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Advances in Sensing and Computing have Put 

Mobile Personal Air Monitoring within Reach

How can such sensing be 

designed to produce the

most benefit at the least cost?
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CitiSense –

A Crowdsourcing Approach
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2012 UCSD Commuter Study

Behavior?

What would they encounter?

Liz 

Bales
Nichole Quick (Public Health)

Affect Awareness?
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Pollution Levels Varied Widely by Locale
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Individual exposures varied widely

compared to reported EPA “AQI”

Good

Unhealthy

Unhealthy 

for  Sensitive

Moderate
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Affected User Awareness and Behavior

• Awareness: “It never occurred to me how bad the 

air is, as cars drive by, while I'm waiting for the bus.”

• Attitudes: “It’s made me aware that polluting our air 

is like fish pooping in their tank.”

• Behavior:  “I'm more conscious of leaving my car 

idling and keeping the windows closed on the 

freeway.”
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MetaSense: Improving Accuracy
• Low-cost sensors have proven difficult to calibrate

– Calibration parameters from manufacturer inadequate

– Sensors seem affected by many factors besides pollutant

• Idea: field calibration
– Co-locate mobile monitors at regulatory sites, gather data

– Build machine learning models of sensor and environment

– (Later will attempt inter-monitor calibration)

Mike Hannigan
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New Modular, extensible platform

• Particle or Arduino processor

– 16-bit ADC, I2C, UART, SPI headers

• NO2, CO, O3, (opt. CO2, VOCs)

– +temp, pressure, humidity

• BT 2.3/4.0, USB, Serial, WiFi, 3G

– JSON or packed binary message

• Hierarchical processing: monitor, phone, AWS

• 8 days on 6.8 Wh battery (5s sample rate) 10



Pilot Deployment in 
LA (summer 2016)

Overview:

• Monitors with Alphasense A4 
CO, NO2, & O3 sensors

• SCAQMD monitoring site & 
nearby community

Key Objectives: 

• Field-calibrate sensors by 
co-locating with regulatory 
monitors

• Effects of active vs. passive 
ventilation (fans are big, 
heavy, and suck power) 11



Active ventilation better for 
smaller time scales (hours)
• better captures trends/peaks
• higher R2 and lower RMSE

Passive ventilation better for 
longer time scales (days)
• Less noisy, captures trends well
• higher R2 and lower RMSE

Importance of 

Active Ventilation?
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Field “Calibration” via Machine Learning

• Machine learning is a way of fitting a model to 

your data, e.g., finding v’ = f(v,t,p,h)

– Simplest ex. is linear regression (least squares fit)

• Note: temperature (e.g.) affects both sensor 

behavior and atmospheric chemistry, etc.

– Can’t separate affects on sensor and on air

– So can’t truly calibrate the sensor, e.g., “correct” its 

reported voltage; we’re doing pollutant estimation
13



Machine Learning Improves Estimation

• Environmental variables substantially reduce 

regression error (RMSE) for NO2 and O3

– Non-linear models work better than linear ones

– ML improves CO estimation, too; but fine without

• Benchmarked several non-linear ML techniques

– Decision trees, random forests, gradient boosting, 

neural nets

– Deep neural nets best  high non-linearity in data

– More work required, e.g., test for overfitting 
14



Current Deployment 

• Need more data to untangle key factors 

• Rotating monitors through 3 ref. sites

Sensors in each set:

• CO, NO2, O3

(electrochemical)

• O3 (metal oxide)

• VOC (PID)

• VOC (metal oxide,

2 types)

• CO2 (NDIR)

Reference Instruments:

• Donovan – NO2, O3

• El Cajon – NO2, O3, CO

• Shafter DMV – O3, TNMHC, 

CO2 (CO2 – via Licor Analyzer 

maintained by CU, Boulder)
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Parting Thoughts on Mobility & Machine Learning

• Mobile sensing + machine learning
enables crowdsourcing exposure maps

• ML can also improve accuracy

• Goes anywhere, addressing challenges 
beyond government’s reach

• Saw novel behaviors in users

• Potential to create new opportunities in 
environmental sensing
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