic Acid, Sodium Carbonate, Sodium Phosphate, with a Max. 5,000 Ampere Rectifier Shared with Tank No. 19 and 24, Heated and Vented to Air Pollution Control Equipment.
- Tank No. 7, Steel Electrocleaner, Sodium Hydroxide, Silisic Acid, & Sodium Carbonate, Sodium Phosphate, with a Max. 5,000 Ampere Rectifier Shared with Tank No. 21, Heated and Vented to Air Pollution Control Equipment.
- 6. Tank No. 10, Deoxidizer, Ferric Sulfate, Sulfuric Acid, Nitric Acid, Hydrofluosilic Acid, Heated and Vented to Air Pollution Control Equipment.
- 7. Tank No. 12, Acid Pickle, Sulfuric Acid, & Ammonium Bifluoride, Heated.
- 8. Tank No. 17, Ultrasonic Cleaner, Monoethanolamine, & Methanol, Heated.
- Tank No. 19, Brass Electrocleaner, Sodium Hydroxide, Silisic Acid, Sodium Carbonate, Sodium Phosphate, with a Max. 5,000 Ampere Rectifier Shared with Tank No. 7, Heated and Vented to Air Pollution Control Equipment.
- Tank No. 21, Steel Electrocleaner, Sodium Hydroxide, Silisic Acid, Sodium Carbonate, Sodium Phosphate, with a Max. 5,000 Ampere Rectifier Shared with Tank No. 7, Heated and Vented to Air Pollution Control Equipment.
- Tank No. 24, Nickel Activator, Sulfuric Acid, & Hydrochloric Acid, with a Max. 5,000 Ampere Rectifier Shared with Tank Nos. 5 and 19, Heated and Vented to Air Pollution Control Equipment.
- 12. Tank No. 25, Sour Dip, Sulfuric Acid, Ambient.

FILE COPY South Coast Air Quality Management District Certified Copy


PERMIT TO OPERATE

Page 2	
Permit No.	
G51339	
 A/N 578026	


- 13. Tank No. 26, Sour Dip, Sulfuric Acid, Ambient.
- Tank No. 27, Semi-bright Nickel Plating, Nickel Sulfate, Nickel Chloride, Boric Acid, & Sulfuric Acid, with Two Max. 5,000 Ampere Rectifiers, Heated, Air-sparged, and Vented to Air Pollution Control Equipment.
- Tank No. 28, Bright Nickel Plating, Nickel Sulfate, Nickel Chloride, Boric Acid, & Sulfuric Acid, with Two Max. 10,000 Ampere Rectifiers, Heated, Air-sparged, and Vented to Air Pollution Control Equipment.
- Tank No. 29, Particle Nickel Plating, Nickel Sulfate, Nickel Chloride, Boric Acid, & Sulfuric Acid, with a Max. 2,000 Ampere Rectifier, Heated, Air-sparged, and Vented to Air Pollution Control Equipment.
- Tank No. 99, Woods Nickel Plating, Nickel Chloride, Hydrochloric Acid, with a Max. 2,000 Ampere Rectifier, Vented to Air Pollution Control Equipment.
- 18. Tank No. 34, Acid Activator, Sulfuric Acid, Ambient.
- 19. Tank No. 35, Trivalent Chrome Plating, Envirochrome Salts, Trivalent Chromium Sulfate, Thiourea, Saccharin, Ethyl Alcohol, Sulfuric Acid, with a Max. 8,000 Ampere Rectifier, Heated, Air-sparged.
- 20. Tank No. 40, Acid Activator, Chromic Acid, Ambient.
- Tank No. 41, Decorative Chrome Plating, Chromic Acid, & Sulfuric Acid, Rectified, Heated, a Wetting Agent Chemical Fume Suppressant, and Vented to Air Pollution Control Equipment.
- 22. Tank No. 47, Activator, Sodium Hydroxide.
- 23. Tank 54, Passivate, Brass Lacquer, Potassium Dichromate, with a Max. 500 Ampere Rectifier.
- 24. Associated Drag-out and Rinse Tanks.

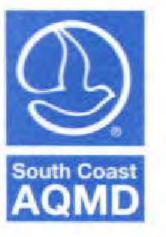
Conditions :

- Operation of this equipment shall be conducted in accordance with all data and specifications submitted with the application under which this permit is issued unless otherwise noted below.
- 2. This equipment shall be properly maintained and kept in good operating condition at all times.
- All tanks shall be clearly identified and labeled with the appropriate tank numbers as designated in the equipment description. The identification and/or labeling of each tank shall be directly affixed to each tank and shall be clearly visible and legible.
- 4. The tanks in this line shall only contain the chemicals and compounds specifically identified in the equipment description of this permit. No chemical compound listed in Rule 1401, Table I "Toxic Air Contaminants" as amended June 5, 2015, other than those included in the equipment description on this permit shall be used in this equipment.

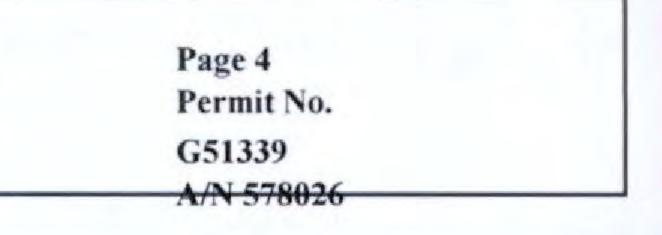
South Coast Air Quality Management District Certified Copy

PERMIT TO OPERATE

Page 3	
Permit No.	
G51339	
A/N 578026	

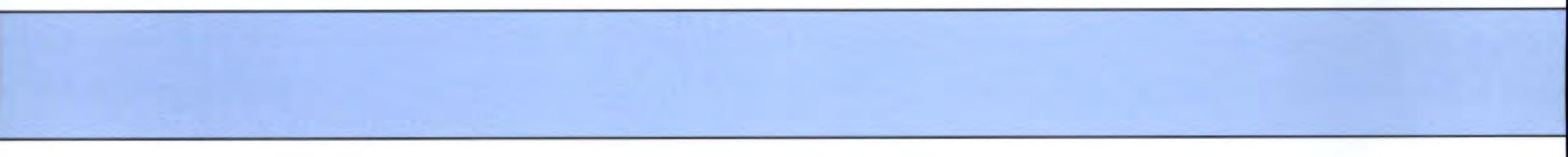


- Air sparging, rectification, and/or heating shall not be conducted except in tanks where these operations are 5. specifically identified in the equipment description. Discontinuation of such operations shall not constitute a modification for permitting purposes.
- Decorative Chrome Plating Tank No. 41 shall not be operated unless it is vented to air pollution control 6. equipment, which is in full operation and has been issued an operating permit by the Executive Officer.
- Semi-Bright Nickel Plating Tank No. 27, Bright Nickel Plating Tank No. 28, Particle Nickel Tank No. 29, and 7. Woods Nickel Plating Tank No. 99 shall not be operated unless it is vented to air pollution control equipment, which is in full operation and has been issued an operating permit by the Executive Officer.


- Semi-Bright Nickel Plating Tank No. 27, Bright Nickel Plating Tank No. 28, Particle Nickel Tank No. 29, and 8. Woods Nickel Plating Tank No. 99 shall not be operated unless it is vented to air pollution control equipment, which is in full operation and has been issued an operating permit by the Executive Officer.
- This equipment shall be operated in compliance with Rules 1426 and 1469. 9.
- An identification tag or label shall be affixed to the rectifier in a permanent and conspicuous position. The 10. identification marker shall be maintained in legible condition and contain the following information:
 - Rectifier identification number. A.
 - Maximum rectifier amperage. B.
 - Identification number(s) of tank(s) operated by the rectifier. C.
- Decorative Chrome Plating Tank No. 41 shall not be operated unless Hunter HCA 8.4 or other SCAQMD 11. certified mist suppressant is used while plating is in progress. The surface tension of the plating bath using the certified chemical fume suppressant shall not exceed 45.0 dynes/cm. The operator shall follow all pertinent instructions and/or requirements specified by the chemical fume suppressant manufacturer, including but not limited to periodic addition of fume suppressant. The operator shall comply with other usage conditions as determined and published by the SCAQMD.
- Tank No. 41 shall be equipped with a continuous-recording non-resettable, totalizing ampere-hour meter that 12.
- operates on the electrical power line connected to the tanks.
- The surface tension in Decorative Chrome Plating Tank No. 41 shall be measured in dynes per centimeter using 13. EPA method 306B or other approved District method, and a properly maintained and calibrated stalagmometer or tensiometer.
- The owner/operator shall inspect, maintain and calibrate the stalagmometer in accordance with the manufacturer 14. recommendations.

FILE COPY South Coast Air Quality Management District **Certified Copy**

PERMIT TO OPERATE


- 15. The owner/operator shall maintain records of the monitoring data that are used to demonstrate compliance with the surface tension requirements. Daily records shall be kept and maintained on site regarding the surface tension measurements for the first 20 days of operation and weekly thereafter, if there are no further exceedances. In the event that a new chemical fume suppressant is added to the Decorative Chrome Tank No. 41, the owner/operator shall start a new 20-day monitoring cycle.
 - 16. The owner/operator shall maintain records of the chemical fume suppressant additions including the date, time, approximate volume, and product identification of the chemical fume suppressant(s) that are added to Decorative Chrome Plating Tank No. 41.
 - Chemical fume suppressants with pefluorooctane sulfonic acid (PFOS) shall not be added to Decorative Chrome Plating No. 41.
 - 18. The open process tanks in this line shall be operated at or below the parameter limits indicated in the following table:

Tank	No. Chemical	Max. Chemical Max Concentration	k. Surface Area
5	Sodium Hydroxide	3.13 wt%	N/A
7	Sodium Hydroxide	1.25 wt%	N/A
19	Sodium Hydroxide	3.13 wt%	N/A
21	Sodium Hydroxide	1.25 wt%	N/A
24	Sulfuric Acid Hydrochloric Acid		(6' W. x 5' L.)
27	Nickel Sulfate Nickel Chloride Sulfuric Acid	19.5 wt% 10.2 wt% 0.2 wt%	(36' W. x 5' L.)
28	Nickel Sulfate Nickel Chloride Sulfuric Acid	19.5 wt% 10.2 wt% 0.2 wt%	(48' W. x 5' L.)
29	Nickel Sulfate Nickel Chloride Sulfuric Acid	19.5 wt% 10.2 wt% 0.2 wt%	(6' W. x 5' L.)
35	Envirochrome	27 wt%	N/A
	Se	outh Coast HiFQuality Manag Certified Copy	gement District

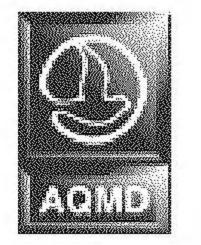
PERMIT TO OPERATE

Page 5	
Permit No.	
G51339	
A/N 578026	

	Salts	
	Trivalent	1.2 vol%
	Chromium Sulfate	
	Sulfuric Acid	0.2 vol%
40	Chromic Acid	0.07 vol%
41	Chromic Acid Sulfuric Acid	20 wt% 0.075 vol%

N/A

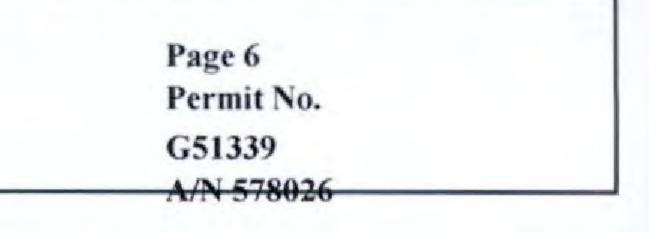
(4'-10" W. x 11'-10" L.)


47	Sodium Hydroxide	0.78 vol%	N/A
48	Sodium Cyanide Copper Chloride Sodium Hydroxide		(6' W. x 5' L.)
54	Chromic Acid	0.39 wt%	N/A
99	Nickel Hydrochloric Acid	1.36 wt% 12 wt%	(3'-4" W. x 2'-6")

For the purposes of this condition, concentration means anhydrous concentration (not including water or water of hydration).

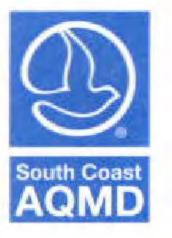
- The maximum annual ampere-hours applied to Decorative Chrome Tank No. 41 shall not exceed 60,000,000 in any one calendar year.
- 20. The maximum operating temperature of Tank No. 99 shall not exceed 110 degrees Fahrenheit.
- 21. Temperature gauges shall be installed and maintained on each heated tank identified in Condition No. 20. The scale on the gauge shall not exceed 3 times the temperature limits specified.
- 22. The owner/operator shall inspect and maintain the ampere-hour meters according to the manufacturer's recommendations. The owner/operator shall maintain inspection and maintenance records for the ampere-hour

meters and monitoring equipment to document compliance with the inspection and maintenance requirements of this permit. The record shall identify:

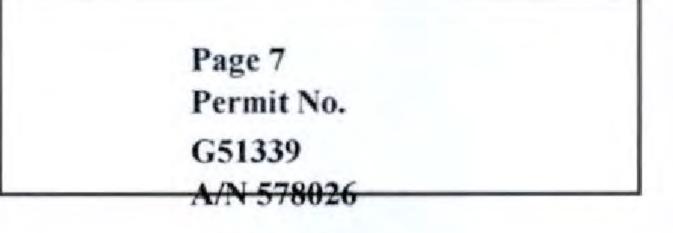

- A. The device inspected.
- B. The date and time of inspection.
- C. The working condition of device during the inspection.
- D. Any maintenance activities performed on the ampere-hour meter.

FILE COPY South Coast Air Quality Management District Certified Copy

PERMIT TO OPERATE



- E. Any actions taken to correct deficiencies found during the inspection.
- 23. Safety Data Sheets (SDS) for all materials used at this facility and subject to District rules shall be kept current and be made available to any District representative upon request.
- 24. A log concerning at least the most recent five years' operation of this equipment shall be kept on file. The past two years' records shall be kept on site and shall be made available to district personnel upon request. This log shall contain, at a minimum the following information:


- A. The records required by the condition of this permit.
- B. At least once per month, the total of ampere-hours applied to Tank No. 41 and cumulative year-to-date total of ampere-hours applied to the tank for the current calendar year.
- C. At least once per month, the concentration, in percent by weight, of total hexavalent chromium in this tank(s) in this line, determined each month by quantitative chemical analysis.
- D. The concentration, in percent by weight, of each chemical other than hexavalent chromium in each tank as determined each month from the estimated operating losses and replenishment during process operation. The concentration of each chemical in each tank shall also be recorded in this log each time the tank solution is replaced.
- 25. The owner/operator shall annually complete by February 1 of each year, an on-going compliance status report for the preceding calendar year. The report shall contain the information identified in Appendix 3 of Rule 1469. The report shall be made available to any District representative upon request.
- 26. The owner/operator shall report breakdowns as required by District Rule 430.
- 27. The owner/operator shall maintain all records of excess emissions including, but not limited to, records of any exceedances of the emission limitation and/or parameter monitoring requirements contained in this permit. The records shall include the date of the occurrence, the duration, the cause (if known), and, where possible, the magnitude of any excess emissions.
- 28. The owner/operator shall prepare an operation and maintenance (O&M) plan. The O&M plan shall incorporate the inspection and maintenance requirements identified in this permit shall include the following elements:
 - A. A standard checklist to documents the operation and maintenance of the Decorative Chrome Plating Tank No. 41 and the process monitoring equipment.
 - B. The procedures to be followed to ensure that the equipment is properly maintained.
- 29. The owner/operator shall keep the written O&M plan on record, after it is developed, to be made available for inspection upon request by District personnel. Any changes made to the plan shall be documented in an addendum to the plan and signed by the owner/operator or appropriate designee.

South Coast Air Quality Management District Certified Copy

PERMIT TO OPERATE

30. The owner/operator shall maintain all documents supporting the notifications and reports required by Rule 1469.

NOTICE

In accordance with Rule 206, this Permit to Operate or copy shall be posted on or within 8 meters of the equipment.

This permit does not authorize the emission of air contaminants in excess of those allowed by Division 26 of the Health and Safety Code of the State of California or the applicable Rules and Regulations of the South Coast Air Quality Management District (SCAQMD). This permit cannot be considered as permission to violate existing laws, ordinances, regulations or statutes of other government agencies.

Executive Officer

BY LAKI TISOPULOS, PhD/CP04

3/31/2018

EXHIBIT 3

	AQMD Permit No.	Equipment Description	Rule Violated (Permit Condition No. If Applicable)	Observations	Photograph Attachment Nos. or Exhibit No. and Description ¹
1	None	Dust Collector/ Baghouse (APCD)	201 / 203(a)	Operating APCD to control hexavalent chromium containing dust without valid South Coast AQMD permit to operate.	dust collectors)
2	G51339	Decorative Chrome Plating Line	203(a)	Operating hexavalent tanks without valid South Coast AQMD permit(s) to operate. Tank labels and tank contents did not match the equipment description of the permit to operate.	 4.41 (Tank T-39, Hex Pre-Dip, Chrome 6,944 ppm) 4.43 (Tank T-43, Rinse Hex Chrome Rinse, 13,284 ppm) 4.44 (Tank T-44, Hex Chrome Rinse, Chrome 132 ppm)
3	G51339	Decorative Chrome Plating Line	203(b), Permit Conditions 1, 3, 4	Tank labels and tank contents did not match the equipment description of the permit to operate.	 4.6 (Tank T-5, Drag Out Purified Water) 4.11 (Tank T-10, Rinse Purified Water) 4.36 (Tank T-34, Rinse Tri Chrome Rinse) 4.41 (Tank T-39, Hex Pre-Dip Chrome, 6,944 ppm) 4.43 (Tank T-43, Rinse Hex Chrome Rinse, 13,284 ppm) 4.44 (Tank T-44, Rinse Hex Chrome Rinse, 132 ppm) 4.47 (Tank T-47, Rinse Purified Water)

¹ Photographs relevant to violations are provided. The attachment 4 series are Exhibit 5. The attachment 10 series are Exhibit 6.

					4.54 (Tank T-54, Spray Rinses Purified Water)
3 (cont'd)	G51339	Decorative Chrome Plating Line	203(b), Permit Condition 1	Tank 28 using rectifier higher than permitted ampere limit	4.135 (Rectifier No. 7, Max Amp. 14000 amps)
4	F98812	Strip Line	203(a)	Operating tanks without valid South Coast AQMD permit(s) to operate.	4.71 (Tank T-11 Rinse, Purified Water)4.72 (Tank T-12 Rinse, Purified Water)
5	F98812	Strip Line	203(b), Permit Condition 5C	Air sparging and/or heating conducted in tanks not specifically identified for such use in the equipment description.	 4.65 (Tank T-4, Steel Electrocleaner Alk) 4.66 (Unlabeled Tank, (T-5 Rinse Purified Water)) 4.67 (Tank T-7 Rinse Purified Water to the right of Tank T-6) and 4.68 (Tank T-7 to the left of Tank T-8). 4.70 (Tank T-10, Rinse Purified Water) 4.71 (Tank T-11, Rinse Purified Water) 4.72 (Tank T-12, Rinse Purified Water)
6	G51339	Decorative Chrome Plating Line	203(b), Permit Condition 5	Air sparging and/or heating conducted in tanks not specifically identified for such use in the equipment description.	Tank T-10, Rinse Purified Water later labeled deoxidizer [See 4.11 for label]10.11 (Tank T-11, Rinse Purified Water)10.14 (Tank T-13, Rinse Purified Water)Tank T-14, Rinse Purified Water [See 4.15 for label]10.16 (Tank T-15 Rinse Purified Water)10.17 (Tank T-16 Rinse Purified Water)

		4.21/10.21 (Tank T-20, Rinse Purified Water)
		10.23 (Tank T-22, Rinse Purified Water)
		4.24/10.24 (Tank T-23, Rinse Purified Water)
		Tank T-25, Sour Dip [See 10.26 for label]
		4.28 (Overhead View of Tank T-26)
		4.32 (Tank T-30, Rinse Purified Water)
		4.26 (Tank T-99, Wood's Nickel Plating) Add INSPECTION 12/02/22 – Page 1 and 2 photographs.
		4.33 (Tank T-31, Rinse Purified Water)
		4.34 (Tank T-32, Rinse Purified Water)
		4.35 (Tank T-33, Rinse Purified Water)
		4.36 (Tank T-34, Rinse Tri Chrome Rinse)
		4.38 (Tank T-36, Rinse Tri Chrome Rinse)
		4.39 (Tank T-37, Rinse Purified Water)
		4.40 (Unlabeled Tank, (T-38 Rinse Purified Water)
		10.75 (showing T-44 Rinse Hex Chrome Rinse 132 ppm)

					4.127 (showing T-45 Rinse Purified Water)
					4.46 (Tank T-46, Rinse Purified Water)
					4.47 (Tank T-47, Rinse Purified Water)
					4.49 (Tank T-49, Rinse Purified Water)
					4.50 (Tank T-50, Rinse Purified Water)
					4.51 (Tank T-51, Rinse Purified Water)
					4.52 (Tank T-52, Rinse Purified Water)
					4.53 (Tank T-53, Rinse Purified Water)
					4.55/10.54 (Tank T-55, Rinse Purified Water)
					4.56/10.55 (Tank T-56, Rinse Purified Water)
					4.57 (Tank T-57, Rinse Purified Water)
					4.58 (Tank T-58, Rinse Purified Water)
					4.59 (Tank T-59, Rinse Purified Water)
					10.59 (Tank T-60, Deionized Water Rinse)
7	G51339	Decorative Chrome	1469(f)(3), 1469(f)(4)	Spill(s) of liquids/solids that may contain hexavalent chromium were not	4.1, 4.122, 4.123 (unpermitted dust collector)
		Plating Line		cleaned/contained immediately, and no later than one hour after.	4.105 (Spills, Solids, and Overspray)

8	G51339	Decorative Chrome Plating Line	1469(f)(3) and/or 1469(g)(1)(A);	Drip trays/containment devices showed accumulation of visible dust/residue potentially contaminated	10.39 (Tank T-38, Rinse Purified Water)4.41 (Tank T-39, Hex Pre-Dip Chrome
			1426(e)(3)	with hexavalent chromium or other	6,944 ppm)
			and/or 1426(f)(1)	heavy metals	10.40 (Tank T-40, Acid Activator)
					4.42, 10.41 (Tank T-41 Chrome Plating Solution (Hexavalent))
					4.43 (Tank 4-43 Hex Chrome Rinse 13,284 ppm)
					10.74 (Spills and solids)
					10.43/10.75 (Tank T-44, Rinse Hex Chrome Rinse) (Spills and solids)10.44 (Tank T-45, Rinse Purified Water)
					10.45 (Tank T-46, Rinse Purified Water)
					10.46 (Tank T-47, Activator Rinse)
					10.47 (Tank T-48, Drag Out Rinse Purified Water)
					10.48 (Tank T-49, Rinse Purified Water)
					10.49 (Tank T-50, Rinse Purified Water)
					10.50 (Tank T-51, Rinse Purified Water)
					10.51 (Tank T-52, Rinse Purified Water)
					10.52 (Tank T-53, Rinse Purified Water)

					10.53 (Tank T-54, Passivate Rinse)
					10.54 (Tank T-55, Rinse Purified Water)
					10.55 (Tank T-56, Rinse Purified Water)
					10.56 (Tank T-57, Rinse Purified Water)
					10.57 (Tank T-58, Rinse Purified Water)
					10.58 (Tank T-59, Deionized Water Rinse)
					10.59 (Tank T-60, Deionized Water Rinse)
					10.60 (Tank T-61, Rinse Purified Water)
					4.105 (Spills, Solids, and Overspray near Tank T-44 and T-45)
9	G51339	Decorative	1469(g)(3)	Labels in the tank process areas were	4.3 – 4.61
		Chrome Plating Line		missing SCAQMD permit number, bath contents, operating temperature	4.3 (Tank T 1A, Alkaline Pre-Soak)
				range, any agitation methods used, and/or designation of whether they	4.4 (Tank T 2, Alkaline Pre-Soak)
				were a Tier I, II, or III hexavalent chromium tank.	4.5 (Tank T 3, Alkaline Pre-Soak)
					4.6 (Tank T-5, Drag Out Purified Water)
					4.7 (Tank T-6, Rinse Purified Water)
					4.8 (Tank T-7, Electrocleaner)
					4.9 (Tank T-8, Rinse Purified Water)
					4.10 (Tank T-9, Rinse Purified Water)
					4.11 (Tank T-10, Rinse Purified Water)

		4.12 (Tank T-11, Rinse Purified Water)
		4.13 (Tank T-12, Sulfuric Acid Picking Sol.)
		4.14 (Tank T-13, Rinse Purified Water)
		4.15 (Tank T-14, Rinse Purified Water)
		4.16 (Tank T-15, Rinse Purified Water)
		4.17 (Tank T-16, Rinse Purified Water)
		4.18 (Tank T 17, Ultrasonic Cleaner)
		4.19 (Tank T-18, Rinse Purified Water)
		4.20 (Tank T-19, Brass Electrocleaner)
		4.21 (Tank T-20, Electrocleaner)
		4.22 (Tank T-21, Electrocleaner)
		4.23 (Tank T-22, Rinse Purified Water)
		4.24 (Tank T-23, Rinse Purified Water)
		4.25 (Tank T-24, Nickel Activator)
		4.26 (Tank T-99, Wood's Nickel Plating)
		4.27 (Tank T-26, Sour Dip)
		4.28 (Overhead View of Tank T-26)

	4.29 (Tank T-27, Semi Bright Nickel Plating Sol.)
	4.30 (Tank # 28, Bright Nickel Plating Sol.)
	4.31 (Tank T-29, Particle Nickel Plating Sol.)
	4.32 (Tank T-30, Rinse Purified Water)
	4.33 (Tank T-31, Rinse Purified Water)
	4.34 (Tank T-32, Rinse Purified Water)
	4.35 (Tank T-33, Rinse Purified Water)
	4.36 (Tank T-34, Rinse Tri Chrome Rinse)
	4.37 (Tank T-35, Chrome Plating Solution, (Trivalent))
	4.38 (Tank T-36, Rinse Tri Chrome Rinse)
	4.39 (Tank T-37, Rinse Purified Water)
	4.40 (Unlabeled Tank, (T-38 Rinse Purified Water))
	4.41 (Tank T-39, Hex Pre-Dip Chrome, 6,944 ppm)
	4.42 (Tank T-41, Chrome Plating Solution (Hexavalent))
	4.43 (Tank T-43, Rinse Hex Chrome Rinse, 13,284 ppm)

		4.44 (Tank T-44, Rinse Hex Chrome Rinse, 132 ppm)
		4.45 (Tank T-45, Rinse Purified Water)
		4.46 (Tank T-46, Rinse Purified Water)
		4.47 (Tank T-47, Rinse Purified Water)
		4.48 (Tank T-48, Drag Out Purified Water)
		4.49 (Tank T-49, Rinse Purified Water)
		4.50 (Tank T-50, Rinse Purified Water)
		4.51 (Tank T-51, Rinse Purified Water)
		4.52 (Tank T-52, Rinse Purified Water)
		4.53 (Tank T-53, Rinse Purified Water)
		4.54 (Tank T-54, Spray Rinses Purified Water)
		4.55 (Tank T-55, Rinse Purified Water)
		4.56 (Tank T-56, Rinse Purified Water)
		4.57 (Tank T-57, Rinse Purified Water)
		4.58 (Tank T-58, Rinse Purified Water)
		4.59 (Tank T-59, Rinse Purified Water)
		4.60 (Tank T-60, Rinse Purified Water)

					4.61 (Tank T-61, Rinse Purified Water)
10	G51339	Decorative Chrome Plating Line	1469(g)(2)	Spray rinsing parts/equipment previously in a Tiered tank without fully lowering them inside a tank/capturing the liquid.	4.105 (See Spills, Solids, and Overspray near tanks)
11	G51339	Decorative Chrome Plating Line	1469(j)(1)	Rule 1469 Certification provided for the facility's lab technician, Ms. Miriam Isabeles. Staff member with responsibilities is Diana Secundino.	4.106 (Rule 1469 Training Program Certificate No. 501632)
12	G51339	Decorative Chrome Plating Line	1469(1)(3)	The facility was not using a certified wetting agent chemical fume suppressant in accordance with the certification and applicable manufacturer's specifications.	 4.107 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 02/10/2022 – 05/26/2022) 4.108 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 10/05/2021 – 02/08/2022) 4.109 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 05/10/2021 – 09/29/2021)
13	G51339	Decorative Chrome Plating Line	1469 (m)(2)(A), Permit Condition 11	The facility was not maintaining surface tension of certified wetting agent chemical fume suppressant at/below the established value.	 4.107 – 4.109 4.107 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 02/10/2022 – 05/26/2022) 4.108 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 10/05/2021 – 02/08/2022)

Exhibit 3, Table 1

					4.109 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 05/10/2021 – 09/29/2021)
14	G51339	Decorative Chrome Plating Line	1469 (m)(2)(C)(i) and (ii), Permit Condition 15	The facility was not measuring surface tension daily or attempting to achieve the required surface tension per the established value.	 4.107 – 4.109 4.107 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 02/10/2022 – 05/26/2022)
					 4.108 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 10/05/2021 – 02/08/2022) 4.109 (Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 05/10/2021 – 09/29/2021)

EXHIBIT 4

(Adopted June 1, 1990)(Amended December 7, 1990)(Amended July 10, 1998) (Amended January 8, 1999)(Amended March 12, 1999)(Amended August 13, 1999) (Amended March 17, 2000)(Amended August 18, 2000)(Amended June 15, 2001) (Amended May 3, 2002)(Amended February 7, 2003)(Amended May 2, 2003) (Amended March 4, 2005)(Amended March 7, 2008)(Amended June 5, 2009) (Amended September 10, 2010)(Amended June 5, 2015)(Amended October 7, 2016) (Amended September 10, 2010)(Amended June 5, 2017)

RULE 1401. NEW SOURCE REVIEW OF TOXIC AIR CONTAMINANTS

(a) Purpose

This rule specifies limits for maximum individual cancer risk (MICR), cancer burden, and noncancer acute and chronic hazard index (HI) from new permit units, relocations, or modifications to existing permit units which emit toxic air contaminants listed in Table I. The rule establishes allowable risks for permit units requiring new permits pursuant to Rules 201 or 203.

- (b) Applicability
 - (1) Applications for new, relocated, and modified permit units which were received by the District on or after June 1, 1990 shall be subject to Rule 1401. Applications shall be subject to the version of Rule 1401 that is in effect at the time the application is deemed complete. Permit units installed without a required permit to construct shall be subject to this rule, if the application for a permit to operate such equipment was submitted after June 1, 1990.
 - (2) This rule shall apply to new, relocated, and modified equipment identified in Rule 219 as not requiring a written permit if the risk from the equipment will be greater than identified in subparagraph (d)(1)(A), or paragraphs (d)(2) or (d)(3) in Rule 1401.
- (c) Definitions
 - (1) ACCEPTABLE STACK HEIGHT for a permit unit is defined as a stack height that does not exceed two and one half times the height of the permit unit or two and one half times the height of the building housing the permit unit, and shall not be greater than 65 meters (213 feet), unless the applicant demonstrates to the satisfaction of the Executive Officer that a greater height is necessary.

TABLE I TOXIC AIR CONTAMINANTS							
CAS #	SUBSTANCE	EFFECTIVE DATE	EFFECTIVE DATE	EFFECTIVE DATE			
		CANCER	CHRONIC	ACUTE			
	Chlorophenols						
95-57-8	chlorophenol, 2-		*				
88-06-2	trichlorophenol, 2,4,6-	December 7, 1990					
	tetrachlorophenols (TECPH)		*				
87-86-5	pentachlorophenol	September 8, 1998	**				
76-06-2	chloropicrin		May 3, 2002	August 13, 1999			
126-99-8	chloroprene		**				
18540-29-9	chromium (hexavalent) and chromium	June 1, 1990	June 15, 2001				
	compounds						
	including, but not limited to:						
10294-40-3	barium chromate	June 1, 1990	June 15, 2001				
13765-19-0	calcium chromate	June 1, 1990	June 15, 2001				
7758-97-6	lead chromate	September 8, 1998	June 15, 2001				
10588-01-9	sodium dichromate	June 1, 1990	June 15, 2001				
7789-06-2	strontium chromate	June 1, 1990	June 15, 2001				
13530-65-9	zinc chromate	June 1, 1990	June 15, 2001				
1333-82-0	chromic trioxide	June 1, 1990	June 15, 2001				
7440-50-8	copper and copper compounds		*	August 13, 1999			
120-71-8	cresidine, p-	January 8, 1999					
1319-77-3	cresols/cresylic acid (all isomers and mixture)		June 15, 2001				

EXHIBIT 5

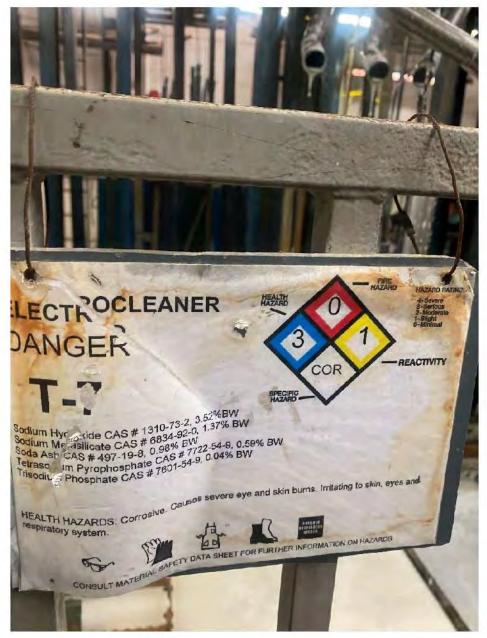
Attachment 4.1 NOV P75859 VALLEY PLATING WORKS INC Unpermitted Dust Collector Dual Polishing Station, Dust Collector Ducting, Dust 05/27/2022

Attachment 4.2 NOV P75859 VALLEY PLATING WORKS INC Unpermitted Dust Collector Baghouse, Dust Collector Ducting 05/27/2022

Attachment 4.3 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T 1A Alkaline Pre-Soak 05/27/2022

Attachment 4.4 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T 2 Alkaline Pre-Soak 05/27/2022

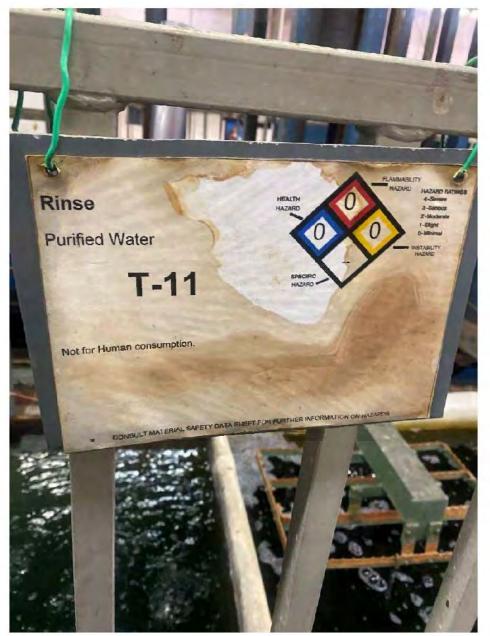
Attachment 4.5 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T 3 Alkaline Pre-Soak 05/27/2022

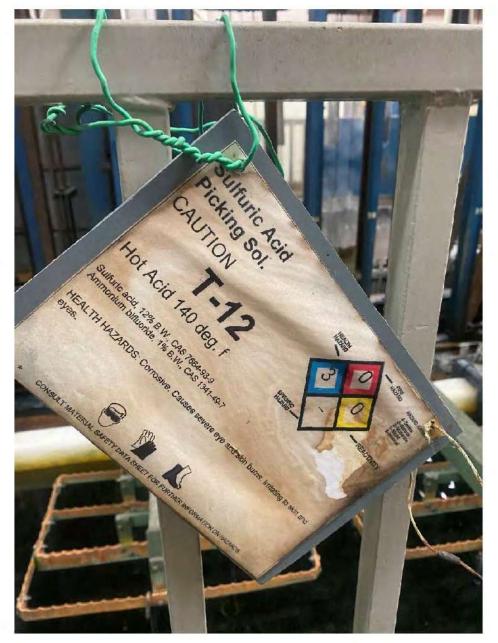

Attachment 4.6 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-5 Drag Out Purified Water 05/27/2022

Attachment 4.7 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-6 Rinse Purified Water 05/27/2022

Attachment 4.8 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-7 Electrocleaner 05/27/2022

Attachment 4.9 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-8 Rinse Purified Water 05/27/2022


Attachment 4.10 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-9 Rinse Purified Water 05/27/2022


Attachment 4.11 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-10 Rinse Purified Water 05/27/2022

Attachment 4.12 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-11 Rinse Purified Water 05/27/2022

Attachment 4.13 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-12 Sulfuric Acid Picking Sol. 05/27/2022

Attachment 4.14 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-13 Rinse Purified Water 05/27/2022

Attachment 4.15 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-14 Rinse Purified Water 05/27/2022

Attachment 4.16 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-15 Rinse Purified Water 05/27/2022

Attachment 4.17 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-16 Rinse Purified Water 05/27/2022

Attachment 4.18 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T 17 Ultrasonic Cleaner 05/27/2022

Attachment 4.19 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-18 Rinse Purified Water 05/27/2022

Attachment 4.20 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-19 Brass Electrocleaner 05/27/2022

Attachment 4.21 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-20 Electrocleaner 05/27/2022

Attachment 4.22 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-21 Electrocleaner 05/27/2022

Attachment 4.23 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-22 Rinse Purified Water 05/27/2022

Attachment 4.24 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-23 Rinse Purified Water 05/27/2022

Attachment 4.25 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-24 Nickel Activator 05/27/2022


Attachment 4.26 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-99 Wood's Nickel Plating 05/27/2022

Attachment 4.27 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-26 Sour Dip 05/27/2022

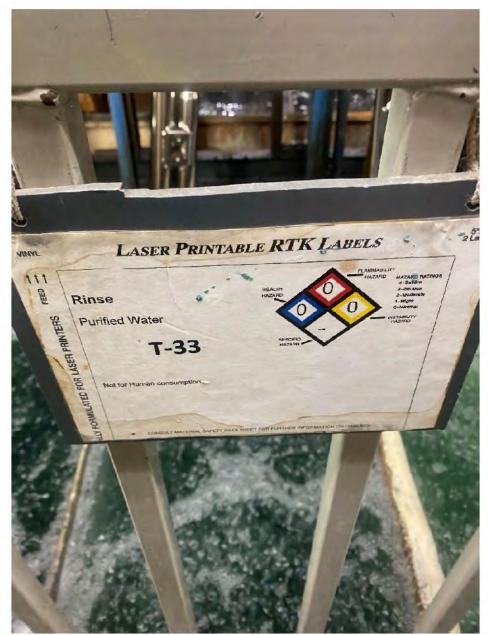
Attachment 4.28 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Overhead View of Tank T-26 05/27/2022

Attachment 4.29 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-27 Semi Bright Nickel Plating Sol. 05/27/2022

Attachment 4.30 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank #28 Bright Nickel Plating Sol. 05/27/2022

Attachment 4.31 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-29 Particle Nickel Plating Sol. 05/27/2022

Attachment 4.32 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-30 Rinse Purified Water 05/27/2022


Attachment 4.33 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-31 Rinse Purified Water 05/27/2022

Attachment 4.34 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-32 Rinse Purified Water 05/27/2022

Attachment 4.35 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-33 Rinse Purified Water 05/27/2022

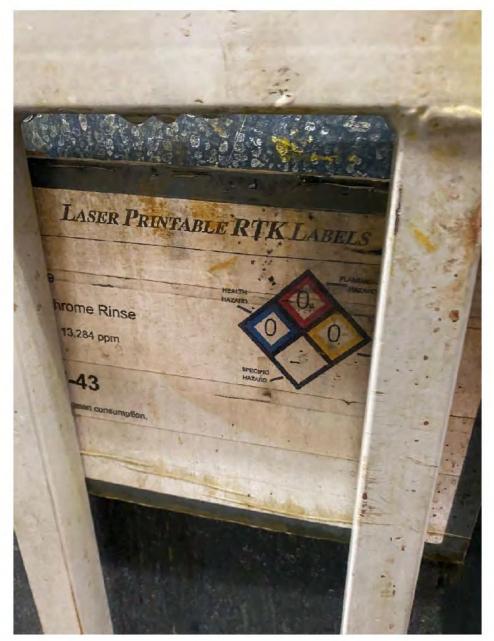
Attachment 4.36 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-34 Rinse Tri Chrome Rinse 05/27/2022

Attachment 4.37 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-35 Chrome Plating Solution, (Trivalent) 05/27/2022

Attachment 4.38 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-36 Rinse Tri Chrome Rinse 05/27/2022


Attachment 4.39 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-37 Rinse Purified Water 05/27/2022

Attachment 4.40 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Unlabeled Tank (T-38 Rinse Purified Water) 05/27/2022

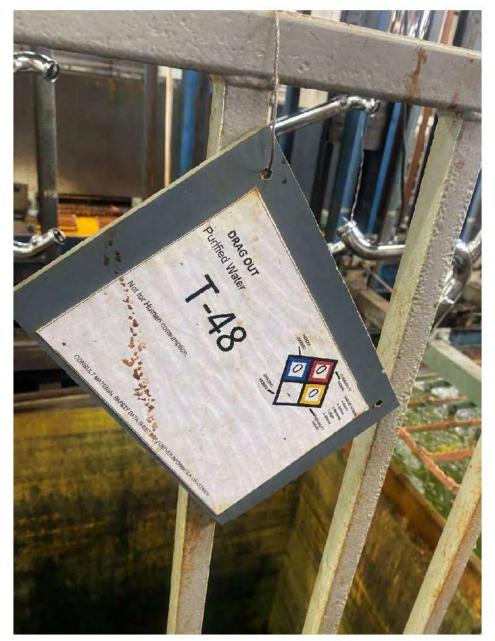

Attachment 4.41 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-39 Hex Pre-Dip Chrome 6,944 ppm 05/27/2022

Attachment 4.42 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-41 Chrome Plating Solution (Hexavalent) 05/27/2022

Attachment 4.43 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-43 Rinse Hex Chrome Rinse 13,284 ppm 05/27/2022

Attachment 4.44 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-44 Rinse Hex Chrome Rinse 132 ppm 05/27/2022

Attachment 4.45 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-45 Rinse Purified Water 05/27/2022


Attachment 4.46 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-46 Rinse Purified Water 05/27/2022

Attachment 4.47 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-47 Rinse Purified Water 05/27/2022

Attachment 4.48 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-48 Drag Out Purified Water 05/27/2022

Attachment 4.49 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-49 Rinse Purified Water 05/27/2022

Attachment 4.50 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-50 Rinse Purified Water 05/27/2022

Attachment 4.51 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-51 Rinse Purified Water 05/27/2022

Attachment 4.52 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-52 Rinse Purified Water 05/27/2022

Attachment 4.53 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-53 Rinse Purified Water 05/27/2022

Attachment 4.54 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-54 Spray Rinses Purified Water 05/27/2022

Attachment 4.55 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-55 Rinse Purified Water 05/27/2022

Attachment 4.56 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-56 Rinse Purified Water 05/27/2022

Attachment 4.57 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-57 Rinse Purified Water 05/27/2022

Attachment 4.58 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-58 Rinse Purified Water 05/27/2022

Attachment 4.59 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-59 Rinse Purified Water 05/27/2022

Attachment 4.60 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-60 Rinse Purified Water 05/27/2022

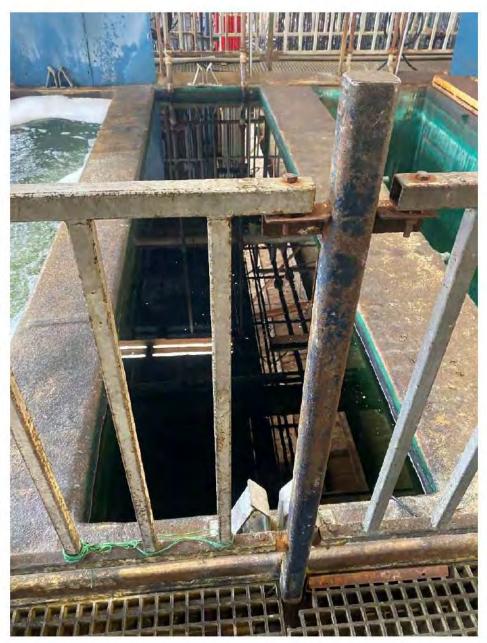
Attachment 4.61 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-61 Rinse Purified Water 05/27/2022

Attachment 4.62 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-1 Nickel Stripper 05/27/2022

Attachment 4.63 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-2 Rinse Purified Water 05/27/2022

Attachment 4.64 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T 3 Alkaline Soak Cleaner 05/27/2022

Attachment 4.65 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-4 Steel Electrocleaner Alk 05/27/2022


Attachment 4.66 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Unlabeled Tank (T-5 Rinse Purified Water) 05/27/2022

Attachment 4.67 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-6 Rinse Purified Water 05/27/2022

Attachment 4.68 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Unlabeled Tank (T-8 Sulfuric Acid) 05/27/2022

Attachment 4.69 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-9 Sulfuric Pickel 05/27/2022

Attachment 4.70 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-10 Rinse Purified Water 05/27/2022

Attachment 4.71 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-11 Rinse Purified Water 05/27/2022

Attachment 4.72 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-12 Rinse Purified Water 05/27/2022

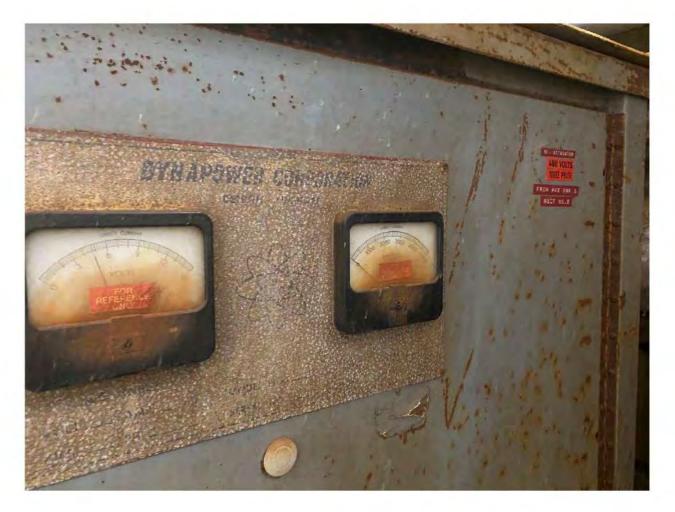

Attachment 4.73 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-13 Nitric Acid 05/27/2022

Attachment 4.74 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-60 (Rinse Purified Water) – Heated to 138.0 °F 05/27/2022

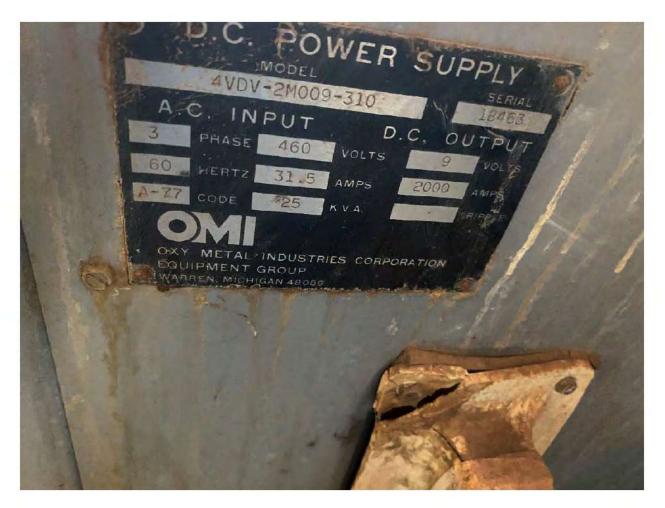
Attachment 4.75 NOV P75859 VALLEY PLATING WORKS INC PTO #F98811 NOx Scrubber – Broken Recirculation Flow Rate Gauge (1) 05/27/2022

Attachment 4.76 NOV P75859 VALLEY PLATING WORKS INC PTO #F98811 NOx Scrubber – Broken Recirculation Flow Rate Gauge (2) 05/27/2022

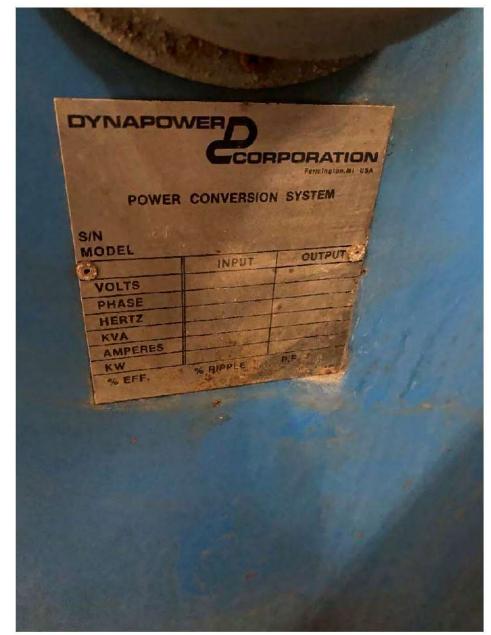
Attachment 4.77 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 1 – Front View 05/27/2022


Attachment 4.78 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 1 – Identification Plate 05/27/2022

Attachment 4.79 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 2 – Front View 05/27/2022


Attachment 4.80 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 2 – Identification Plate 05/27/2022

Attachment 4.81 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 3 – Front View 05/27/2022


Attachment 4.82 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 3 – Identification Plate 05/27/2022

Attachment 4.83 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 5 – Front View 05/27/2022

Attachment 4.84 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 5 – Identification Plate 05/27/2022

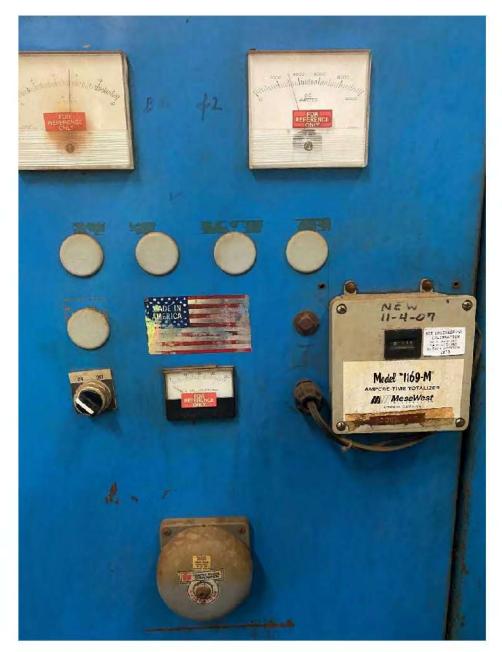
Attachment 4.85 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 5 – Amp Hour Meter 05/27/2022

Attachment 4.86 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 5A – Front View 05/27/2022

Attachment 4.87 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 5A – Identification Plate 05/27/2022

DYNAPO	WER	- And		
41				
POWER	CONVERSI			
S/N				
MODEL	INPUT	OUTPUT		
VOLTS	March Street	The		
PHASE	C. C. C. C. C. L.	1		
HERTZ	1 de la compañía de la			
KVA		STORE OF		
AMPERES		8		
KW	% RIPPLE	P.F.		
% EFF.	h		-	
1010				
1000				

Attachment 4.88 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 5A – Amp Hour Meter 05/27/2022


Attachment 4.89 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 6 – Front View 05/27/2022

Attachment 4.90 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 6 – Identification Plate 05/27/2022

Attachment 4.91 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 6 – Amp Hour Meter 05/27/2022

Attachment 4.92 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 7 – Front View 05/27/2022

Attachment 4.93 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 7 – Identification Plate 05/27/2022

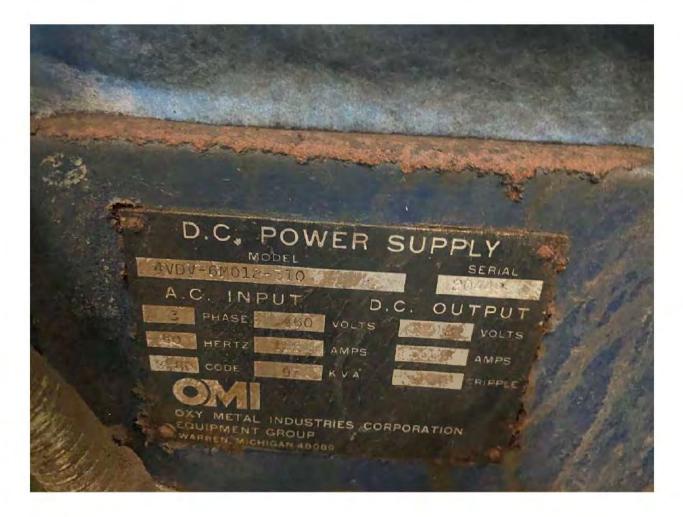
S/N MODEL		OUTPUT
VOLTS	480-A0	
PHASE	3	-
HERTZ	60	
KVA .	12191	
AMPERES	0.240: AQ 45	4000 DC
KW	a provide a second	
% EFF.	% RIPPLE	P.F: 90 9-80

Attachment 4.94 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 7 – Amp Hour Meter 05/27/2022

Attachment 4.95 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 8 05/27/2022

Attachment 4.96 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 9 – Front View 05/27/2022

Attachment 4.97 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 9 – Amp Hour Meter 05/27/2022


Attachment 4.98 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 9 – Identification Plate 05/27/2022

Attachment 4.99 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 10 – Front View 05/27/2022

Attachment 4.100 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 10 – Identification Plate 05/27/2022


Attachment 4.101 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 11 – Front View 05/27/2022

Attachment 4.102 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 11 – Amp Hour Meter 05/27/2022

Attachment 4.103 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 11 - Label 05/27/2022

Attachment 4.104 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 12 – Front View 05/27/2022

Attachment 4.105 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Spills, Solids, and Overspray 05/27/2022

Attachment 4.106 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rule 1469 Training Program Certificate No. 501632 05/27/2022

Attachment 4.107 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 02/10/2022 – 05/26/2022 05/27/2022

Log She	et for He	kavalent (hnome s	olution				1% Supe	acity 4000 roat = 170 ppm	=
							Non-	Non- omplexed	d	
	Hydr. reading	Tot Metallics	Cr3	Chrome	SO4	Cr6/SO4	CrB	(true) ratio	tencion H2CrO3 Dynes adds	Lin
Date	B'c	Oz/gal	(Jz/gal	Oz/gal	Oz/gal	Ratio	Ozlgal 36.6		36-83	- PCOIN
2-10-22	10				180.0	11/1-	30.6		36.00	14 0
2-17-22	20			-	19125	16	32.4		35.70	1.
2-24-11	11	-		-	216.00	+ 5	32.4		32.70	
2-1-22	10	2			19.25	16	30.4		3683	- 1
3-3-72	70				1641	18	29.0		36.83	
3-10-22	20	-		-	19.27	- IR	29.0	-	33.41	-
3-15-77	18				13.1	18	29.0	-	-39-33	
3-12-72	19			-	161.11	.18	0.80		35.20 35.20 35.20 35.40 35.40 35.40 35.40 35.40 35.40 35.40 36.0 36.0 36.0	-
3-24-22	19				166.11	.18	29.9	+	35.10	1.
33122	20			-	180.0	17	29		36.0	2
47-22	19			-	1926	1.17	28-1	+	36.0	:
1-12-16	185		-	-	1253	-17-	70		36.0	-
41122	101	-	-		181.5	210	272			-
4-71-62	18-				181-3	1.16	77.2		35.20	-
1.28:0	18			-	18:33	- 50	79.0		35.20	-
52-0-	19				101-11	18	29.0)	35.70	
554	12		-	1	161.1		29.0		132.10 -	-
512-22	14	-		1	Hot. H	-18	29.0	-	35.70 -	
17-22	19	-		-	1400	117	27.2	1	3570	-
5-19-22	18	-	1	1	1+0	11/2	277	-	36.00	-
5-26-22	18		-		130	16	24.6	-		
	-	-		1 Faller						
					-		-	-		
				+		1	-	1		
-		Att			-					

Attachment 4.108 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 10/05/2021 – 02/08/2022 05/27/2022

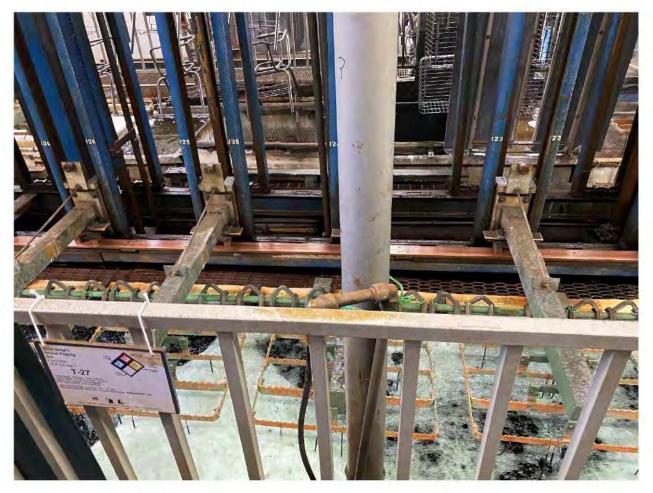
Log She	et for He	xavalent	chrome s	olution					acity 40	
								1% Supe	rcat = 170	ppm
		-						Non-		
							Non-	complexed	1	
-	Hydr.	Tot	0.0	Charmen	604	Apparent Cr6/SO4		Cr6/SO4 (true)	tencion	H2CrO
Date	reading B'e	Metallics Oz/gal	Cr3 Oz/gai	Chrome Oz/gal	SO4 Oz/cal	Ratio	Oz/gal	ratio	Dynes	adds
10-9-71	20	Virgan	Cranger	<u>orangai</u>	704.0	,15	30.6	34 43		
1-1-0	70	1			204.0	15	30.6	35.70	-	
0-12-21	11				288	100		2445		
0-15-71	20				17725	116	30.6	34.43		-
0-19-21	20				191.75	116	30.6	34.43		
01-11	70.5				191.9		31.5	34 43	1	-
6-75-11	71				7024		37.4	35.10	-	
1=7-71	171	-			107.5	16	37.4	36.0		
所叶机	7.0	1			201.5	24	30.6	30.0		
1-9-21	20	1			704.0	,16	324	35.2		-
1-18-21	21	1			2025	olle	324	35.6		1
1-18-21	20	-	-	-	2825	.18	30.4	36.0	-	
1-30-21	21				240	15	32.4	14.10		-
1-2-21	21				214.0	15	32.4	37.60		
17-24	20				104 D	15	30.6	36.83		1
2-14-21	20		-		191.25	16	36.4	3141		
2-21-21	20			- !!	170	18	304	37.71	-	
2-47-11	70				191.25	110	29.0	3693		
6.22	195				161.11	-18-	29.0	37.71		
22	20			1	191.25	ila -	SA La	36.00		-
13-22	10				141.75	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	304	36.74	-	
-18-27	70 5		-		133.0	-13	31-5	36.00		
-25-22_	20			1	120	-18	30.6	36.00		
-27-22	76				130	· Sa	30.00	36.00		-
- 2-17	2020		1		The bar	:18	30.6	36,00		
1 241	220		1		THE	112	306	36.83		The second second

Attachment 4.109 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 05/10/2021 – 09/29/2021 05/27/2022

		ic\Laborator	PILODURUN	SINGSISILADI	Cr0 log			12/15/2	018 10:17 4	NI.
5										
Log She	et for He	xavalent	chrome	olution	-	-	-	Gal. Cap	acity 4 0	00
		1	1			5		1% Supe	rcat = 170) ppm
	-	1			10			Non-		
			-				Non-	omplexe	1	-
+	Hydr.	Tot			1		complexe	CrE/SO4	surface	1
Date		Metallics		Chrome		Cr6/SO4	in a second second	(true)	tencion	
5-20-21	B'e	Ozigal	<u>Oz/gal</u>	<u>Qz/gal</u>	Oz/gal	Ratio	Ozigal 30,6	ratio	Dynes 35.20	adds
5-25-0	70		-		.10	204	20.6		3443	
5-27-11	10				.5	704	30.10		3443	
6-2-21	21				.14	231.47	324	-	3513	
6.8-21	20				.16	191.15	38.6		3573	
6. 10-21	20				.16	19125	30.0		37.71	
6-13-21	20			-	15	191.15	306	-	37 71	
6 27-21		-			:15	Roy	30.6		35.23	1
6-24-21	20				.15	204	30.6		35.23	
F2-21	20				:16	204	30,6		36:03	1
7-5-21	20				116	204	30.6	1-	35.23	
2.12.2	20			· · · · ·	.10	204	30.6		29.43	-
7-13-2	20			1	16	204	30.0		36.00	-
7-70-71	20				110	704	30 6		26.82	1
7-27-21	20			-	-18	MRS-	32.4		35.26	
7-29-21	20				16	141.3	30.6	-	34.43	
8-3-21 3	0.5				16	196.0	31.5		34.43	1
	201				.17	18:00	34430	30.6	34.47	
	10	-		-	16	1911.25	30.0	15	35.70	
8-19-71 7					14	7015	524	24.4	35.26	
8-24-21 -	21				16	2025	20:4	1	35 70	
	20				116	3513	3016		37.71	
x-1=01 11					19	218.6	30.4	-	37.71	1
9-7-21 -2					.15	24.0	201	-	35.20	1
9-9-21 2	0	-		-	+15	1040	30.6		37.7	1
1-14-21 20	25				elie	216.0	32.4		37 +1	-
121-21 7		-			15	7.54. 0	30.6	-	35.2	1
and the second s	21				16	2025	324		2115	1

Attachment 4.110 NOV P75859 VALLEY PLATING WORKS INC PTO #F98812 Tank T-9 Sulfuric Pickel 06/02/2022

Attachment 4.111 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-99 Wood's Nickel Plating 06/02/2022


Attachment 4.112 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-99 Wood's Nickel Plating 06/02/2022

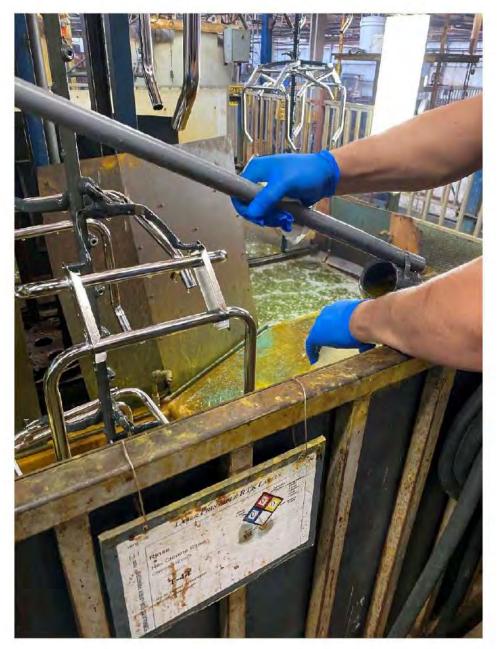
Attachment 4.113 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-27 Semi Bright Nickel Plating 06/02/2022

Attachment 4.114 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-27 Semi Bright Nickel Plating 06/02/2022

Attachment 4.115 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank # 28 Bright Nickel Plating Sol. 06/02/2022

Attachment 4.116 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank # 28 Bright Nickel Plating Sol. 06/02/2022

Attachment 4.117 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-41 Chrome Plating Solution (Hexavalent) 06/02/2022


Attachment 4.118 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-41 Chrome Plating Solution (Hexavalent) 06/02/2022

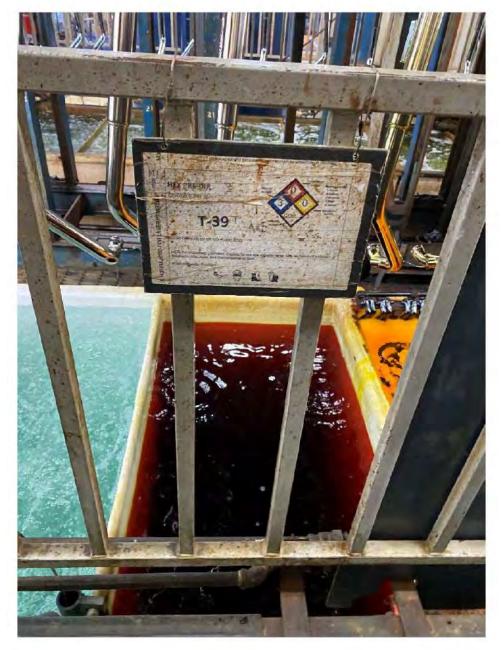
Attachment 4.119 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-43 Rinse Hex Chrome Rinse 06/02/2022

Attachment 4.120 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-44 Rinse Hex Chrome Rinse 06/02/2022

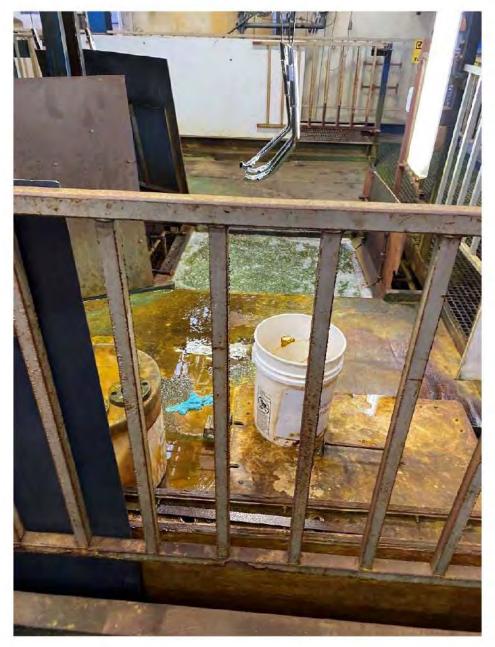
Attachment 4.121 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank Temperatures 06/02/2022

1.	XJ700			-			-	
	TANK 25	TANK 25	TANK 27	TANK 28	TANK 29	TANK 30	TANK 34	
	***	200	200	200	200	200	200	
	150-	100-	100	100-4	-160 -	130-	001	
	90.0	90.0	140.0	144.0	87.0 50	<u>977.0</u> 50	90.0	
							50	
	T35 Cr3	TANK 39	T41 Cr6	TANK 47	TANK 48	TANK 54	TANK 60	
2	200-	200-	200-	200	200	200	200 - 1	
200	100	100-	100 -	100-	300-			
13					100	109-	100	
	128.0	83.0	109.0	0-75.0	73.0	a 79.0	138.0	
1			1,10	50	50	50	140	
		MAIN	TENU	ALARMS	PREVIO		XT (3 OF 3)	
		-					((or 3)	

Attachment 4.122 NOV P75859 VALLEY PLATING WORKS INC Unpermitted Dust Collector Buffing/Polishing Station Dust/Debris 06/02/2022


Attachment 4.123 NOV P75859 VALLEY PLATING WORKS INC Unpermitted Dust Collector Buffing/Polishing Station Dust/Debris 06/02/2022


Attachment 4.124 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-99 Wood's Nickel Plating Crossed Out and Replaced with T-29 09/21/2022

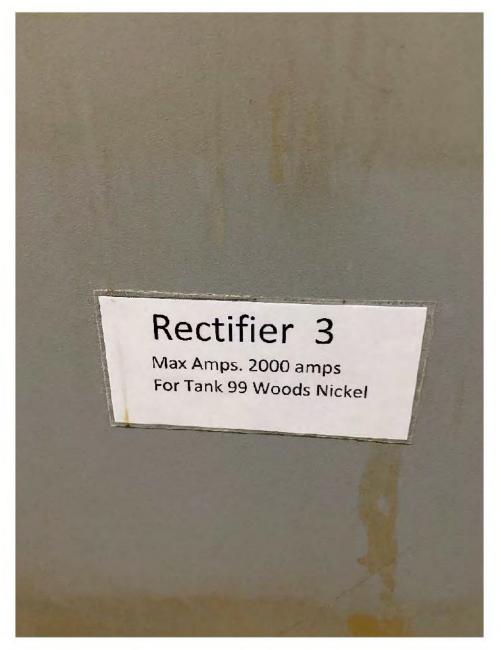

Attachment 4.125 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-39 Hex Pre-Dip Chrome 6,944 ppm 09/21/2022

Attachment 4.126 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank T-41 Chrome Plating Solution (Hexavalent) 09/21/2022

Attachment 4.127 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Spills, Solids, and Overspray 09/21/2022

Attachment 4.128 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Decorative Chrome Plating Tank No. 41 (Hexavalent Chromium) Surface Tension Records 06/16/2022 – 09/20/2022 09/21/2022

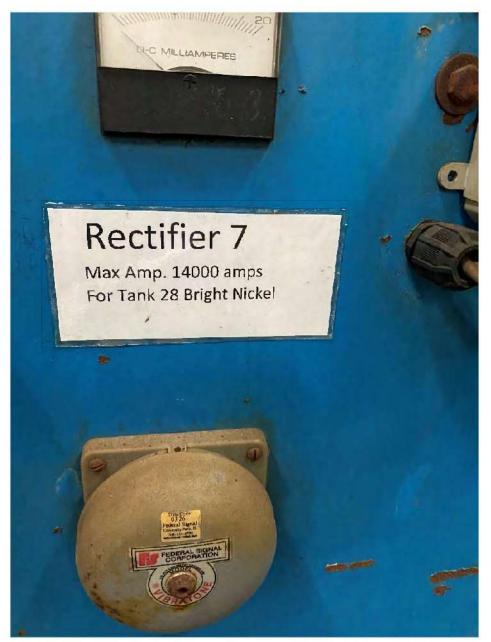
			Divome SO4 Ozicel Ozicel - 1/2 - 1/2	Crease Ratio 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 170.0 190.0	2348 772 732 732 732 732 732 732 732		101 102 102 102 102 102 102 102 102 102	H2C/Q3	Croppingurage add Nr. 1. Lynager
--	--	--	--	--	--	--	---	--------	----------------------------------


Attachment 4.129 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 1 Label 09/21/2022

Attachment 4.130 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 2 Label 09/21/2022

Attachment 4.131 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 3 Label 09/21/2022

Attachment 4.132 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 5 Label 09/21/2022


Attachment 4.133 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 5A Label 09/21/2022

Attachment 4.134 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 6 Label 09/21/2022

Attachment 4.135 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 7 Label 09/21/2022

Attachment 4.136 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 8 Label 09/21/2022

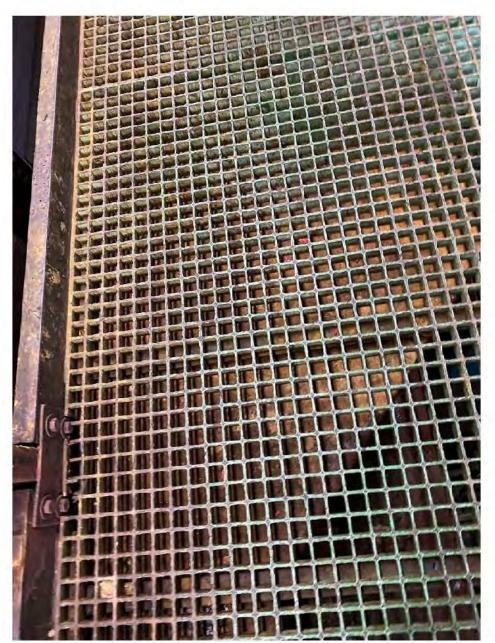
Attachment 4.137 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 9 Label 09/21/2022

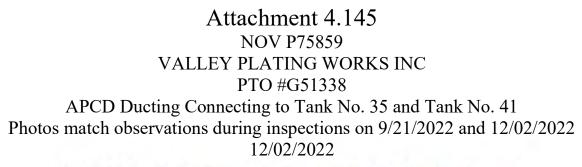
Attachment 4.138 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 10 Label 09/21/2022

Attachment 4.139 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Rectifier No. 11 Label 09/21/2022

Attachment 4.140 NOV P75859 VALLEY PLATING WORKS INC PTO #F98811 NOx Scrubber – New Recirculation Flow Rate Gauge 09/21/2022

Attachment 4.141 NOV P75859 VALLEY PLATING WORKS INC PTO #G51338 HEPA Static Pressure Differential Gauge 09/21/2022


Attachment 4.142 NOV P75859 VALLEY PLATING WORKS INC PTO #G51340 Daily Pressure Gauge Readings 08/05/2022 – 09/21/2022 Missing pH Records 06/02/2022


	tiv.	WALLEYSteneredLabit.ogs/budies/hears_logs/s Schibbers Daily Pressure Gauge Read						12/20/2021 5.45 AN 35 Whashdown Operating Correctly pe Schedule	
				Da	ily Pres	ure Gaug	Whashdown Scheuble		
R III		1-	-	T HEPO		Γ			
	S Date	Tine	Intials	Filler in	Pre filler	Mist climina	tor in W.G.		
Name / III/	1	1		W.G.		Stage #1	30.9		
	85-n	2	1	11	.up	.30-	1.75		
11000	8-8-22	7 35	NO	21	.40_	30 -	32-	T	
	8-9-21		MIT	1-8	.45	30_	125		
	8-0-77	7 03	1105	1.8	145	30	125-		
		6.44	MAS	2.0	45	.35	25_	T	
1000	811-12	9.73	MI		4-	.35			
	8-12-02	0415	MI	200	.45	.35-	35-		
	2 mil	8:41	VES	20	.45	35	175-		
	8672	7.08	MIT	1.0	45		-75-		
	817-22	4:0%	mi	2.0	.45	36	.75		
	8-18-72	1:01	NT	7.0		30	12,		
	8-22.72	7.46	NE	2.0	UD_		1.30 -		
	823-01	8:03	MI	2.0	40	-50-	.30 -		
	5-24-Ta 16	150	mr.	200	No	1 12	10-		
	\$ 25-27 -	7.54	pt	7.0	35	50	in.		
		133	MI	1.4	.40	.45	NO	T	
TITLE	8-29-22 6	:08		1.5	.40	- 50-	135		
		445	MOT	2.0	, YO	.50			
		Sip	mil	1.2	WD.	.50	.40		
					.45	,50	.30		
	A state of the second se	-14		le la -		.45	.30	1	
1000	9-6-22 6			1.5	.45		.30		
1.000	19-7-22 17:	80.	MI	2	.45	.45_	30		
	9-8-22. 6:	45 1	MT-	2.1	.40	.45_			
	9-9-72	03	ME	12	.45	.45	30		
	712-227	Carlon and and	ME	2.0	,40	,45	. 30		
	and the second se			7.4	.45	1.45	-30		
							.30		
	9-14-27 7:	50 1	mI.	.8	.35	.45			
	3-13 72 1/2:	581	NEI	8	-493	. 40	.30		
		My !	ME	1.8	.40	N.C.	.30		
E CARLER	1 1 1 2 2 2 3			10		.44	.30		
18 11 13	14-22 7:0	18 1	my 1	16	145	_	the second se		
1 4	70-72 6:1		mt 1	12	145	.45	30		
1			1000	17	40	.55	130		
E E	-21-22/63	7 11	277	. +	- 6	-22	120		
					-				
		-1	-			-			
1112		1			-		-		
a - 3									
	-	1	-		-				
		-	and Ma						
						1			
	1	-							
		1							
			-		-				
		_	-	_					
			-						
					aller a				

Attachment 4.143 NOV P75859 VALLEY PLATING WORKS INC PTO #G51338 APCD Ducting Connecting to Tank No. 35 and Tank No. 41 Photos match observations during inspections on 9/21/2022 and 12/02/2022 12/02/2022

Attachment 4.144 NOV P75859 VALLEY PLATING WORKS INC PTO #G51338 APCD Ducting Connecting to Tank No. 35 and Tank No. 41 Photos match observations during inspections on 9/21/2022 and 12/02/2022 12/02/2022

Attachment 4.146 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank No. 41 Analytical Report 08/25/2022 09/21/2022

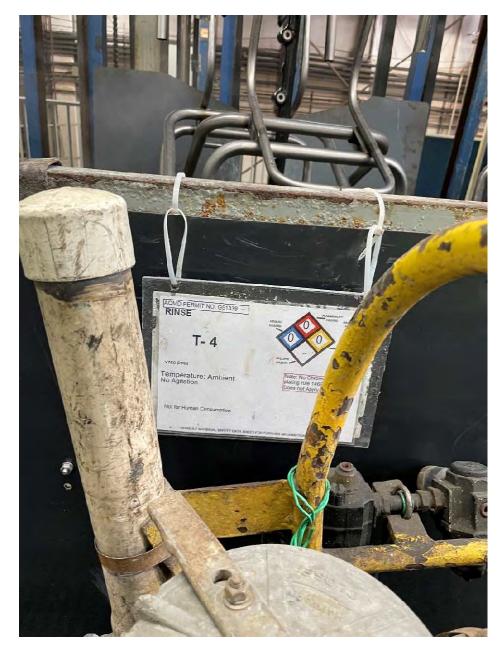
Component	8/25/2022 Result	Bath ID: HE)	CHROME	Range	Additions to Bath	Remarks
CHROMIC ACID	30.5	oz/gal	32	20-50		
SULFATES	.14	ozigal				
Cr03-SO4 RATIO	218:1		200			
FACE TENSION	37.5	dynes/cm		-		
FLUGRIDE	205	ppm	-			
COPPER	505		-			
CON	529					
KEL	1					
	510		-			
Comments:	431					

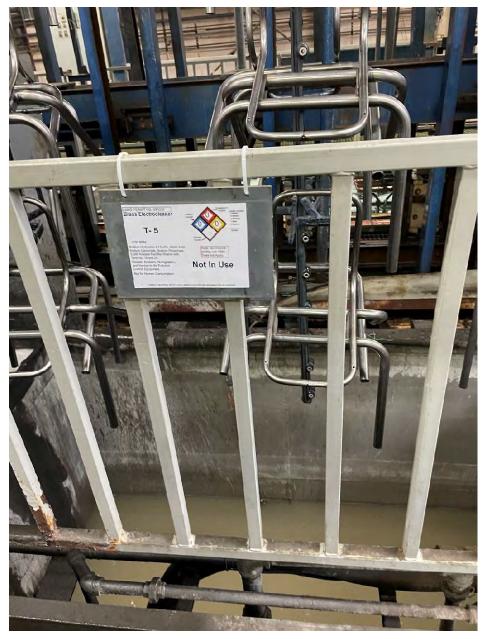
Attachment 4.147 NOV P75859 VALLEY PLATING WORKS INC PTO #G51339 Tank No. 41 Analytical Report 05/25/2022 09/21/2022

Result 30.6		X CHROME			
	Units oz/gal	Target 32	Range 20 - 50	Additions to Bath	Remarks
.15	ozigat				
204:1		200	-		
	Epin				
525					
500					
436		-			
	27.4 203 501 525 500 436	27.4 dynes.cm 203 Epm 501 525 500	27.4 dynes.cm 20.3 zpm 501 501 525 500 43.6 1	27.4 dynes.em 203 £pm 501 500	27.4 dynes.cm 203 Epm 501 500

EXHIBIT 6

Attachment 10.1 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-1A Alkaline Soak 02/02/2023


Attachment 10.2 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-2 Alkaline Soak 02/02/2023


Attachment 10.3 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-3 Alkaline Soak 02/02/2023

Attachment 10.4 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-4 Rinse Purified Water 02/02/2023

Attachment 10.5 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-5 Brass Electrocleaner 02/02/2023

Attachment 10.6 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-6 Rinse Purified Water 02/02/2023

Attachment 10.7 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-7 Steel Electrocleaner 02/02/2023

Attachment 10.8 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-8 Rinse Purified Water 02/02/2023

Attachment 10.9 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-9 Rinse Purified Water 02/02/2023

Attachment 10.10 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-10 Deoxidizer 02/02/2023

Attachment 10.11 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-11 Rinse Purified Water 02/02/2023

Attachment 10.12 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-12 Acid Pickle 02/02/2023

Attachment 10.13 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-13 Rinse Purified Water 02/02/2023

Attachment 10.14 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Overhead View of Tank T-13 02/02/2023

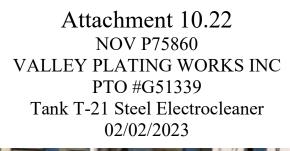
Attachment 10.15 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-14 Rinse Purified Water 02/02/2023

Attachment 10.16 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-15 Rinse Purified Water 02/02/2023

Attachment 10.17 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-16 Rinse Purified Water 02/02/2023

Attachment 10.18 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-17 Ultrasonic Cleaner 02/02/2023

Attachment 10.19 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-18 Rinse Purified Water 02/02/2023



Attachment 10.20 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-19 Brass Electrocleaner 02/02/2023

Attachment 10.21 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-20 Rinse Purified Water 02/02/2023

Attachment 10.23 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-22 Rinse Purified Water 02/02/2023

Attachment 10.24 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-23 Rinse Purified Water 02/02/2023

Attachment 10.25 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-24 Nickel Activator 02/02/2023

Attachment 10.26 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-25 Sour Dip/Tank T-99 Woods Nickel Plating 02/02/2023

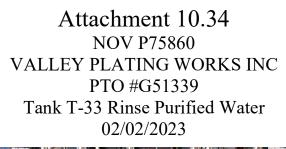
Attachment 10.27 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-26 Sour Dip 02/02/2023

Attachment 10.28 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-27 Semi Bright Nickel Plating Sol. 02/02/2023

Attachment 10.29 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-28 Bright Nickel Plating Sol. 02/02/2023

Attachment 10.30 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-29 Particle Nickel Plating 02/02/2023

Attachment 10.31 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-30 Rinse Purified Water 02/02/2023

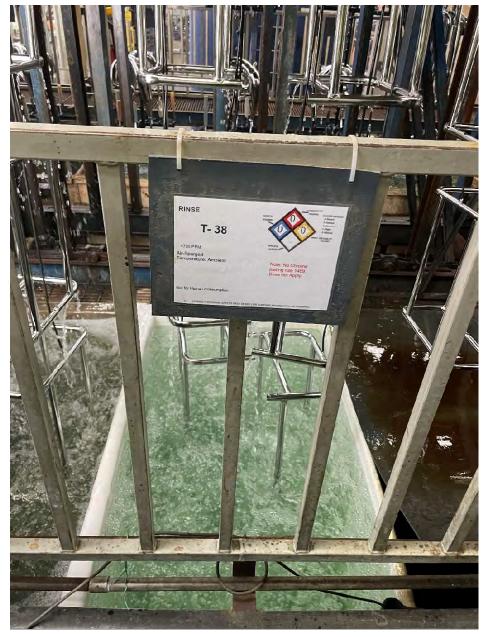


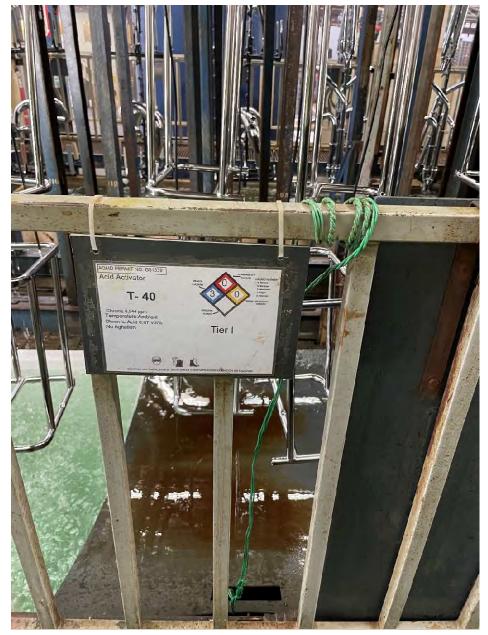
Attachment 10.32 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-31 Rinse Purified Water 02/02/2023

Attachment 10.33 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-32 Rinse Purified Water 02/02/2023

Attachment 10.35 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-34 Rinse Acid Activator 02/02/2023

Attachment 10.36 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-35 Trivalent Chrome Plating 02/02/2023


Attachment 10.37 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-36 Rinse Tri chrome Rinse 02/02/2023


Attachment 10.38 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-37 Rinse Purified Water 02/02/2023

Attachment 10.39 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 T-38 Rinse Purified Water 02/02/2023

Attachment 10.40 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-40 Acid Activator 02/02/2023

Attachment 10.41 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-41 Decorative Chrome Plating 02/02/2023

Attachment 10.42 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-43 Rinse Hex Chrome Rinse 02/02/2023

Attachment 10.43 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-44 Rinse Hex Chrome Rinse 02/02/2023

Attachment 10.44 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-45 Rinse Purified Water 02/02/2023

Attachment 10.45 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-46 Rinse Purified Water 02/02/2023

Attachment 10.46 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-47 Activator Rinse 02/02/2023

Attachment 10.47 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-48 Drag Out Rinse Purified Water 02/02/2023

Attachment 10.48 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-49 Rinse Purified Water 02/02/2023

Attachment 10.49 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-50 Rinse Purified Water 02/02/2023

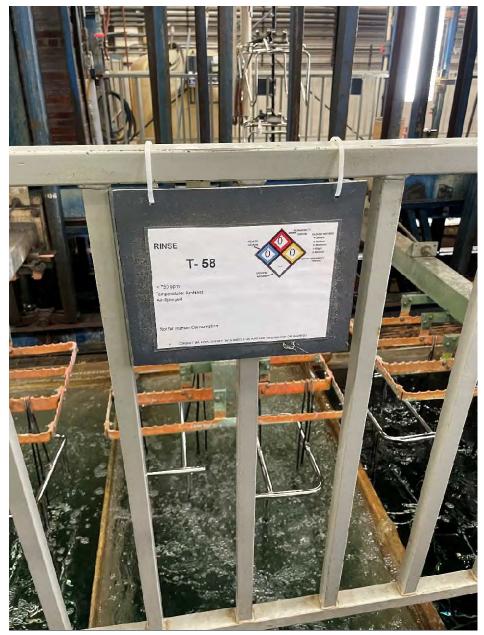
Attachment 10.50 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-51 Rinse Purified Water 02/02/2023

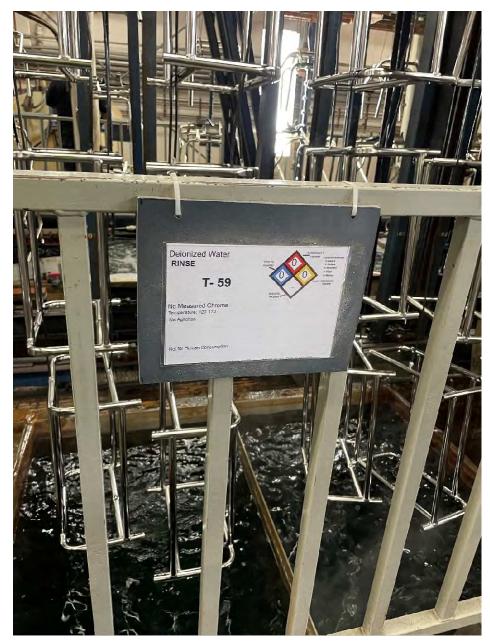
Attachment 10.51 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-52 Rinse Purified Water 02/02/2023

Attachment 10.52 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-53 Rinse Purified Water 02/02/2023

Attachment 10.53 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-54 Passivate Rinse 02/02/2023

Attachment 10.54 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-55 Rinse Purified Water 02/02/2023


Attachment 10.55 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-56 Rinse Purified Water 02/02/2023


Attachment 10.56 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-57 Rinse Purified Water 02/02/2023

Attachment 10.57 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-58 Rinse Purified Water 02/02/2023

Attachment 10.58 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-59 Deionized Water Rinse 02/02/2023

Attachment 10.59 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-60 Deionized Water Rinse 02/02/2023

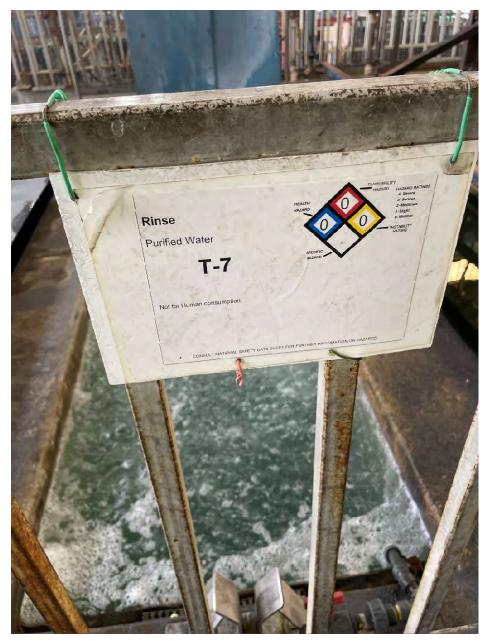
Attachment 10.60 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Tank T-61 Rinse Purified Water 02/02/2023

Attachment 10.61 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-1 Nickel Stripper 02/02/2023

Attachment 10.62 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-2 Rinse Purified Water 02/02/2023

Attachment 10.63 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-3 Alkaline Soak Cleaner 02/02/2023

Attachment 10.64 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-4 Steel Electrocleaner Alk. 02/02/2023


Attachment 10.65 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-5 Rinse Purified Water 02/02/2023

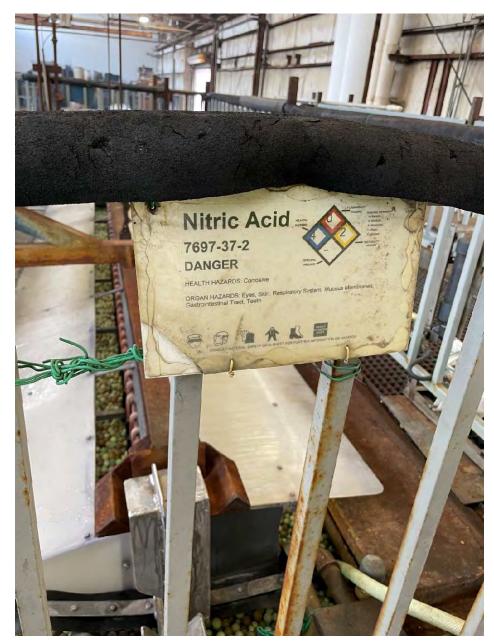
Attachment 10.66 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-6 Sulfuric Pickel 02/02/2023

Attachment 10.67 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 T-7 Rinse Purified Water 02/02/2023

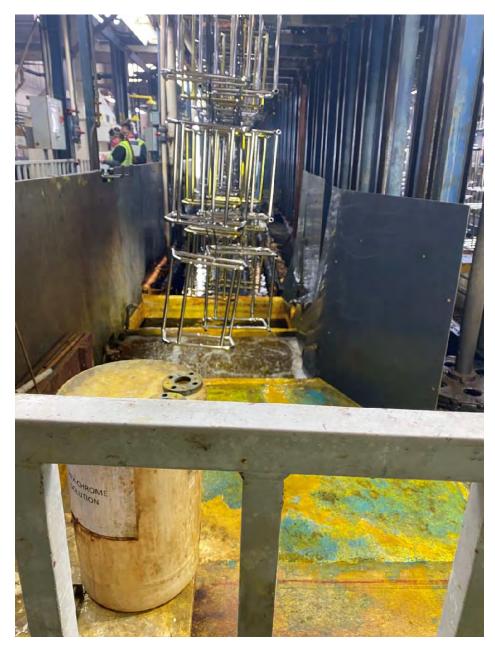
Attachment 10.68 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-8 Sulfuric Pickel 02/02/2023

Attachment 10.69 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-9 Sulfuric Pickel 02/02/2023

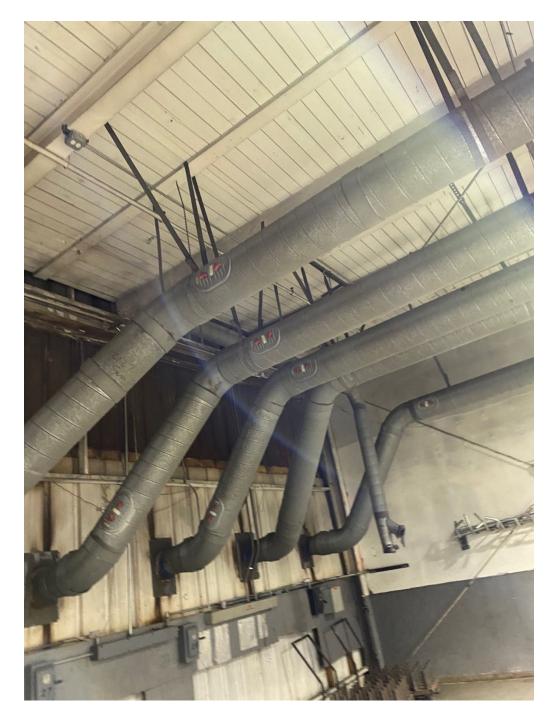
Attachment 10.70 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-10 Rinse Purified Water 02/02/2023


Attachment 10.71 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-11 Rinse Purified Water 02/02/2023

Attachment 10.72 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-12 Rinse Purified Water 02/02/2023


Attachment 10.73 NOV P75860 VALLEY PLATING WORKS INC PTO #F98812 Tank T-13 Nitric Acid 02/02/2023

Attachment 10.74 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Spills and Solids 02/02/2023



Attachment 10.75 NOV P75860 VALLEY PLATING WORKS INC PTO #G51339 Spills and Solids 02/02/2023

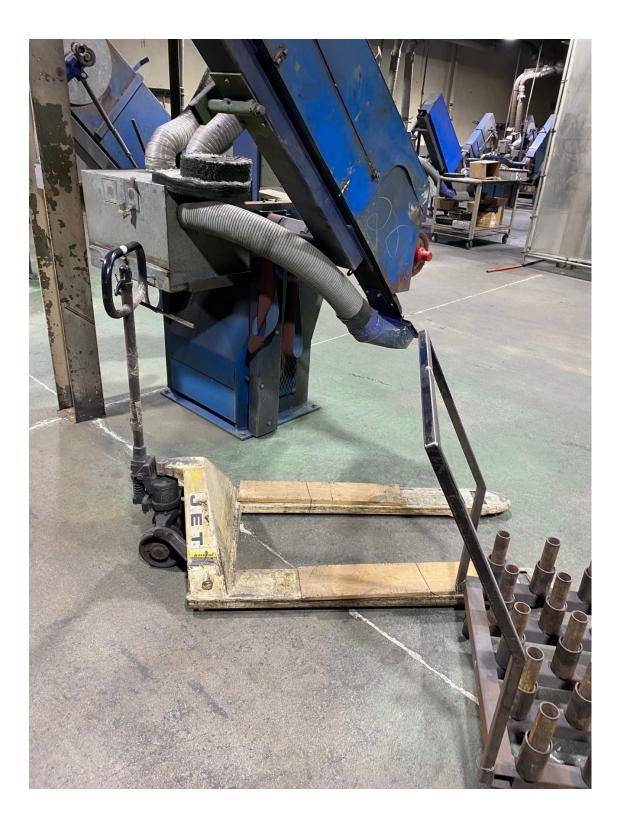


EXHIBIT 7

VALLEY PLATING WORKS INC Dust Collector February 20, 2024

Dust Collector February 20, 2024

Dust Collector February 20, 2024

