

# Field Evaluation Report for

# Bettair Static Node MK2 Series

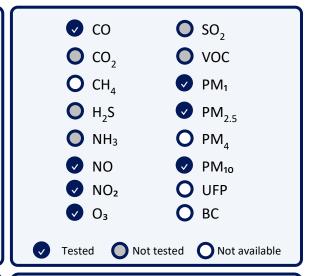
Report ID: F20251101.0

**Published on:** 11/12/2025

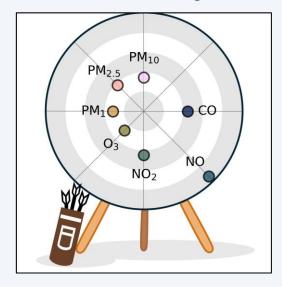
#### **Published by:**

South Coast Air Quality Management District 21865 Copley Drive Diamond Bar, CA 91765

#### Citation:

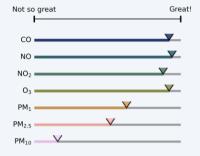

South Coast Air Quality Management District (2025). Air Quality Sensor Performance Evaluation Center (AQ-SPEC). Field Evaluation Report for Bettair Static Node MK2 Series [Revision 0]. Available at <a href="http://www.aqmd.gov/aq-spec">http://www.aqmd.gov/aq-spec</a>

# Performance Snapshot


### **Bettair Static Node MK2 Series**



07/10/2025 to 09/03/2025 (PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub>)




#### Does it hit the target?



The closer the sensor lands near the center, the more accurate its readings were compared to the pollution levels.

#### How well does it track?



A longer bar means the sensor did a better job of tracking the real changes in air pollution levels going up when the concentration levels went up, and down when they dropped.

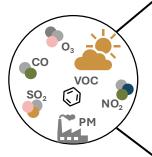


Web portal



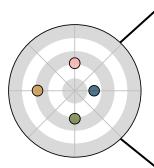






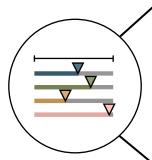






Internal memory

# Performance Snapshot Guide




**Pollutant List:** This list shows the pollutants that the sensor is capable of measuring. Pollutants highlighted in blue with a check mark were tested for performance, those in gray were not tested, and those in white are not measured by the sensor.

 $lackbox{ } \begin{picture}(20,0) \put(0,0){$\bullet$ } \begin{picture}$ 



**Target Graphic:** The closer the sensor "hits" the center, the closer the sensor's readings were to the actual concentrations. If the sensor hit inside the center circle, its readings were within 20% of the actual concentration. Each ring going outward is another 20% further from the actual concentration. If the sensor falls off the target entirely, its readings were either zero, or more than twice the actual concentration!

More technically, the distance from the center is calculated from sensor-reference relative absolute errors, averaged across all 1-hour means, averaged across the number of sensor units tested. These distances are precise and not binned in 20% intervals.



Bar Graphic: The longer the bar, the better the sensor followed the ups-and-downs of the actual concentrations. A long bar doesn't always mean that the sensor exactly "matched" the actual concentration, but it does mean the sensor was responding when the air was clean or dirty. A long bar also means it's possible to adjust the sensor's readings to match the actual concentrations if you can gather data side-by-side with a reference monitor to make a formula to correct the readings!

More technically, the bar length ranges between 0 to 1 and is calculated from sensor-reference coefficients of determination ( $R^2$ ; square of the Pearson correlation coefficient), with 1-hour means, averaged across the number of sensor units tested.



**Feature Symbols:** Some sensors can be configured with extra features. The price we list in the reports was the price for the product version we tested. Your price may vary from ours. If a symbol has the word option in it, it means the manufacturer offers that option at no extra cost. If a symbol has a small \$ sign in it, that means it is a paid option.

The number of \$ signs used for sensor "cost" is based on the 2022 average cell phone price of \$735 (<a href="https://www.wsj.com/business/telecom/how-much-is-too-much-for-a-smartphone-3a300905">https://www.wsj.com/business/telecom/how-much-is-too-much-for-a-smartphone-3a300905</a>), adjusted for inflation for the year we tested the sensor. One \$ sign means the sensor cost less than an average cell phone; two \$\$ signs means it cost less than twice an average cell phone; three \$\$\$ signs means it cost more than twice an average cell phone. For other options, only one \$ sign is used for simplicity as it is too complicated to describe the variety of add-on costs through symbols.

### **Revision History**

| Version | Date       | Note                   |
|---------|------------|------------------------|
| 0       | 11/12/2025 | Original issued report |
|         |            |                        |
|         |            |                        |

**Disclaimer:** All documents, reports, data, and other information provided are for informational and/or educational use only.

Some sensors evaluated by AQ-SPEC were field-tested inside a custom-made aluminum enclosure to protect the sensors from windblown rain, harsh sunlight, and animals. The field evaluation reports contain data collected at an air monitoring station during a specific 30- to 60-day period and cannot be duplicated at a different location, season, or time period. As sensor performance may be affected by time- and location-specific environmental conditions at the test site, replication and/or duplication of results may not be possible to achieve. The sensor assembly, installation, and use can also impact the performance of products evaluated by AQ-SPEC. No sensor calibration was performed by South Coast AQMD staff for this evaluation. Laboratory chamber testing may be necessary to fully evaluate the performance of these sensors under controlled temperature, humidity, pollutant, and interferent concentrations.

South Coast AQMD makes no claim, warranty, or guarantee that these devices will or will not work when operated by other users for their specific applications.

South Coast AQMD's AQ-SPEC aims at providing information to and for the benefit of the public to make informed purchasing decisions on air quality sensors. In accordance with this mission, the general policy of the Governing Board of the Agency is to exclude all commercial advertising and promotional material, including links which provide exclusive private or financial benefit to commercial, non-public enterprises and which do not promote or enhance a public benefit to the general public. As a Government Agency, the South Coast AQMD neither endorses nor supports individual private commercial enterprises through testing of products by AQ-SPEC or through providing links to the sites of such commercial enterprises.

| Report Role               | Name                                                             | Date       |
|---------------------------|------------------------------------------------------------------|------------|
| Tested by                 | Jenna Drewitz, Victor Rocha Jr., Leslie Garcia, and<br>Randy Lam | 09/03/2025 |
| Analysis by               | Namrata Shanmukh Panji, Ph.D.                                    | 10/24/2025 |
| Quality Control Review by | Michelle Kuang, Ph.D.                                            | 10/30/2025 |
| Approved by               | Wilton Mui, Ph.D.                                                | 11/07/2025 |
| Revision by               |                                                                  |            |

# **Table of Contents**

| Section | Торіс                                | Page Number |
|---------|--------------------------------------|-------------|
| 1       | Background                           | 7           |
| 2       | Manufacturer Specs                   | 7           |
| 3       | <u>co</u>                            | 11          |
|         | 3.1 <u>Data Overview</u>             | 11          |
|         | 3.2 <u>Data Recovery</u>             | 12          |
|         | 3.3 <u>Intra-model variability</u>   | 12          |
|         | 3.4 <u>Linearity (R<sup>2</sup>)</u> | 13          |
| 4       | <u>NO</u>                            | 15          |
|         | 4.1 <u>Data Overview</u>             | 15          |
|         | 4.2 <u>Data Recovery</u>             | 16          |
|         | 4.3 <u>Intra-model variability</u>   | 16          |
|         | 4.4 <u>Linearity (R<sup>2</sup>)</u> | 17          |
| 5       | NO <sub>2</sub>                      | 19          |
|         | 5.1 <u>Data Overview</u>             | 19          |
|         | 5.2 <u>Data Recovery</u>             | 20          |
|         | 5.3 <u>Intra-model variability</u>   | 20          |
|         | 5.4 <u>Linearity (R<sup>2</sup>)</u> | 21          |
| 6       | <u>O</u> <sub>3</sub>                | 23          |
|         | 6.1 <u>Data Overview</u>             | 23          |
|         | 6.2 <u>Data Recovery</u>             | 24          |
|         | 6.3 <u>Intra-model variability</u>   | 24          |
|         | 6.4 <u>Linearity (R<sup>2</sup>)</u> | 25          |
| 7       | <u>PM</u> <sub>1</sub>               | 27          |
|         | 7.1 <u>Data Overview</u>             | 27          |
|         | 7.2 <u>Data Recovery</u>             | 28          |
|         | 7.3 <u>Intra-model variability</u>   | 28          |
|         | 7.4 <u>Linearity (R<sup>2</sup>)</u> | 29          |

# **Table of Contents**

| Section | Торіс                                | Page Number |
|---------|--------------------------------------|-------------|
| 8       | <u>PM<sub>2.5</sub></u>              | 31          |
|         | 8.1 <u>Data Overview</u>             | 31          |
|         | 8.2 <u>Data Recovery</u>             | 32          |
|         | 8.3 <u>Intra-model variability</u>   | 32          |
|         | 8.4 <u>Linearity (R<sup>2</sup>)</u> | 33          |
| 9       | PM <sub>10</sub>                     | 35          |
|         | 8.1 <u>Data Overview</u>             | 35          |
|         | 8.2 <u>Data Recovery</u>             | 36          |
|         | 8.3 <u>Intra-model variability</u>   | 36          |
|         | 8.4 <u>Linearity (R²)</u>            | 37          |
| 10      | Summary Metrics                      | 39          |

# Section 1: Background

Three Bettair Static Node MK2 Series (hereinafter Bettair Node) units (IDs: 79, 80, 82) were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux, CA from 02/28/2025 to 04/24/2025 for gases (CO, NO, NO<sub>2</sub>, and O<sub>3</sub>) and 07/10/2025 to 09/03/2025 for particulates (PM<sub>1</sub>, PM<sub>2.5</sub>, and PM<sub>10</sub>). The evaluation period lasted 8 weeks. The sensor units were co-located with reference grade instruments as described below.

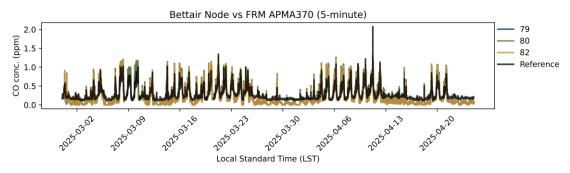


Bettair Static Node MK2 Series

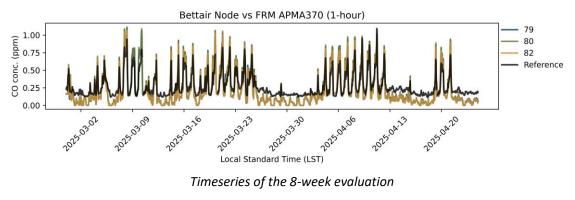


Test site at Rubidoux, CA

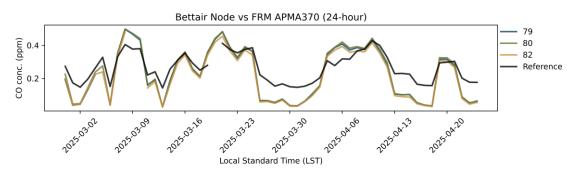
| Parameter                   | Sensor: Bettair Static Node MK2 Series (raw sensor is Alphasense) | Reference Instrument:<br>Horiba APMA 370                                                                       |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Pollutant                   | со                                                                | CO (FRM)                                                                                                       |
| Cost                        | \$6,330 (as-tested)                                               | ~\$10,000                                                                                                      |
| Weight                      | 3.3 pounds                                                        | 35 pounds                                                                                                      |
| Dimensions (LxWxH)          | 8.27 x 7.01 x 4.49 inches                                         | 9 x 17 x 21 inches                                                                                             |
| Power                       | 9-36 VDC; Power over Ethernet option                              | 100-240 VAC                                                                                                    |
| Battery                     | Yes (3-5 days)                                                    | No                                                                                                             |
| Data transmission           | Ethernet, Cellular, LoRaWAN,<br>Narrowband-IoT                    | Serial                                                                                                         |
| Internal memory             | Yes (< 1 week)                                                    | No                                                                                                             |
| Operating temperature range | 14-104 degrees F                                                  | 32-104 degrees F                                                                                               |
| Operating RH range          | 15-85%                                                            | Not specified                                                                                                  |
| Product website             | https://bettaircities.com/bettair-<br>node/                       | https://www.horiba.com/int/process-and-<br>environmental/products/detail/action/show/<br>Product/apma-370-453/ |
| Operating principle         | Electrochemical                                                   | Non-dispersive infrared (NDIR) absorption                                                                      |
| Time resolution             | 300-seconds (as-tested)                                           | 1 minute (as-configured)                                                                                       |
| Concentration range         | 0-500 ppm                                                         | 0-100 ppm                                                                                                      |


| Parameter                   | Sensor: Bettair Static Node MK2 Series (raw sensor is Alphasense) | Reference Instrument:<br>Teledyne T200               |
|-----------------------------|-------------------------------------------------------------------|------------------------------------------------------|
| Pollutant                   | NO, NO <sub>2</sub>                                               | NO, NO₂ (FRM), NOx                                   |
| Cost                        | \$6,330 (as-tested)                                               | ~\$11,000                                            |
| Weight                      | 3.3 pounds                                                        | 40 lbs                                               |
| Dimensions (LxWxH)          | 8.27 x 7.01 x 4.49 inches                                         | 7 x 17 x 23.5 inches                                 |
| Power                       | 9-36 VDC; Power over Ethernet option                              | 100-240 VAC                                          |
| Battery                     | Yes (3-5 days)                                                    | No                                                   |
| Data transmission           | Ethernet, Cellular, LoRaWAN,<br>Narrowband-IoT                    | Serial, Ethernet, USB                                |
| Internal memory             | Yes (< 1 week)                                                    | Yes                                                  |
| Operating temperature range | 14-104 degrees F                                                  | 41-104 degrees F                                     |
| Operating RH range          | 15-85%                                                            | Not specified                                        |
| Product website             | https://bettaircities.com/bettair-<br>node/                       | https://www.teledyne-api.com/en-<br>us/products/t200 |
| Operating principle         | Electrochemical                                                   | Chemiluminescence                                    |
| Time resolution             | 300-seconds (as-tested)                                           | 1 minute (as-configured)                             |
| Concentration range         | 0-20,000 ppb                                                      | 0-20,000 ppb                                         |

| Parameter                   | Sensor: Bettair Static Node MK2 Series (raw sensor is Alphasense) | Reference Instrument:<br>Teledyne T400               |
|-----------------------------|-------------------------------------------------------------------|------------------------------------------------------|
| Pollutant                   | O <sub>3</sub>                                                    | O <sub>3</sub> (FEM)                                 |
| Cost                        | \$6,330 (as-tested)                                               | ~\$7,000                                             |
| Weight                      | 3.3 pounds                                                        | 31 lbs                                               |
| Dimensions (LxWxH)          | 8.27 x 7.01 x 4.49 inches                                         | 7 x 17 x 23.5 inches                                 |
| Power                       | 9-36 VDC; Power over Ethernet option                              | 100-240 VAC                                          |
| Battery                     | Yes (3-5 days)                                                    | No                                                   |
| Data transmission           | Ethernet, Cellular, LoRaWAN,<br>Narrowband-IoT                    | Serial, Ethernet, USB                                |
| Internal memory             | Yes (< 1 week)                                                    | Yes                                                  |
| Operating temperature range | 14-104 degrees F                                                  | 41-104 degrees F                                     |
| Operating RH range          | 15-85%                                                            | Not specified                                        |
| Product website             | https://bettaircities.com/bettair-<br>node/                       | https://www.teledyne-api.com/en-<br>us/products/t400 |
| Operating principle         | Electrochemical                                                   | UV absorption                                        |
| Time resolution             | 300-seconds (as-tested)                                           | 1 minute (as-configured)                             |
| Concentration range         | 0-20,000ppb                                                       | 0-10,000 ppb                                         |


| Parameter                   | Sensor: Bettair Static Node MK2 Series (raw sensor is Sensirion) | Reference Instrument:<br>Teledyne API T640                  |
|-----------------------------|------------------------------------------------------------------|-------------------------------------------------------------|
| Pollutant                   | PM <sub>1</sub> , PM <sub>2.5</sub> , PM <sub>10</sub>           | PM <sub>1</sub> , PM <sub>2.5</sub> (FEM), PM <sub>10</sub> |
| Cost                        | \$6,330 (as-tested)                                              | ~\$21,000                                                   |
| Weight                      | 3.3 pounds                                                       | 19 pounds                                                   |
| Dimensions (LxWxH)          | 8.27 x 7.01 x 4.49 inches                                        | 7 x 17 x 14 inches                                          |
| Power                       | 9-36 VDC; Power over Ethernet option                             | 100-240 VAC                                                 |
| Battery                     | Yes (3-5 days)                                                   | No                                                          |
| Data transmission           | Ethernet, Cellular, LoRaWAN,<br>Narrowband-IoT                   | Serial, Ethernet, USB                                       |
| Internal memory             | Yes (< 1 week)                                                   | Yes (with USB flash drive)                                  |
| Operating temperature range | 14-104 degrees F                                                 | 32-122 degrees F                                            |
| Operating RH range          | 15-85%                                                           | 0%-100%                                                     |
| Product website             | https://bettaircities.com/bettair-<br>node/                      | https://www.teledyne-api.com/en-<br>us/products/t640        |
| Operating principle         | Optical light scattering                                         | Optical light scattering                                    |
| Time resolution             | 300-seconds (as-tested)                                          | 1 minute (as-configured)                                    |
| Concentration range         | 0-1000 μg/m³                                                     | 0.1-10,000 μg/m³                                            |

### Section 3.1: Data Overview


#### Timeseries of the 8-week evaluation



#### Timeseries of the 8-week evaluation

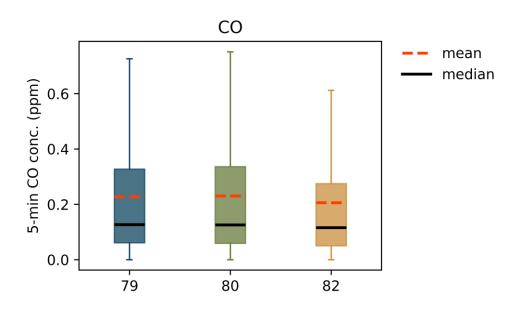


#### Timeseries of the 8-week evaluation



### Section 3: CO

### Section 3.2: Data Recovery


Basic QA/QC procedures such as removal of duplicate records was performed. Nulls, negatives, out of instrument bounds as specified by the manufacturer, and values flagged as invalid by the sensor were considered invalid. Data recovery was calculated as the percent of valid readings through the entire evaluation.

| Parameter | 79    | 80    | 82    |
|-----------|-------|-------|-------|
| СО        | 99.1% | 99.2% | 96.1% |

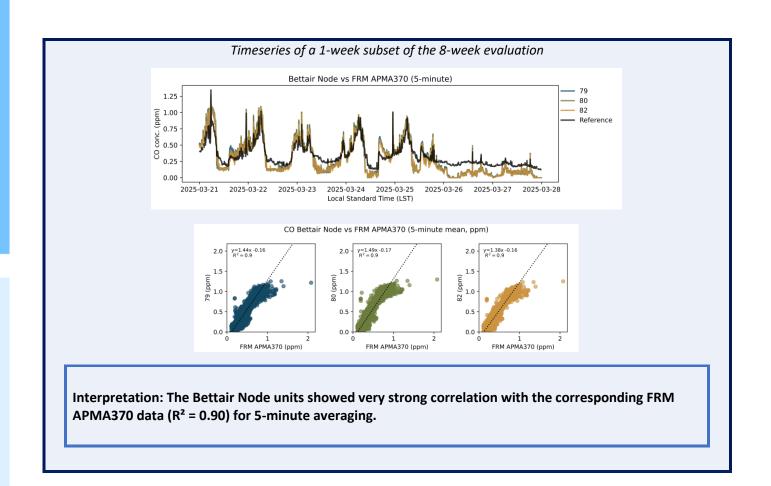
### Section 3.3: Intra-model Variability

Absolute intra-model variability was calculated as the standard deviation of the mean values of the sensors. Relative intra-model variability was calculated as the absolute intra-model variability divided by the sensor grand mean. Calculations were performed using data resampled to 5-minute averages.

| Parameter | Absolute intra-model variability (ppm) | Relative intra-model variability (%) |
|-----------|----------------------------------------|--------------------------------------|
| СО        | 0.0                                    | 3.5                                  |

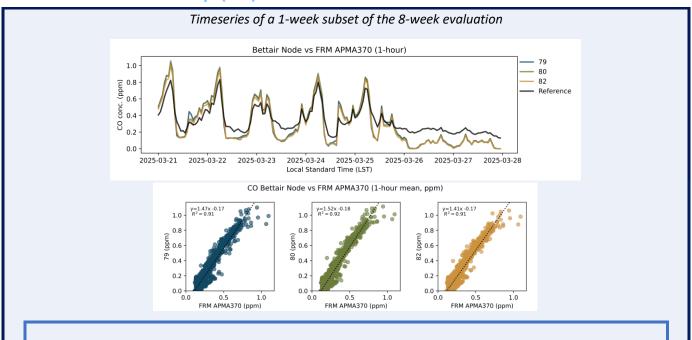


Interpretation: Two out of the three Bettair Node units had similar pollutant distributions.

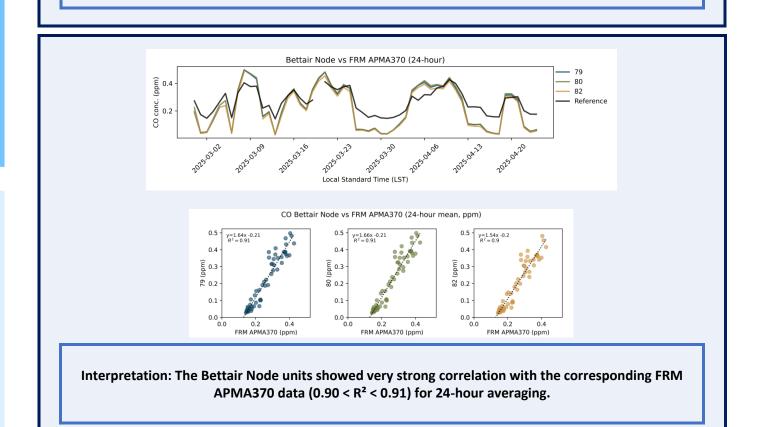

### Section 3: CO

### Section 3.4: Linearity (R<sup>2</sup>)

Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, readings flagged by the sensor, and invalid data-points were eliminated from the data-set).

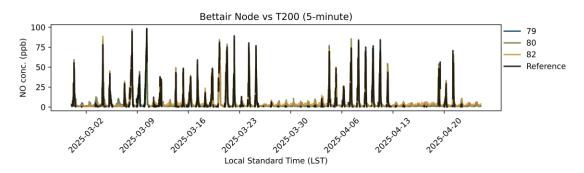

A summary of the mean R<sup>2</sup> between the sensor and FRM APMA370 across all units tested.

| Parameter | Time Resolution | FRM APMA370<br>(mean ± SD) |
|-----------|-----------------|----------------------------|
| СО        | 5-minute        | 0.90 ± 0.00                |
|           | 1-hour          | 0.92 ± 0.00                |
|           | 24-hour         | 0.91 ± 0.01                |

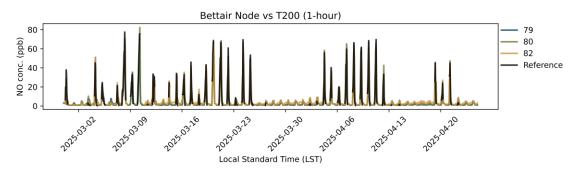



### Section 3: CO

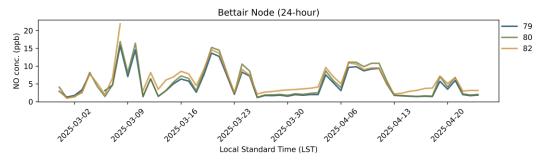
### Section 3.4: Linearity (R<sup>2</sup>)




Interpretation: The Bettair Node units showed very strong correlation with the corresponding FRM APMA370 data  $(0.91 < R^2 < 0.92)$  for 1-hour averaging.




#### Section 4.1: Data Overview


#### Timeseries of the 8-week evaluation



#### Timeseries of the 8-week evaluation

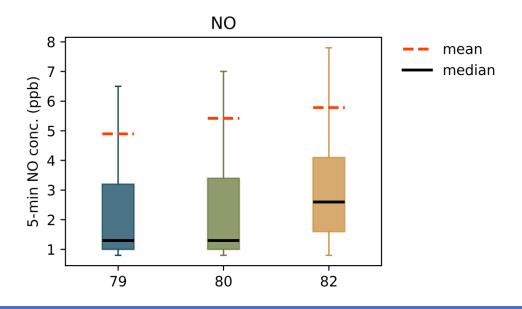


#### Timeseries of the 8-week evaluation



Note: The sensors were not evaluated at 24-hour averaging due to the NO reference instrument (T200) not observing at least 75% of records above that reference instrument's lower limit of detection for NO.

### Section 4.2: Data Recovery


Basic QA/QC procedures such as removal of duplicate records was performed. Nulls, negatives, out of instrument bounds as specified by the manufacturer, and values flagged as invalid by the sensor were considered invalid. Data recovery was calculated as the percent of valid readings through the entire evaluation.

| Parameter | 79    | 80    | 82    |
|-----------|-------|-------|-------|
| NO        | 99.1% | 99.2% | 96.1% |

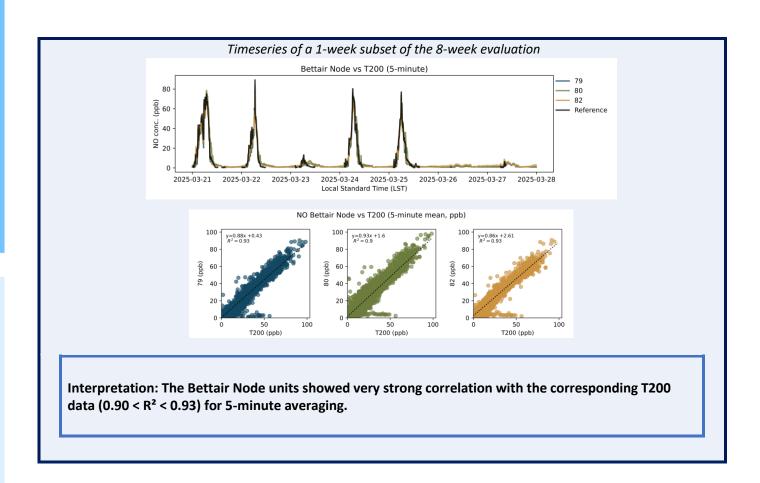
### Section 4.3: Intra-model Variability

Absolute intra-model variability was calculated as the standard deviation of the mean values of the sensors. Relative intra-model variability was calculated as the absolute intra-model variability divided by the sensor grand mean. Calculations were performed using data resampled to 5-minute averages.

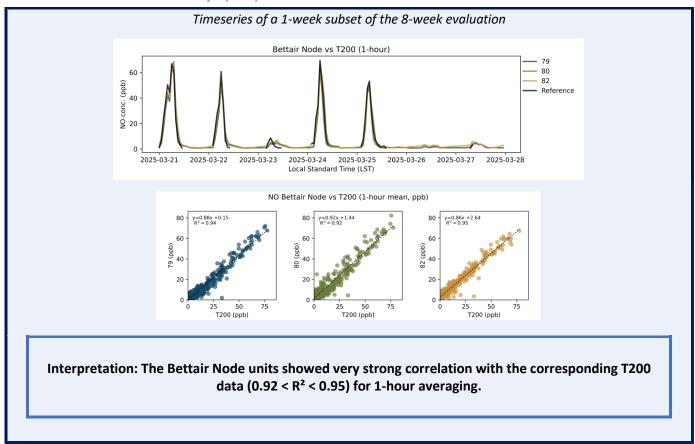
| Parameter | Absolute intra-model variability (ppb) | Relative intra-model variability (%) |
|-----------|----------------------------------------|--------------------------------------|
| NO        | 0.6                                    | 10.9                                 |



Interpretation: The Bettair Node units had dissimilar pollutant distributions. Note that the means are greater than the 75<sup>th</sup> percentiles due to the observed NO concentrations being very positively skewed.


### Section 4.4: Linearity (R<sup>2</sup>)

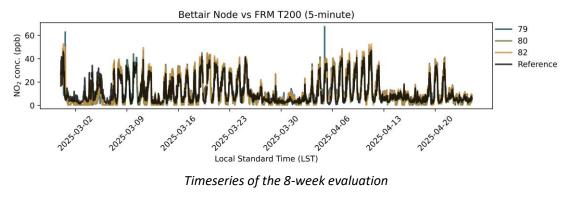
Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, readings flagged by the sensor, and invalid data-points were eliminated from the data-set).


A summary of the mean R<sup>2</sup> between the sensor and T200 across all units tested.

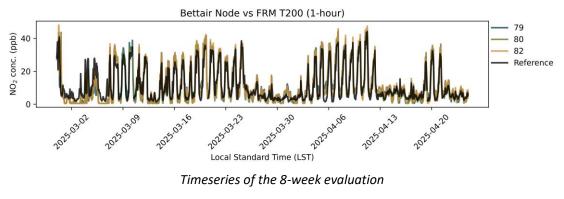
| Parameter | Time Resolution | T200<br>(mean ± SD) |
|-----------|-----------------|---------------------|
| NO        | 5-minute        | 0.92 ± 0.01         |
|           | 1-hour          | 0.94 ± 0.01         |
|           | 24-hour         | N/A*                |

<sup>\*</sup>Note: The sensors were not evaluated at 24-hour averaging due to the NO reference instrument (T200) not observing at least 75% of records above that reference instrument's lower limit of detection for NO.

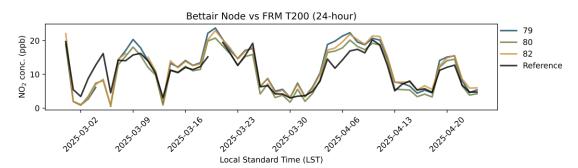



### Section 4.4: Linearity (R<sup>2</sup>)




Note: The sensors were not evaluated at 24-hour averaging due to the NO reference instrument (T200) not observing at least 75% of records above that reference instrument's lower limit of detection for NO.

### Section 5.1: Data Overview


#### Timeseries of the 8-week evaluation



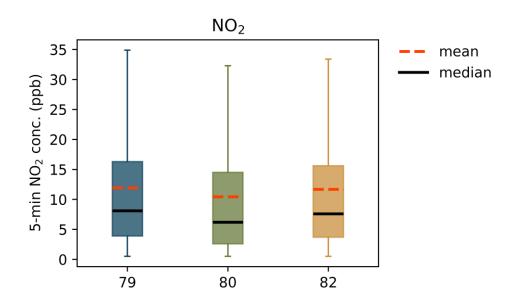
#### Timeseries of the 8-week evaluation



#### Timeseries of the 8-week evaluation



#### Section 5.2: Data Recovery


Basic QA/QC procedures such as removal of duplicate records was performed. Nulls, negatives, out of instrument bounds as specified by the manufacturer, and values flagged as invalid by the sensor were considered invalid. Data recovery was calculated as the percent of valid readings through the entire evaluation.

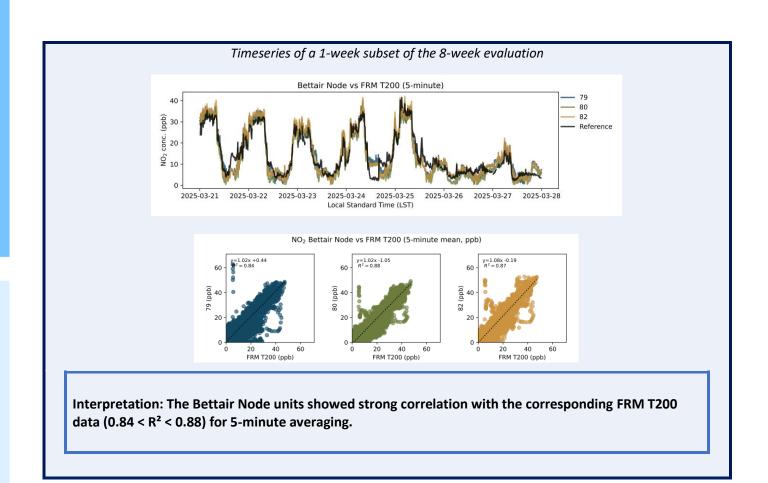
| Parameter       | 79    | 80    | 82    |
|-----------------|-------|-------|-------|
| NO <sub>2</sub> | 99.1% | 99.2% | 96.1% |

#### Section 5.3: Intra-model Variability

Absolute intra-model variability was calculated as the standard deviation of the mean values of the sensors. Relative intra-model variability was calculated as the absolute intra-model variability divided by the sensor grand mean. Calculations were performed using data resampled to 5-minute averages.

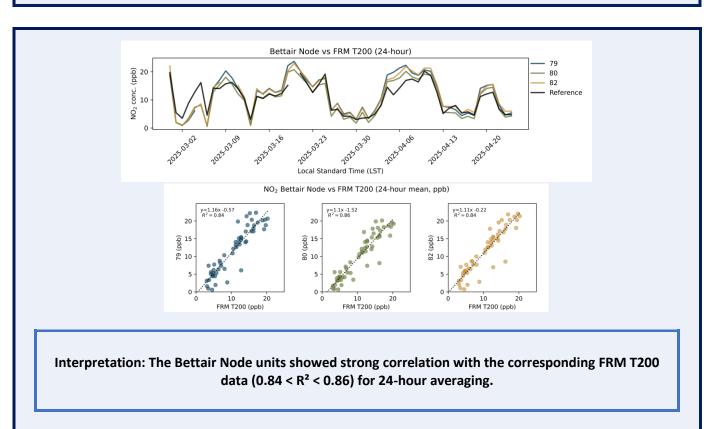
| Parameter       | Absolute intra-model variability (ppb) | Relative intra-model variability (%) |
|-----------------|----------------------------------------|--------------------------------------|
| NO <sub>2</sub> | 0.9                                    | 7.7                                  |




Interpretation: Two out of the three Bettair Node units had similar pollutant distributions.

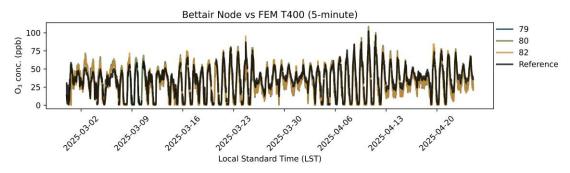
### Section 5.4: Linearity (R<sup>2</sup>)

Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, readings flagged by the sensor, and invalid data-points were eliminated from the data-set).

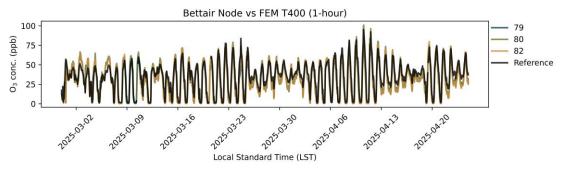

A summary of the mean R<sup>2</sup> between the sensor and FRM T200 across all units tested.

| Parameter | Time Resolution | FRM T200<br>(mean ± SD) |
|-----------|-----------------|-------------------------|
| $NO_2$    | 5-minute        | 0.86 ± 0.02             |
|           | 1-hour          | 0.88 ± 0.02             |
|           | 24-hour         | 0.85 ± 0.01             |

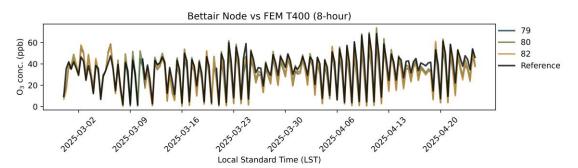



### Section 5.4: Linearity (R<sup>2</sup>)






### Section 6.1: Data Overview


#### Timeseries of the 8-week evaluation



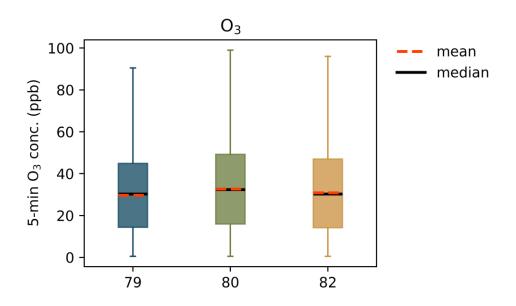
#### Timeseries of the 8-week evaluation



#### Timeseries of the 8-week evaluation



#### Section 6.2: Data Recovery


Basic QA/QC procedures such as removal of duplicate records was performed. Nulls, negatives, out of instrument bounds as specified by the manufacturer, and values flagged as invalid by the sensor were considered invalid. Data recovery was calculated as the percent of valid readings through the entire evaluation.

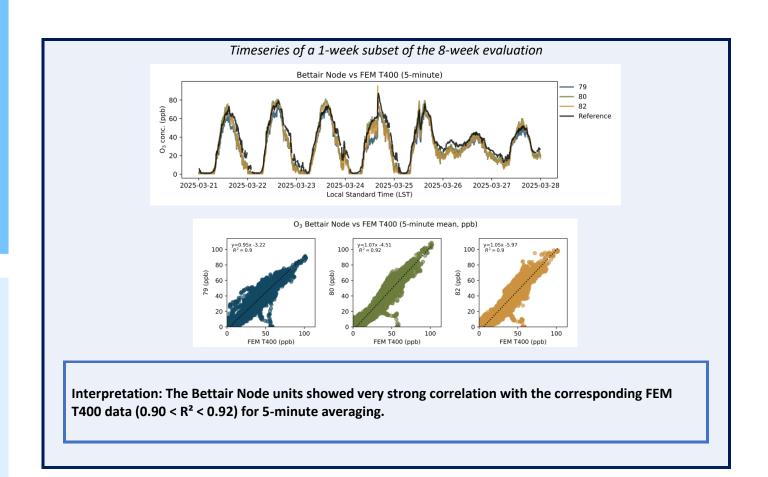
| Parameter      | 79    | 80    | 82    |
|----------------|-------|-------|-------|
| O <sub>3</sub> | 99.1% | 99.2% | 96.1% |

#### Section 6.3: Intra-model Variability

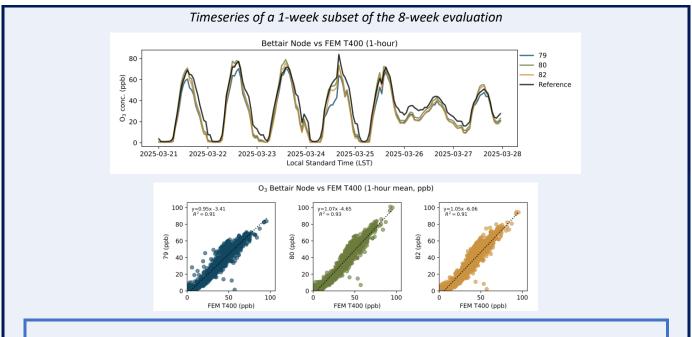
Absolute intra-model variability was calculated as the standard deviation of the mean values of the sensors. Relative intra-model variability was calculated as the absolute intra-model variability divided by the sensor grand mean. Calculations were performed using data resampled to 5-minute averages.

| Parameter | Absolute intra-model variability (ppb) | Relative intra-model variability (%) |
|-----------|----------------------------------------|--------------------------------------|
| 03        | 1.5                                    | 4.9                                  |

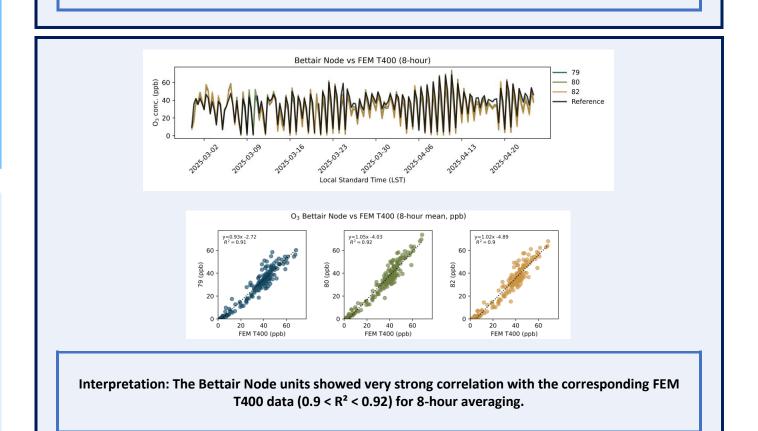



Interpretation: Two out of the three Bettair Node units had similar pollutant distributions.

### Section 6.4: Linearity (R<sup>2</sup>)

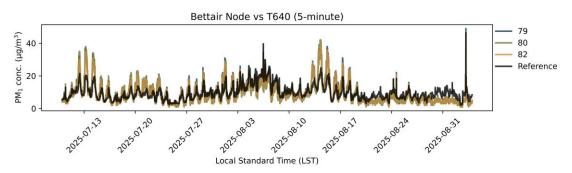

Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, readings flagged by the sensor, and invalid data-points were eliminated from the data-set).

A summary of the mean  $R^2$  between the sensor and FEM T400 across all units tested.

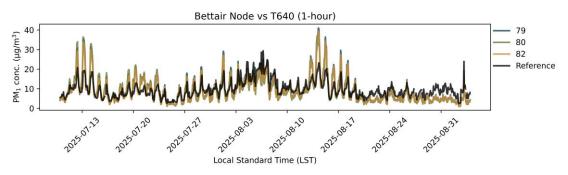

| Parameter | Time Resolution | FRM T200<br>(mean ± SD) |
|-----------|-----------------|-------------------------|
| Оз        | 5-minute        | 0.91 ± 0.01             |
|           | 1-hour          | 0.92 ± 0.01             |
|           | 8-hour          | 0.91 ± 0.01             |



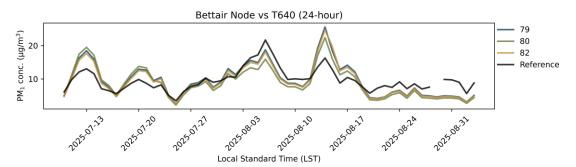
### Section 6.4: Linearity (R<sup>2</sup>)




Interpretation: The Bettair Node units showed very strong correlation with the corresponding FEM T400 data ( $0.91 < R^2 < 0.93$ ) for 1-hour averaging.




### Section 7.1: Data Overview


#### Timeseries of the 8-week evaluation



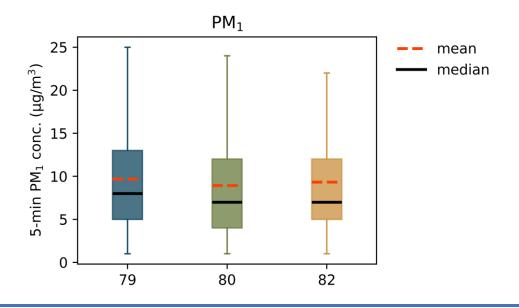
#### Timeseries of the 8-week evaluation



#### Timeseries of the 8-week evaluation



### Section 7.2: Data Recovery


Basic QA/QC procedures such as removal of duplicate records was performed. Nulls, negatives, out of instrument bounds as specified by the manufacturer, and values flagged as invalid by the sensor were considered invalid. Data recovery was calculated as the percent of valid readings through the entire evaluation.

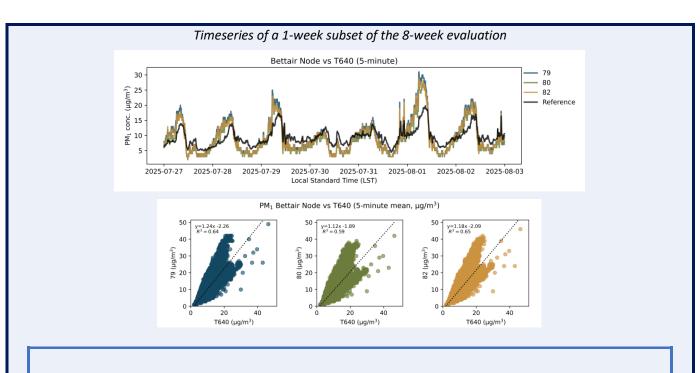
| Parameter       | 79    | 80    | 82    |
|-----------------|-------|-------|-------|
| PM <sub>1</sub> | 99.8% | 99.8% | 99.6% |

#### Section 7.3: Intra-model Variability

Absolute intra-model variability was calculated as the standard deviation of the mean values of the sensors. Relative intra-model variability was calculated as the absolute intra-model variability divided by the sensor grand mean. Calculations were performed using data resampled to 5-minute averages.

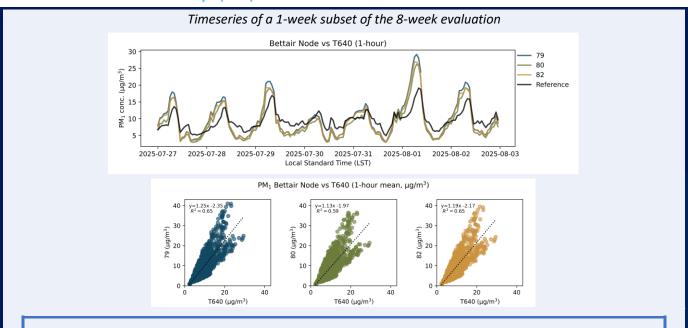
| Parameter       | Absolute intra-model variability (μg/m³) | Relative intra-model variability (%) |
|-----------------|------------------------------------------|--------------------------------------|
| PM <sub>1</sub> | 0.4                                      | 4.1                                  |



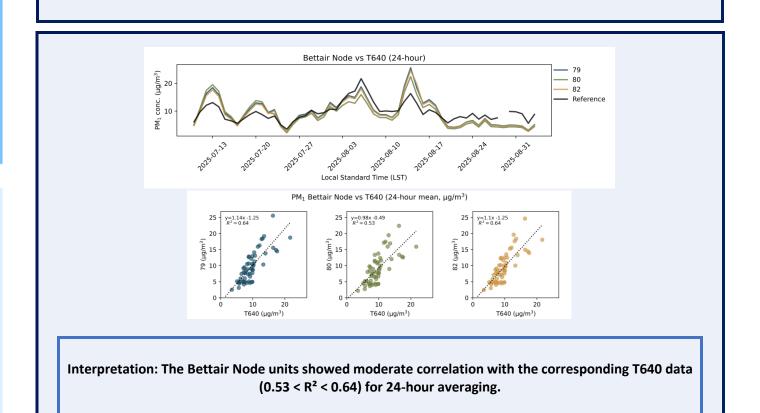

Interpretation: The Bettair Node units had dissimilar pollutant distributions.

### Section 7.4: Linearity (R<sup>2</sup>)

Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, readings flagged by the sensor, and invalid data-points were eliminated from the data-set).

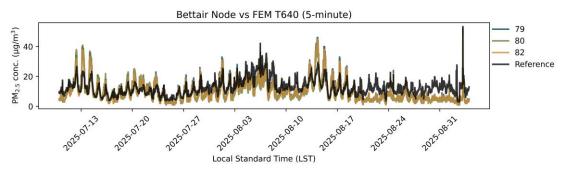

A summary of the mean  $R^2$  between the sensor and T640 across all units tested.

| Parameter | Time Resolution | T640<br>(mean ± SD) |
|-----------|-----------------|---------------------|
| $PM_1$    | 5-minute        | 0.63 ± 0.03         |
|           | 1-hour          | 0.63 ± 0.03         |
|           | 24-hour         | 0.60 ± 0.05         |

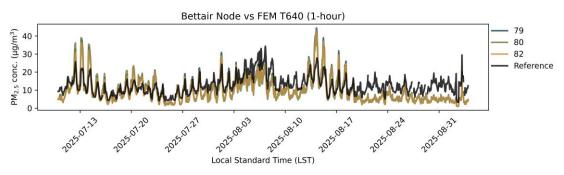



Interpretation: The Bettair Node units showed moderate correlation with the corresponding T640 data  $(0.59 < R^2 < 0.65)$  for 5-minute averaging.

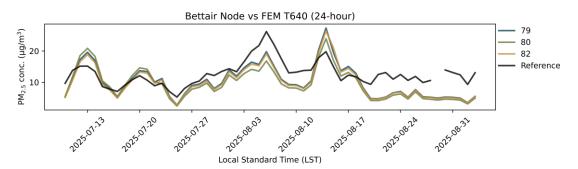
### Section 7.4: Linearity (R<sup>2</sup>)




Interpretation: The Bettair Node units showed moderate correlation with the corresponding T640 data  $(0.59 < R^2 < 0.65)$  for 1-hour averaging.




### Section 8.1: Data Overview


#### Timeseries of the 8-week evaluation



#### Timeseries of the 8-week evaluation

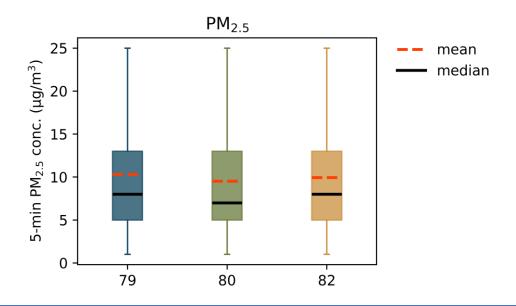


#### Timeseries of the 8-week evaluation



### Section 8: PM<sub>2.5</sub>

### Section 8.2: Data Recovery


Basic QA/QC procedures such as removal of duplicate records was performed. Nulls, negatives, out of instrument bounds as specified by the manufacturer, and values flagged as invalid by the sensor were considered invalid. Data recovery was calculated as the percent of valid readings through the entire evaluation.

| Parameter         | 79    | 80    | 82    |
|-------------------|-------|-------|-------|
| PM <sub>2.5</sub> | 99.8% | 99.8% | 99.6% |

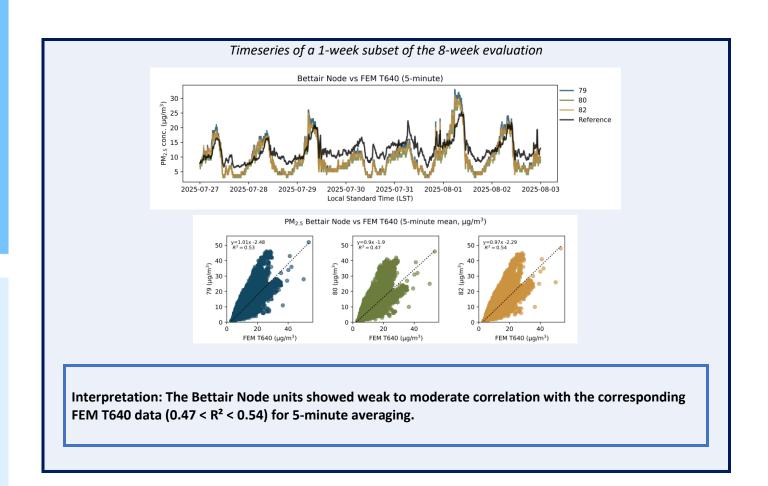
### Section 8.3: Intra-model Variability

Absolute intra-model variability was calculated as the standard deviation of the mean values of the sensors. Relative intra-model variability was calculated as the absolute intra-model variability divided by the sensor grand mean. Calculations were performed using data resampled to 5-minute averages.

| Parameter         | Absolute intra-model variability (μg/m³) | Relative intra-model variability (%) |
|-------------------|------------------------------------------|--------------------------------------|
| PM <sub>2.5</sub> | 0.4                                      | 3.9                                  |

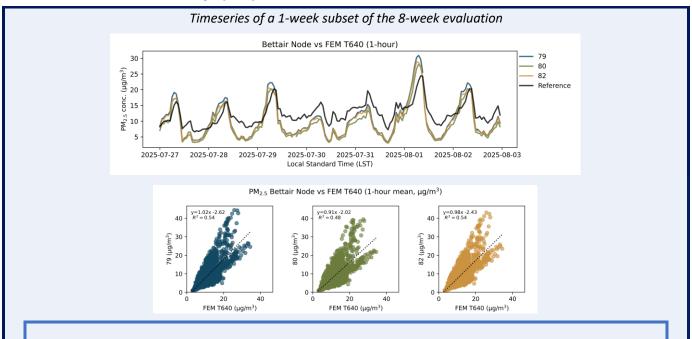


Interpretation: The Bettair Node units had similar pollutant distributions.

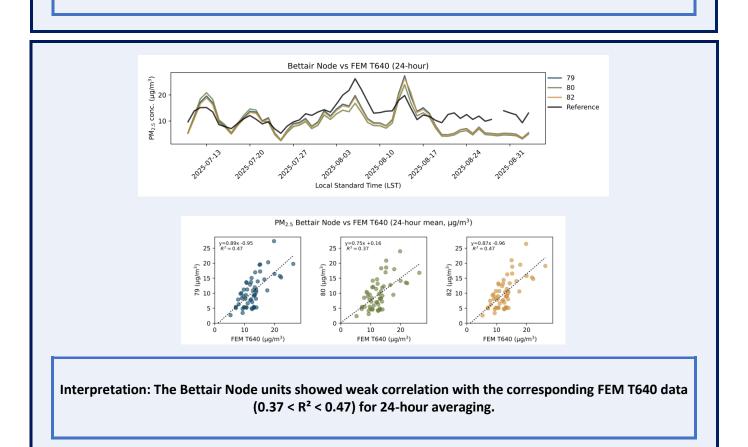

### Section 8: PM<sub>2.5</sub>

### Section 8.4: Linearity (R<sup>2</sup>)

Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, readings flagged by the sensor, and invalid data-points were eliminated from the data-set).

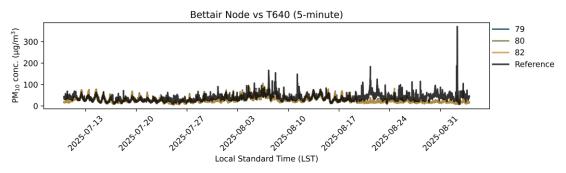

A summary of the mean  $R^2$  between the sensor and FEM T640 across all units tested.

| Parameter         | Time Resolution | FEM T640<br>(mean ± SD) |
|-------------------|-----------------|-------------------------|
|                   | 5-minute        | 0.51 ± 0.03             |
| PM <sub>2.5</sub> | 1-hour          | 0.52 ± 0.03             |
|                   | 24-hour         | 0.43 ± 0.05             |

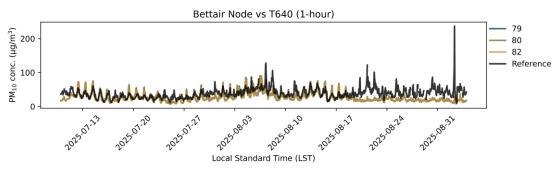



# Section 8: PM<sub>2.5</sub>

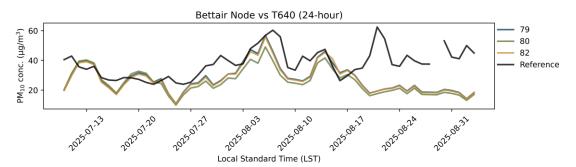
### Section 8.4: Linearity (R<sup>2</sup>)




Interpretation: The Bettair Node units showed weak to moderate correlation with the corresponding FEM T640 data (0.48 < R<sup>2</sup> < 0.54) for 1-hour averaging.




### Section 9.1: Data Overview


#### Timeseries of the 8-week evaluation



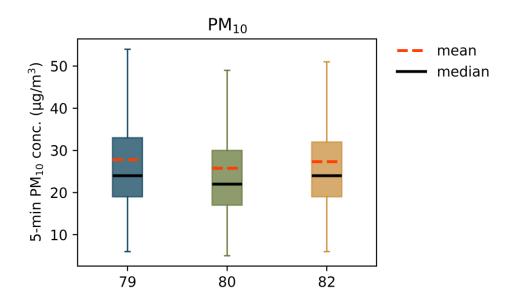
#### Timeseries of the 8-week evaluation



#### Timeseries of the 8-week evaluation



#### Section 9.2: Data Recovery


Basic QA/QC procedures such as removal of duplicate records was performed. Nulls, negatives, out of instrument bounds as specified by the manufacturer, and values flagged as invalid by the sensor were considered invalid. Data recovery was calculated as the percent of valid readings through the entire evaluation.

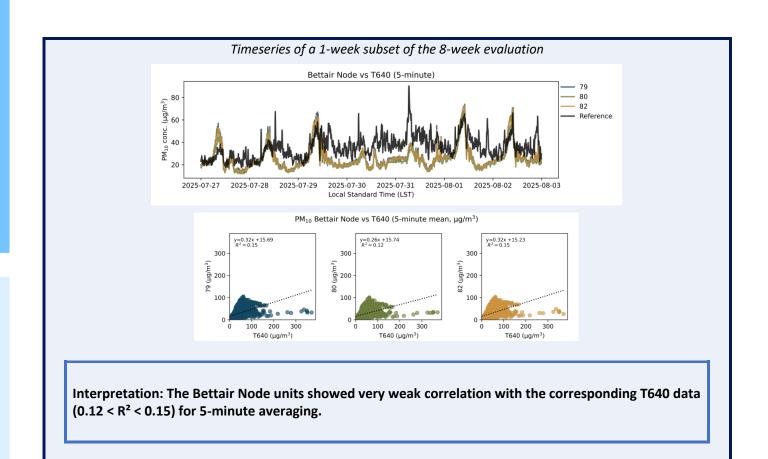
| Parameter        | 79    | 80    | 82    |
|------------------|-------|-------|-------|
| PM <sub>10</sub> | 99.6% | 99.7% | 99.6% |

### Section 9.3: Intra-model Variability

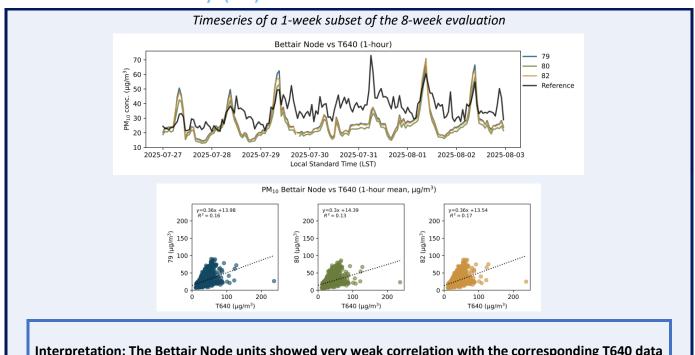
Absolute intra-model variability was calculated as the standard deviation of the mean values of the sensors. Relative intra-model variability was calculated as the absolute intra-model variability divided by the sensor grand mean. Calculations were performed using data resampled to 5-minute averages.

| Parameter        | Absolute intra-model variability (μg/m³) | Relative intra-model variability (%) |
|------------------|------------------------------------------|--------------------------------------|
| PM <sub>10</sub> | 1.1                                      | 3.9                                  |

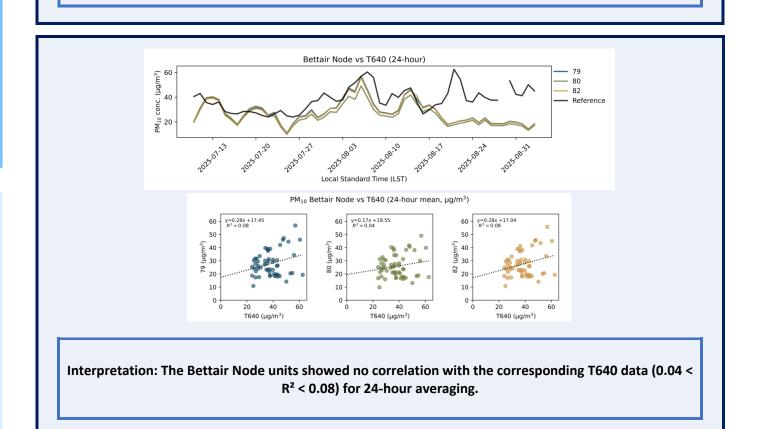



Interpretation: Two out of three Bettair Node units had similar pollutant distributions.

### Section 9.4: Linearity (R<sup>2</sup>)


Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, readings flagged by the sensor, and invalid data-points were eliminated from the data-set).

A summary of the mean  $R^2$  between the sensor and T640 across all units tested.


| Parameter        | Time Resolution | T640<br>(mean ± SD) |
|------------------|-----------------|---------------------|
|                  | 5-minute        | 0.14 ± 0.01         |
| PM <sub>10</sub> | 1-hour          | 0.16 ± 0.02         |
|                  | 24-hour         | 0.07 ± 0.02         |



### Section 9.4: Linearity (R<sup>2</sup>)



Interpretation: The Bettair Node units showed very weak correlation with the corresponding T640 data  $(0.13 < R^2 < 0.17)$  for 1-hour averaging.



|                              |            |                   | со              |                  |
|------------------------------|------------|-------------------|-----------------|------------------|
|                              |            | 5-minute averages | 1-hour averages | 24-hour averages |
| ode                          | Average*   | 0.22              | 0.22            | 0.22             |
| Bettair Node                 | SD*        | 0.25              | 0.24            | 0.15             |
| Bet                          | Range*     | 0.00 to 1.30      | 0.00 to 1.12    | 0.03 to 0.50     |
| 370                          | Average*   | 0.26              | 0.27            | 0.26             |
| FRM APMA370                  | SD*        | 0.16              | 0.16            | 0.09             |
| FRM                          | Range*     | 0.11 to 2.08      | 0.11 to 1.09    | 0.14 to 0.43     |
| 120                          | R²         | 0.90              | 0.91 to 0.92    | 0.90 to 0.91     |
| <b>PMA</b> 3                 | Slope      | 1.38 to 1.49      | 1.41 to 1.52    | 1.54 to 1.66     |
| FRM A                        | Intercept* | -0.17 to -0.16    | -0.18 to -0.17  | -0.21 to -0.20   |
| Bettair Node vs. FRM APMA370 | MBE*       | -0.06 to -0.04    | -0.06 to -0.04  | -0.06 to -0.04   |
| tair No                      | MAE*       | 0.10              | 0.10            | 0.07             |
| Bett                         | RMSE*      | 0.11 to 0.12      | 0.11            | 0.08 to 0.09     |

<sup>\*</sup>Units in: ppm

|                       |            |                   | NO              |                  |
|-----------------------|------------|-------------------|-----------------|------------------|
|                       |            | 5-minute averages | 1-hour averages | 24-hour averages |
| epo                   | Average*   | 5.37              | 5.37            | -                |
| Bettair Node          | SD*        | 10.89             | 10.50           | -                |
| Bet                   | Range*     | 0.80 to 98.20     | 0.80 to 82.33   | -                |
|                       | Average*   | 15.21             | 17.45           | -                |
| T200                  | SD*        | 19.32             | 18.82           | -                |
|                       | Range*     | 0.21 to 98.37     | 0.45 to 77.54   | -                |
|                       | R²         | 0.90 to 0.93      | 0.92 to 0.95    | -                |
| 200                   | Slope      | 0.86 to 0.93      | 0.86 to 0.92    | -                |
| Bettair Node vs. T200 | Intercept* | 0.43 to 2.61      | 0.15 to 2.64    | -                |
| ir Nod                | MBE*       | -1.39 to 0.58     | -2.03 to 0.21   | -                |
| Betta                 | MAE*       | 3.51 to 4.30      | 3.27 to 4.34    | -                |
|                       | RMSE*      | 5.13 to 6.02      | 4.46 to 5.40    | -                |

<sup>\*</sup>Units in: ppb

Note: The sensors were not evaluated at 24-hour averaging due to the NO reference instrument (T200) not observing at least 75% of records above that reference instrument's lower limit of detection for NO.

|                           |            |                   | NO <sub>2</sub> |                  |
|---------------------------|------------|-------------------|-----------------|------------------|
|                           |            | 5-minute averages | 1-hour averages | 24-hour averages |
| qe                        | Average*   | 11.35             | 11.36           | 11.36            |
| Bettair Node              | SD*        | 11.09             | 10.91           | 6.50             |
| Bet                       | Range*     | 0.50 to 67.60     | 0.50 to 48.10   | 0.60 to 23.74    |
| 0                         | Average*   | 10.79             | 11.08           | 10.73            |
| FRM T200                  | SD*        | 9.70              | 9.70            | 5.23             |
| H.                        | Range*     | 0.81 to 47.14     | 1.25 to 44.10   | 3.01 to 20.23    |
|                           | R²         | 0.84 to 0.88      | 0.86 to 0.89    | 0.84 to 0.86     |
| A T200                    | Slope      | 1.02 to 1.08      | 1.03 to 1.09    | 1.10 to 1.16     |
| vs. FRN                   | Intercept* | -1.05 to 0.44     | -1.10 to 0.38   | -1.52 to -0.22   |
| Node 1                    | MBE*       | -0.82 to 0.64     | -0.71 to 0.78   | -0.48 to 1.10    |
| Bettair Node vs. FRM T200 | MAE*       | 2.82 to 3.22      | 2.64 to 3.12    | 1.72 to 2.22     |
| 8                         | RMSE*      | 3.82 to 4.40      | 3.55 to 4.20    | 2.37 to 2.96     |

\*Units in: ppb

|                           |            |                   | O <sub>3</sub>  |                 |
|---------------------------|------------|-------------------|-----------------|-----------------|
|                           |            | 5-minute averages | 1-hour averages | 8-hour averages |
| ode .                     | Average*   | 31.10             | 31.09           | 31.08           |
| Bettair Node              | SD*        | 20.42             | 20.22           | 16.81           |
| Bet                       | Range*     | 0.50 to 108.60    | 0.50 to 101.03  | 0.50 to 73.68   |
| 0                         | Average*   | 35.77             | 34.82           | 34.80           |
| FEM T400                  | SD*        | 18.94             | 18.89           | 16.15           |
| =                         | Range*     | 0.58 to 102.17    | 1.03 to 95.44   | 1.92 to 68.43   |
|                           | R²         | 0.90 to 0.92      | 0.91 to 0.93    | 0.91 to 0.92    |
| A T400                    | Slope      | 0.95 to 1.07      | 0.95 to 1.07    | 0.93 to 1.05    |
| vs. FEN                   | Intercept* | -5.97 to -3.22    | -6.06 to -3.41  | -4.89 to -2.72  |
| Bettair Node vs. FEM T400 | MBE*       | -5.06 to -1.89    | -5.14 to -2.11  | -5.26 to -2.33  |
| ettair                    | MAE*       | 4.92 to 6.45      | 4.83 to 6.36    | 4.41 to 6.23    |
| <b>a</b>                  | RMSE*      | 6.35 to 7.93      | 6.16 to 7.75    | 5.42 to 7.24    |

\*Units in: ppb

|                       |            |                   | PM <sub>1</sub> |                  |
|-----------------------|------------|-------------------|-----------------|------------------|
|                       |            | 5-minute averages | 1-hour averages | 24-hour averages |
| ode .                 | Average*   | 9.32              | 9.32            | 9.33             |
| Bettair Node          | SD*        | 6.53              | 6.46            | 4.78             |
| Bet                   | Range*     | 1.00 to 49.00     | 1.00 to 41.00   | 2.18 to 25.58    |
|                       | Average*   | 9.67              | 9.67            | 9.69             |
| T640                  | SD*        | 4.39              | 4.33            | 3.45             |
|                       | Range*     | 2.02 to 46.38     | 2.29 to 29.40   | 3.49 to 21.68    |
|                       | R²         | 0.59 to 0.65      | 0.59 to 0.65    | 0.53 to 0.64     |
| .640                  | Slope      | 1.12 to 1.24      | 1.13 to 1.25    | 0.98 to 1.14     |
| le vs. T              | Intercept* | -2.26 to -1.89    | -2.35 to -1.97  | -1.25 to -0.49   |
| Bettair Node vs. T640 | MBE*       | -0.71 to 0.05     | -0.70 to 0.06   | -0.67 to 0.09    |
| Betta                 | MAE*       | 2.94 to 3.30      | 2.89 to 3.25    | 2.32 to 2.76     |
|                       | RMSE*      | 3.93 to 4.24      | 3.86 to 4.17    | 2.89 to 3.22     |

\*Units in: μg/m³

|                           |                        |                   | PM <sub>2.5</sub> |                  |
|---------------------------|------------------------|-------------------|-------------------|------------------|
|                           | ļ                      | 5-minute averages | 1-hour averages   | 24-hour averages |
|                           | Average*               | 9.93              | 9.92              | 9.94             |
| qe                        | SD*                    | 6.95              | 6.87              | 5.06             |
| Bettair Node              | Range*                 | 1.00 to 52.00     | 1.00 to 44.42     | 2.39 to 27.37    |
| Bett                      | PMc Conc.*             | 16.24 to 17.49    | 16.24 to 17.49    | 16.24 to 17.51   |
|                           | Fine Fraction          | 0.35              | 0.35              | 0.35             |
|                           | Average*               | 12.67             | 12.66             | 12.68            |
| 0                         | SD*                    | 5.21              | 5.12              | 3.98             |
| FEM T640                  | Range*                 | 2.97 to 53.37     | 3.16 to 34.39     | 5.27 to 26.23    |
| 핃                         | PM <sub>c</sub> Conc.* | 25.51             | 25.47             | 25.46            |
|                           | Fine Fraction          | 0.34              | 0.34              | 0.34             |
|                           | R²                     | 0.47 to 0.54      | 0.48 to 0.54      | 0.37 to 0.47     |
| 1 T640                    | Slope                  | 0.90 to 1.01      | 0.91 to 1.02      | 0.75 to 0.90     |
| Bettair Node vs. FEM T640 | Intercept*             | -2.48 to -1.90    | -2.62 to -2.02    | -0.96 to 0.16    |
| Node                      | MBE*                   | -3.12 to -2.33    | -3.10 to -2.31    | -3.06 to -2.28   |
| ettair                    | MAE*                   | 4.54 to 4.99      | 4.49 to 4.95      | 3.75 to 4.28     |
| Ã                         | RMSE*                  | 5.41 to 5.88      | 5.33 to 5.80      | 4.41 to 5.04     |

\*Units in: μg/m³

|                       |                        |                   | PM <sub>10</sub> |                  |
|-----------------------|------------------------|-------------------|------------------|------------------|
|                       | Ì                      | 5-minute averages | 1-hour averages  | 24-hour averages |
|                       | Average*               | 26.96             | 26.96            | 26.98            |
| qe                    | SD*                    | 13.26             | 13.03            | 9.18             |
| Bettair Node          | Range*                 | 5.00 to 105.00    | 6.08 to 90.25    | 9.97 to 56.93    |
| Bett                  | PMc Conc.*             | 16.24 to 17.49    | 16.24 to 17.49   | 16.24 to 17.51   |
|                       | Fine Fraction          | 0.35              | 0.35             | 0.35             |
|                       | Average*               | 38.18             | 38.13            | 38.14            |
|                       | SD*                    | 16.58             | 15.07            | 9.80             |
| T640                  | Range*                 | 8.36 to 370.75    | 10.53 to 236.98  | 23.95 to 62.52   |
|                       | PM <sub>c</sub> Conc.* | 25.51             | 25.47            | 25.46            |
|                       | Fine Fraction          | 0.34              | 0.34             | 0.34             |
|                       | R²                     | 0.12 to 0.15      | 0.13 to 0.17     | 0.04 to 0.08     |
| .640                  | Slope                  | 0.26 to 0.32      | 0.30 to 0.36     | 0.17 to 0.28     |
| Bettair Node vs. T640 | Intercept*             | 15.23 to 15.74    | 13.54 to 14.39   | 17.04 to 19.55   |
|                       | MBE*                   | -12.35 to -10.31  | -12.31 to -10.26 | -12.20 to -10.16 |
| Betta                 | MAE*                   | 14.01 to 15.12    | 13.73 to 14.89   | 11.51 to 13.31   |
|                       | RMSE*                  | 19.90 to 21.02    | 18.72 to 19.89   | 15.33 to 16.85   |

\*Units in: μg/m³