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Advances in Sensing and Computing have Put
Mobile Personal Air Monitoring within Reach
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How can such sensing be
designed to produce the
most benefit at the least cost?



CitiSense —
A Crowdsourcing Approach
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CitiSense Components ...
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Affect Awareness?

Behavior?




Pollution Levels Varied Widely by Locale
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Individual exposures varied widely
compared to reported EPA “AQl”
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Affected User Awareness and Behavior

« Awareness: “It never occurred to me how bad the
air is, as cars drive by, while I'm waiting for the bus.”

« Attitudes: “It's made me aware that polluting our air
IS like fish pooping in their tank.”

 Behavior: “I'm more conscious of leaving my car

Idling and keeping the windows closed on the
freeway.”



MetaSense: Improving Accuracy

* Low-cost sensors have proven difficult to calibrate
— Calibration parameters from manufacturer inadequate
— Sensors seem affected by many factors besides pollutant
 |dea: field calibration
— Co-locate mobile monitors at regulatory sites, gather data
— Build machine learning models of sensor and environment
— (Later will attempt inter-monitor calibration)
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New Modular, extensible platform‘%

NO,, CO, O,, (opt. CO,, VOCs)
— +temp, pressure, humidity

BT 2.3/4.0, USB, Serial, WiFI, 3G
— JSON or packed binary message

Hierarchical processing: monitor, phone, AWS
8 days on 6.8 Wh battery (5s sample rate) .




Pilot Deployment in
LA (summer 2016)

Overview:

« Monitors with Alphasense A4
CO, NO,, & O; sensors

« SCAQMD monitoring site &
nearby community

Key Objectives:

* Field-calibrate sensors by
co-locating with regulatory
monitors

- Effects of active vs. passive
ventilation (fans are big,
heavy, and suck power)
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Passive ventilation better for
longer time scales (days)
* Less noisy, captures trends well
* higher R? and lower RMSE
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Field “Calibration” via Machine Learning

* Machine learning is a way of fitting a model to
your data, e.g., finding v’ = f(v,t,p,h)
— Simplest ex. Is linear regression (least squares fit)
* Note: temperature (e.g.) affects both sensor
behavior and atmospheric chemistry, etc.
— Can’t separate affects on sensor and on air

— So can't truly calibrate the sensor, e.g., “correct” its
reported voltage; we’re doing pollutant estimation



Machine Learning Improves Estimation

* Environmental variables substantially reduce
regression error (RMSE) for NO, and O,
— Non-linear models work better than linear ones
— ML improves CO estimation, too; but fine without

 Benchmarked several non-linear ML techniques

— Decision trees, random forests, gradient boosting,
neural nets

— Deep neural nets best > high non-linearity in data
— More work required, e.g., test for overfitting



Current Deployment

* Need more data to untangle key factors .
« Rotating monitors through 3 ref. sites

Sensors in each set:

CO, NO,, O,

(electrochemical)

O; (metal oxide)

VOC (PID)

VOC (metal oxide,
2 types)

CO, (NDIR)

Reference Instruments:
« Donovan — NO,, O4
— NO,, 05, CO
« Shafter DMV — O3, TNMHC,
CO, (CO, — via Licor Analyzer
maintained by CU, Boulder)
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Parting Thoughts on Mobility & Machine Learning

* Mobile sensing + machine learning
enables crowdsourcing exposure maps

* ML can also improve accuracy

» Goes anywhere, addressing challenges
beyond government’'s reach

« Saw novel behaviors In users

* Potential to create new opportunities in
environmental sensing



