Low-cost, high-density sensor network for urban air quality monitoring: BEACO₂N

Introduction

- BEACO₂N is a low-cost, high-density air quality monitoring network in San Francisco Bay Area that consists of approximately 50 nodes distributed at 2km horizontal spacing, measuring CO_2 , CO, NO, NO_2 , O_3 and particulate matter.
- Here, we describe an in-field calibration procedure for CO, NO, NO_2 , and O_3 that are consistent with the low-cost specification.

Berkeley Atmospheric CO₂ Observation Network (BEACO₂N)

Figure 1. Map of current BEACO₂N nodes (red) and BAAQMD sites measuring O_3 (blue). The sites shown for examples are marked in yellow and supersite is marked in orange.

Node Design of BEACO₂N

Figure 2. Current BEACO₂N node design.

- Vaisala CarboCap GMP343 NDIR sensor for CO₂
- Alphasense B4 electrochemical sensors for CO, NO, NO₂ and O_3
- Shinyei PPD42NS nephelometric PM sensor
- Bosch Sensortec BME280 sensor for pressure,
- temperature and humidity inside the node
- Communication by wifi or cellular

Jinsol Kim, Alexis A. Shusterman, Kaitlyn J. Lieschke, Catherine Newman, Ronald C. Cohen*

University of California, Berkeley, CA, USA *Contact Information: rccohen@berkeley.edu

Physical model of air quality sensors

The sensors' response to target gases is linear (Eqn. 1-4). Additional terms in Eqn. 3 and 4 indicate observed cross-sensitivity of the NO₂ and O_3 sensors. Zero offset, sensitivity and cross-sensitivity terms are temperature dependent.

$CO_{ambient} = (V_{CO} - zero_{CO})/k_{CO}$	(1)
$NO_{ambient} = (V_{NO} - zero_{NO})/k_{NO}$	(2)
$NO2_{ambient} = (V_{NO2} - zero_{NO2})/k_{NO2} - r_{NO-NO2} \times NO_{ambient}$	(3)
$O3_{ambient} = (V_{O3} - zero_{O3})/k_{O3} - r_{NO2-O3} \times NO2_{ambient}$	(4)

In-field Calibration

Ten calibration parameters have to be constrained simultaneously. The first constraint fixes O_3 cross-sensitivity to NO_2 at unity.

1. Use of chemical conservation equations near emissions (5 constraints)

	$\frac{\Delta NO_{ambient}}{\Delta NO2_{ambient}} = \frac{\Delta NO2_{ambient}}{\Delta O3_{ambient}} = -\frac{\Delta O3_{ambient}}{\Delta NO_{ambient}} = -1$	(5)
NO NO ₂ $NO_{3} \leftarrow NO_{2}$	At night, NO \rightarrow 0 (in the absence of emissions) O ₃ \rightarrow 0 (near strong emissions)	(6)

Figure 3. Schematic During the day, $j_{NO2}[NO_2] = k_{NO-O3}[NO][O_3]$ (7) of NO_x cycle.

2. Regional ozone uniformity (3 constraints)

From Eqn. 2-4 we drive Eqn. 8:

$$O3_{ambient} = \frac{V_{O3}}{k_{O3}} - \frac{V_{NO2}}{k_{NO2}} + \frac{V_{NO}}{k_{NO}/r_{NO-NO2}} - offset$$
(8)

We use regulatory ozone data for O3_{ambient} and implement multiple linear regression.

3. Use of co-emitted gases in plumes (1 constraint)

$$EF_{CO} = \frac{\Delta CO_{ambient}}{\Delta CO2_{ambient}}$$

CO emission factors reported in Dallmann et al. (2013) are used.

4. Use of global background (1 constraint)

$$CO]_{node} = [CO]_{background} + [CO]_{local} + offset$$
(10)

We assume that the monthly minimum concentration measured at a given site represents [CO]_{background} and the daily minimum concentration has a constant deviation from the background signal. The background signal is compared to measurements at a "supersite" of reference instruments located within the network domain.

Temperature dependence and temporal drift

Each calibration parameter is calculated in temperature increments of 1°C and this calibration protocol is repeated every month or so with 3month running window to account for drift in sensors' sensitivity and zero offset.

- [1] Shusterman et al., Atmospheric Chemistry & Physics, 16, 13449-13463, 2016
- [2] Kim et al., Atmospheric Measurement Techniques, submitted
- [3] Dallmann et al., Environmental Science & Technology, 47,
- 13873-13881, 2013

(9)

BEACO₂N website: http://beacon.berkeley.edu/Sites.aspx