

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 1 of 10)

To: Jason Low, Ph.D.

Assistant Deputy Executive Officer

Science & Technology Advancement

Laboratory No.

2005701-01 to -02

Requested By

Rafael Reynosa

Rule No.

R402

Sampling Location

Facility ID 174655

Marathon Carson 2350 E. 223rd St

Carson, CA 90810

ST No.

NA

Report Created

02/27/2020

ANALYTICAL WORK PERFORMED, METHOD OF ANALYSIS, AND RESULTS

Volatile Organic Compounds (VOCs) in Ambient Air by EPA TO-15 (GC/MS) Volatile Organic Compounds (VOCs) in Ambient Air by EPA TO-15 (GC/MS) - Tentatively **Identified**

See attached results and sample information.

Reviewed By:

Approved By:

toman for S. Dutz Date Reviewed:

te for AK

Date Approved:

02/27/2020

Laboratory Services

Aaron Katzenstein, Ph.D.

Principal A.Q. Chemist

Senior Manager **Laboratory Services**

(909) 396-2219

Form 2.0

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 2 of 10)

Laboratory No.

2005701-01

Sample Description

SILCO Canister 53491, Downwind sample

Sample Comments

Level 2 out of 5 chemical odor, Marathon Refinery fire

Sample Date 02/26/2020

Received Date 02/26/2020

Analyzed Date 02/26/2020

Analyte, Unit	Result	MDL	MRL	Ambient Ave
1,1,1-Trichloroethane, ppbv	ND	0.2	0.6	0.1
1,1,2,2-Tetrachloroethane, ppbv	ND	0.2	0.6	< 0.1
1,1,2-Trichloroethane, ppbv	ND	0.2	0.6	<0.1
1,1-Dichloroethane, ppbv	ND	0.2	0.6	<0.1
1,1-Dichloroethylene, ppbv	ND	0.2	0.6	
1,2,4-Trichlorobenzene, ppbv	ND (QX)	0.2	0.6	< 0.1
1,2,4-Trimethylbenzene, ppbv	0.4	0.2	0.6	0.1
1,2-Dibromoethane, ppbv	ND	0.05	0.1	
1,2-Dichlorobenzene, ppbv	ND	0.08	0.2	
1,2-Dichloroethane, ppbv	0.08	0.03	0.1	
1,2-Dichloropropane, ppbv	ND	0.07	0.2	<0.1
1,3,5-Trimethylbenzene, ppbv	ND	0.2	0.6	0.1
1,3-Butadiene, ppbv	0.1	0.03	0.08	<0.1
1,3-Dichlorobenzene, ppbv	ND	0.2	0.6	
1,4-Dichlorobenzene, ppbv	ND	0.2	0.5	
1,4-Dioxane, ppbv	ND (QX)	0.2	0.6	< 0.1
2-Butanone (MEK), ppbv	1.2	0.1	0.3	0.3
2-Hexanone (MBK), ppbv	ND	0.2	0.6	
Acetone, ppbv	17 (EH)	0.1	0.4	7.7
2-Propenal (SIM), ppbv	0.2	0.05	0.2	
Benzene, ppbv	0.8	0.05	0.1	0.6
Benzyl chloride, ppbv	ND	0.2	0.6	<0.1
Bromodichloromethane, ppbv	ND	0.2	0.6	<0.1
Bromoform, ppbv	ND	0.2	0.6	<0.1
Bromomethane, ppbv	1.1	0.07	0.2	<0.1
Carbon disulfide, ppbv	ND	0.2	0.6	< 0.1
Carbon Tetrachloride, ppbv	0.1	0.04	0.1	0.1
Chlorobenzene, ppbv	ND	0.2	0.6	<0.1
Chloroethane, ppbv	ND	0.2	0.6	<0.1
Chloroform, ppbv	0.1	0.04	0.1	<0.1
Chloromethane, ppbv	0.7	0.2	0.6	0.6

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 3 of 10)

Laboratory No.

2005701-01 - continued

Sample Description

SILCO Canister 53491, Downwind sample

Sample Comments

Level 2 out of 5 chemical odor, Marathon Refinery fire

Sample Date 02/26/2020

Received Date 02/26/2020

Analyzed Date 02/26/2020

ND ND 0.6 ND 0.5 ND 25 (LJ)	0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.6 0.6 0.6 0.6 0.6	0.1 <0.1 0.5
0.6 ND 0.5 ND 25 (LJ)	0.2 0.2 0.2 0.2	0.6 0.6 0.6	<0.1
ND 0.5 ND 25 (LJ)	0.2 0.2 0.2	0.6	<0.1
0.5 ND 25 (LJ)	0.2 0.2	0.6	
ND 25 (LJ)	0.2		0.5
25 (LJ)		0.6	
	0.2		<0.1
0.3		0.6	7.3
0.2	0.2	0.6	<0.1
0.4	0.06	0.2	0.2
ND (QX)	0.2	0.6	
2.0	0.2	0.6	
1.2	0.09	0.3	0.6
ND	0.2	0.6	
ND	0.2	0.6	
ND	0.2	0.6	
0.3	0.05	0.2	0.2
ND (QX)	0.2	0.6	
0.5	0.2	0.6	0.2
1.0	0.2	0.6	0.1
0.4	0.03	0.09	0.2
0.2	0.2	0.6	
1.1	0.2	0.6	0.5
0.2	0.09	0.3	0.1
ND	0.04	0.1	
ND	0.2	0.6	< 0.1
3.4	0.06	0.2	1.6
1.8	0.2	0.6	
ND	0.2	0.6	
ND	0.07	0.2	<0.2
0.3	0.2	0.6	0.2
	ND (QX) 2.0 1.2 ND ND ND ND 0.3 ND (QX) 0.5 1.0 0.4 0.2 1.1 0.2 ND	0.4 0.06 ND (QX) 0.2 2.0 0.2 1.2 0.09 ND 0.2 ND 0.2 ND 0.2 ND 0.2 ND 0.5 ND (QX) 0.2 1.0 0.2 0.4 0.03 0.2 0.2 1.1 0.2 0.4 0.03 0.2 0.2 1.1 0.2 0.2 0.09 ND 0.04 ND 0.04 ND 0.02 3.4 0.06 1.8 0.2 ND 0.2	0.4

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 4 of 10)

Laboratory No.

2005701-01 - continued

Sample Description

SILCO Canister 53491, Downwind sample

Sample Comments

Level 2 out of 5 chemical odor, Marathon Refinery fire

Sample Date 02/26/2020

Received Date 02/26/2020

Analyzed Date 02/26/2020

Analyte, Unit	Result	MDL	MRL	Ambient Avg	
Vinyl acetate, ppbv	ND	0.2	0.6	<0.1	
Vinyl chloride, ppbv	ND	0.05	0.1	<0.1	

^{*} J = Value is between method detection and reporting limits.

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 5 of 10)

Laboratory No.

2005701-01 - continued

Sample Description

SILCO Canister 53491, Downwind sample

Sample Comments

Level 2 out of 5 chemical odor, Marathon Refinery fire

Sample Date 02/26/2020

Received Date 02/26/2020

Analyzed Date 02/26/2020

Volatile Organic Compounds (VOCs) in Ambient Air by EPA TO-15 (GC/MS) - Tentatively Identified

-TENTATIVELY IDENTIFIED COMPOUNDS-CONCENTRATIONS ARE APPROXIMATED

Analyte, Unit	Result	
Butane, ppbv	4.8	
Isopentane, ppbv	7.5	

^{*} J = Value is between method detection and reporting limits.

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 6 of 10)

Laboratory No.

2005701-02

Sample Description

SUMMA Canister 54077, Upwind sample

Sample Comments

No odor, Marathon Refinery fire. Note: source level canister used - values may be

artificially elevated.

Sample Date 02/26/2020

Received Date 02/26/2020

Analyzed Date 02/26/2020

Analyte, Unit	Result	MDL	MRL	Ambient Avg
1,1,1-Trichloroethane, ppbv	ND	0.2	0.6	0.1
1,1,2,2-Tetrachloroethane, ppbv	ND	0.2	0.6	<0.1
1,1,2-Trichloroethane, ppbv	ND	0.2	0.6	<0.1
1,1-Dichloroethane, ppbv	ND	0.2	0.6	< 0.1
1,1-Dichloroethylene, ppbv	ND	0.2	0.6	
1,2,4-Trichlorobenzene, ppbv	ND (QX)	0.2	0.6	<0.1
1,2,4-Trimethylbenzene, ppbv	0.3 (LK)	0.2	0.6	0.1
1,2-Dibromoethane, ppbv	ND	0.05	0.1	
1,2-Dichlorobenzene, ppbv	ND	0.08	0.2	
1,2-Dichloroethane, ppbv	ND	0.03	0.1	
1,2-Dichloropropane, ppbv	ND	0.07	0.2	<0.1
1,3,5-Trimethylbenzene, ppbv	ND	0.2	0.6	0.1
1,3-Butadiene, ppbv	0.2 (LK)	0.03	0.08	<0.1
1,3-Dichlorobenzene, ppbv	ND	0.2	0.6	
1,4-Dichlorobenzene, ppbv	ND	0.2	0.5	
1,4-Dioxane, ppbv	ND (QX)	0.2	0.6	<0.1
2-Butanone (MEK), ppbv	1.9 (LK)	0.1	0.3	0.3
2-Hexanone (MBK), ppbv	ND	0.2	0.6	
2-Propenal (SIM), ppbv	0.3 (LK)	0.05	0.2	
Acetone, ppbv	25 (LK)	0.1	0.4	7.7
Benzene, ppbv	0.7 (LK)	0.05	0.1	0.6
Eenzyl chloride, ppbv	ND	0.2	0.6	<0.1
Bromodichloromethane, ppbv	ND	0.2	0.6	<0.1
Bromoform, ppbv	ND	0.2	0.6	<0.1
Bromomethane, ppbv	ND	0.07	0.2	<0.1
Carbon disulfide, ppbv	ND	0.2	0.6	<0.1
Carbon Tetrachloride, ppbv	0.08 (LK)	0.04	0.1	0.1
Chlorobenzene, ppbv	ND	0.2	0.6	< 0.1
Chloroethane, ppbv	ND	0.2	0.6	<0.1
Chloroform, ppbv	0.08 (LK)	0.04	0.1	< 0.1

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 7 of 10)

Laboratory No.

2005701-02 - continued

Sample Description

SUMMA Canister 54077, Upwind sample

Sample Comments

No odor, Marathon Refinery fire. Note: source level canister used - values may be

artificially elevated.

Sample Date 02/26/2020

Received Date 02/26/2020

Analyzed Date 02/26/2020

Analyte, Unit	Result	MDL	MRL	Ambient Avg
Chloromethane, ppbv	0.9 (LK)	0.2	0.6	0.6
cis-1,2-Dichloroethylene, ppbv	ND	0.2	0.6	
cis-1,3-Dichloropropene, ppbv	ND	0.2	0.6	
Cyclohexane, ppbv	0.5 (LK)	0.2	0.6	0.1
Dibromochloromethane, ppbv	ND	0.2	0.6	<0.1
Dichlorodifluoromethane (Freon 12), ppbv	0.5 (LK)	0.2	0.6	0.5
Dichlorotetrafluoroethane (Freon 114), ppbv	ND	0.2	0.6	<0.1
Ethanol, ppbv	58 (LK)	0.2	0.6	7.3
Ethyl Acetate, ppbv	0.4 (LK)	0.2	0.6	<0.1
Ethylbenzene, ppbv	0.4 (LK)	0.06	0.2	0.2
Hexachloro-1,3-butadiene, ppbv	ND (QX)	0.2	0.6	
Isopropanol, ppbv	6.3 (LK)	0.2	0.6	
m+p-Xylene, ppbv	1.1 (LK)	0.09	0.3	0.6
Methyl Isobutyl Ketone (MIBK), ppbv	ND	0.2	0.6	
Methyl Methacrylate, ppbv	0.2 (LK)	0.2	0.6	
Methyl tert-Butyl Ether (MTBE), ppbv	ND	0.2	0.6	
Methylene Chloride, ppbv	0.5 (LK)	0.05	0.2	0.2
Naphthalene, ppbv	ND (QX)	0.2	0.6	
n-Heptane, ppbv	0.4 (LK)	0.2	0.6	0.2
n-Hexane, ppbv	1.1 (LK)	0.2	0.6	0.1
o-Xylene, ppbv	0.4 (LK)	0.03	0.09	0.2
p-Ethyltoluene, ppbv	0.2 (LK)	0.2	0.6	
Propylene, ppbv	2.3 (LK)	0.2	0.6	0.5
Styrene, ppbv	0.3 (LK)	0.09	0.3	0.1
Tetrachloroethylene, ppbv	0.04 (LK)	0.04	0.1	
Tetrahydrofuran, ppbv	0.3 (LK)	0.2	0.6	<0.1
Toluene, ppbv	6.0 (LK)	0.06	0.2	1.6
trans-1,2-Dichloroethylene, ppbv	ND	0.2	0.6	
trans-1,3-Dichloropropene, ppbv	ND	0.2	0.6	
Trichloroethylene, ppbv	ND	0.07	0.2	< 0.2

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 8 of 10)

Laboratory No.

2005701-02 - continued

Sample Description

SUMMA Canister 54077, Upwind sample

Sample Comments

No odor, Marathon Refinery fire. Note: source level canister used - values may be

artificially elevated.

Sample Date 02/26/2020

Received Date 02/26/2020

Analyzed Date 02/26/2020

Analyte, Unit	Result	MDL	MRL	Ambient Avg
Trichlorofluoromethane (Freon 11), ppbv	0.3 (LK)	0.2	0.6	0.2
Trichlotrifluoroethane (Freon 113), ppbv	ND	0.2	0.6	0.1
Vinyl acetate, ppbv	ND	0.2	0.6	<0.1
Vinyl chloride, ppbv	ND	0.05	0.1	<0.1

^{*} J = Value is between method detection and reporting limits.

MONITORING AND ANALYSIS REPORT OF LABORATORY ANALYSIS

(Page 9 of 10)

Laboratory No.

2005701-02 - continued

Sample Description

SUMMA Canister 54077, Upwind sample

Sample Comments

No odor, Marathon Refinery fire. Note: source level canister used - values may be

artificially elevated.

Sample Date 02/26/2020

Received Date 02/26/2020

Analyzed Date 02/26/2020

Volatile Organic Compounds (VOCs) in Ambient Air by EPA TO-15 (GC/MS) - Tentatively Identified

-TENTATIVELY IDENTIFIED COMPOUNDS-CONCENTRATIONS ARE APPROXIMATED

Analyte, Unit	Result	
Pentane, ppbv	4.6 (LK)	
. Isopentane, ppbv	12 (LK)	
Butane, ppbv	7.1 (LK)	

^{*} J = Value is between method detection and reporting limits.

o. conquib bib.	OTHER:]		
SOURCE NAME:	Marathon Co	I.	D. No. 174	655
Source Address: 21	50 E. 229 rd	57 City:	Carsun	
Mailing Address:	4 4	City: Sam	Zip:	2082
Mailing Address: S Contact Person: Contact	chow Ti	tle: Environmenta	Tel: 74	1-847-5
Analysis Requested by:	Rufael Reyno	Date:	2/26/20	r.
Approved by: Rafae	ley aso Office	e: CLE	Budget #:	50-375
REASON REQUESTED:				
Suspected Violation	Rule(s) 402	Other	fire	
			1/1/	
Sample Collected by:	Huy Dung	Date: 2/21/20		s Am p =
Sample Collected by: Specify the description and	Huy Vunz d location where the sam	Date: 2/21/2		wam p = 2
Sample Collected by: Specify the description and Sample # 53 491 @	Huy Dung d location where the sam like 4 m on com chemical market	Date: 2/21/20 sple was collected: Town when Sepalveda		Wilmin
Sample Collected by: Specify the description and Sample # 53 491 @ -level and 2 Sample # 54077 @	Huy Dung d location where the sam 1:20 AM on con- chemical oder	Date: 2/21/20 apple was collected: Town when Sepulveda A Marythun Bi		Wilmin to ne odo
Sample Collected by: Specify the description and Sample # 53 491 Q - level and 2 Sample # 54077 e Analysis Requested:	Huy Dung delocation where the same chemical order a 21184M on corner cupulated	Date: 2/21/20 Apple was collected: Town whole If Marythin Bi		wam p 2 wilmin t, ne odo
Sample Collected by: Specify the description and Sample # 53 491 @ - level 1 and 2 Sample # 54077 @ Analysis Requested: Relinquished by	- Company	Date: 2/21/20 Inple was collected: John which Amongthin Bi Firm/Agency		Wilmit, ne odo
Analysis Requested:	- Company		and within	
Relinquished by	Received by	Firm/Agency	and hilled by 223 of St	Time
Relinquished by	Received by	Firm/Agency	and hilled by 223 of St	Time