Laboratory Evaluation HabitatMap AirBeam3

Outline

- 1. Background
- **2. PM**_{1.0}
- **3. PM**_{2.5}

Background

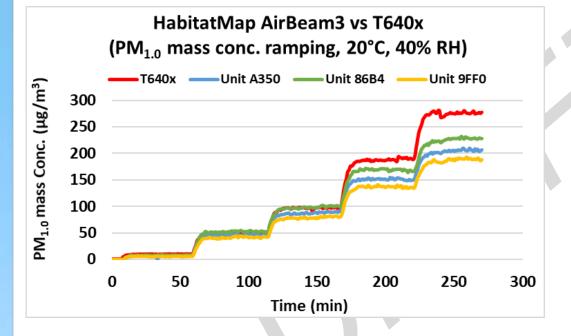
Three HabitatMap AirBeam3 (hereinafter AirBeam3) sensors were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (02/02/2022 to 04/03/2022) under ambient environmental conditions. Following field-testing, the same three units were evaluated in the South Coast AQMD Sensor Environmental Testing Chamber 2 (SENTEC-2) under controlled artificial aerosol concentration/size range, temperature, and relative humidity.

AirBeam3 (3 units tested in the lab):

- Particle sensor: optical; non-FEM (Plantower PMS7003)
- > Each unit reports: $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
- Also measures: internal temperature (°F) and internal relative humidity (%)
- ➤ Unit cost: \$249
- ➤ Time resolution: 1-min
- > Units IDs: A350, 86B4, 9FF0

Reference instruments:

- PM instrument (Teledyne T640x, San Diego, CA; hereinafter FEM T640x); cost: ~\$37,000
 - Time resolution: 1-min



FEM T640x

- 1. T640x vs AirBeam3
- 2. Accuracy, data recovery, and intra-model variability
- 3. Precision
- 4. Climate susceptibility
- 5. Discussion

AirBeam3 vs T640x (PM_{1.0})

Coefficient of Determination

T640x vs HabitatMap AirBeam3 PM_{1.0} mass conc. (5-min; µg/m³)

 $\begin{array}{c} 300 \\ y = 0.8913x + 3.237 \\ R^2 = 0.9983 \\ 100 \\ 0 \\ 0 \\ 100 \\ 0 \\ 100 \\ 0 \\ 100 \\ 100 \\ 200 \\ 300 \\ 100 \\$

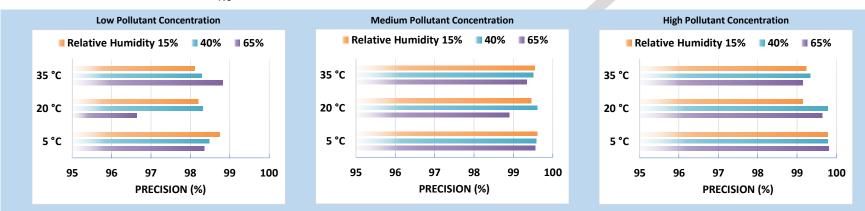
- The AirBeam3 sensors tracked well with the concentration variation but underestimated $PM_{1,0}$, compared to the T640x in the concentration range of 0 300 µg/m³.
- The AirBeam3 sensors showed very strong correlations with the T640x PM_{1.0} mass conc. (R² > 0.99)

5

AirBeam3 vs T640x PM_{1.0} Accuracy

Accuracy (20 °C and 40% RH)

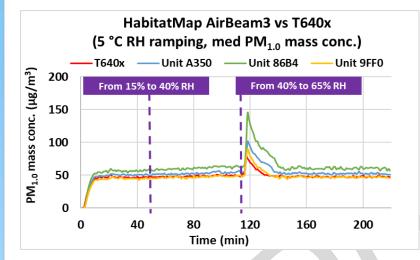
Steady State #	Sensor Mean (µg/m³)	T640x (μg/m³)	Accuracy (%)
1	7.0	9.4	74.9
2	47.4	48.0	98.9
3	90.0	97.3	92.5
4	152.1	189.4	80.3
5	208.1	276.6	75.2

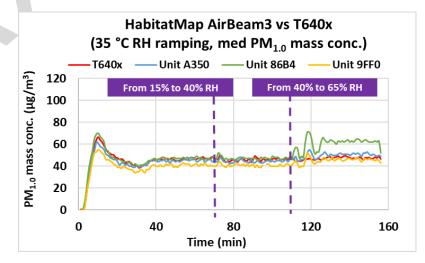

The AirBeam3 sensors underestimated PM_{1.0} concentration values compared to the T640x PM_{1.0} mass concentration at 20 °C and 40% RH. The AirBeam3 sensors' accuracy increased from 10 to 50 μg/m³ then decreased as concentrations increased to ~ 300 μg/m³ as compared to the reference T640x.

AirBeam3 Data Recovery and Intra-model Variability

- Data recovery for PM_{1.0} measurements was 100% for all units
- Moderate PM_{1.0} concentration variations were observed between the units at 20 °C and 40% RH, at low, medium, and high PM_{1.0} as measured by the T640x.

Precision: AirBeam3 (PM_{1.0})


• Precision (effect of PM_{1.0} conc., temperature and relative humidity)


• Overall, the AirBeam3 sensors showed high precision for all combinations of PM_{1.0} conc., T, and RH.

Climate Susceptibility: AirBeam3 (PM_{1.0})

Low Temp - RH ramping (medium conc.)

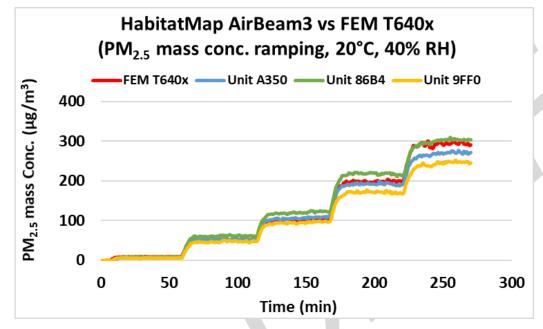
High Temp – RH ramping (medium conc.)

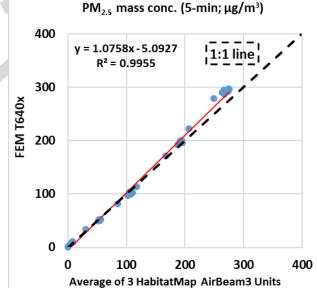
Discussion: PM_{1.0}

- Accuracy: The AirBeam3 sensors underestimated PM_{1.0} concentration values compared to the T640x PM_{1.0} mass concentration at 20 °C and 40% RH. The AirBeam3 sensors' accuracy increased from 10 to 50 µg/m³ then decreased as concentrations increased to ~ 300 µg/m³ as compared to the reference T640x.
- Precision: The three AirBeam3 sensors exhibited high precision during all tested PM_{1.0} conc., T, and RH conditions.
- Intra-model variability: Moderate PM_{1.0} measurement variations were observed among the three AirBeam3 sensors at 20 °C and 40% RH.
- > **Data Recovery:** Data recovery for $PM_{1.0}$ measurements was 100% for all units.
- Bias: N/A
- > **Detection limit**: The detection limit cannot be estimated due to limitations in the chamber system design.
- Response time: Response time could not be studied due to the design of the chamber system. With a 1.6 m³ chamber volume, it was not possible to reach a high pollutant concentration within a short time.
- Linear Correlation: The three AirBeam3 sensors showed very strong correlation/linear response with the corresponding T640x PM_{1.0} measurement data (R² > 0.99).
- Selectivity: N/A for PM sensors test
- Interferences: N/A for PM sensors test

Discussion: PM_{1.0}

- > Measurement duration: AirBeam3 sensors report 1-min averaged values.
- Measurement frequency: AirBeam3 sensors report 1-min averaged values. The obtained data was used for calculation of statistics (e.g. data recovery, intra-model variability, mean, accuracy, precision), and condensed to 5-minute averages for linear correlation studies against the T640x.
- Sensor contamination and expiration: Prior to the laboratory evaluation, the AirBeam3 sensors were tested in the field for two months and a storage period of ~ 4 months prior to laboratory evaluations. The PM_{1.0} laboratory studies lasted for about 9 days with intermittent non-operating periods.
- **Concentration range**: Up to 1000 μ g/m³ as suggested by the manufacturer. During the laboratory evaluation, the AirBeam3 sensors were challenged with PM_{1.0} concentrations up to 300 μ g/m³.
- > Drift: N/A
- Climate susceptibility: During the lab studies, climate did not significantly impact precision. Spiked concentrations were observed at the 65% RH change point.
- **Response to loss of power**: AirBeam3 sensors were powered through the entirety of the lab tests.




- 1. FEM T640x vs AirBeam3
- 2. Accuracy, data recovery, and intra-model variability
- 3. Precision
- 4. Climate susceptibility
- 5. Discussion

AirBeam3 vs FEM T640x (PM_{2.5})

Coefficient of Determination

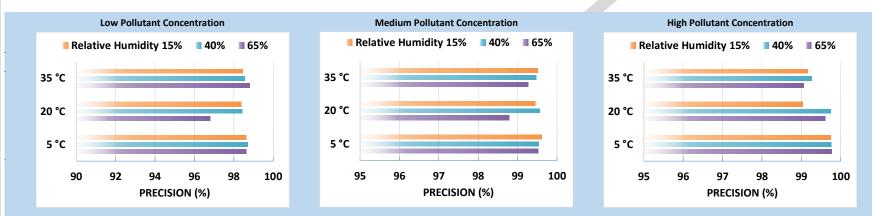
FEM T640x vs HabitatMap AirBeam3

- The AirBeam3 sensors tracked well with the concentration variation but underestimated $PM_{2.5}$, compared to the FEM T640x in the concentration range of 0 300 µg/m³.
- The AirBeam3 sensors showed very strong correlations with the FEM T640x PM_{2.5} mass conc. (R² > 0.99)

AirBeam3 vs FEM T640x PM_{2.5} Accuracy

Accuracy (20 °C and 40% RH)

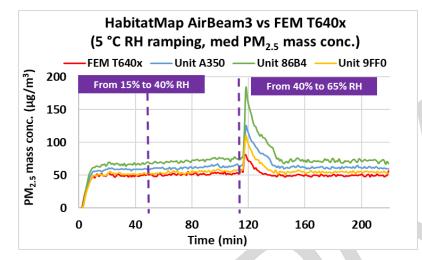
Steady State #	Sensor Mean (µg/m³)	FEM T640x (μg/m³)	Accuracy (%)
1	7.7	9.8	78.6
2	54.9	50.7	91.8
3	109.6	102.4	93.0
4	193.3	199.3	97.0
5	274.1	294.4	93.1

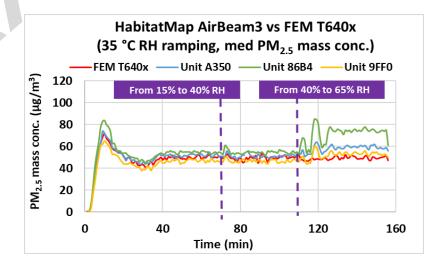

 Overall, the AirBeam3 sensors underestimated PM_{2.5} concentration values compared to the FEM T640x PM_{2.5} mass concentration at 20 °C and 40% RH. The AirBeam3 sensors showed high accuracy at high PM_{2.5} concentrations compared to the reference FEM T640x.

AirBeam3 Data Recovery and Intra-model Variability

- Data recovery for PM_{2.5} measurements was 100% for all units
- Moderate PM_{2.5} concentration variations were observed between the units at 20 °C and 40% RH, at low, medium, and high PM_{2.5} as measured by the T640x.

Precision: AirBeam3 (PM_{2.5})


• Precision (effect of PM_{2.5} conc., temperature and relative humidity)


• Overall, the AirBeam3 sensors showed high precision for all combinations of PM_{2.5} conc., T, and RH.

Climate Susceptibility: AirBeam3 (PM_{2.5})

Low Temp - RH ramping (medium conc.)

High Temp – RH ramping (medium conc.)

Discussion: PM_{2.5}

- Accuracy: The AirBeam3 sensors underestimated PM_{2.5} concentration values compared to the FEM T640x PM_{2.5} mass concentration at 20 °C and 40% RH. The AirBeam3 sensors showed accuracy from 78.6% to 97.0% for all tested PM_{2.5} concentrations compared to the reference FEM T640x for the entirety of test.
- Precision: The three AirBeam3 sensors exhibited high precision during all tested PM_{2.5} conc., T, and RH conditions.
- Intra-model variability: Moderate PM_{2.5} measurement variations were observed among the three AirBeam3 sensors at 20 °C and 40% RH.
- > **Data Recovery:** Data recovery for $PM_{2.5}$ measurements was 100% for all units.
- ➢ Bias: N/A
- > **Detection limit**: The detection limit cannot be estimated due to limitations in the chamber system design.
- Response time: Response time could not be studied due to the design of the chamber system. With a 1.6 m³ chamber volume, it was not possible to reach a high pollutant concentration within a short time.
- Linear Correlation: The three AirBeam3 sensors showed very strong correlation/linear response with the corresponding FEM T640x PM_{2.5} measurement data (R² > 0.99).
- Selectivity: N/A for PM sensors test
- Interferences: N/A for PM sensors test

Discussion: PM_{2.5}

- > Measurement duration: AirBeam3 sensors report 1-min averaged values.
- Measurement frequency: AirBeam3 sensors report 1-min averaged values. The obtained data was used for calculation of statistics (e.g. data recovery, intra-model variability, mean, accuracy, precision), and condensed to 5-minute averages for linear correlation studies against the FEM T640x.
- Sensor contamination and expiration: Prior to the laboratory evaluation, the AirBeam3 sensors were tested in the field for two months. The PM_{2.5} laboratory studies lasted for about 9 days with intermittent non-operating periods and a storage period of ~ 4 months.
- Concentration range: Up to 1000 µg/m³ as suggested by the manufacturer. During the laboratory evaluation, the AirBeam3 sensors were challenged with PM_{2.5} concentrations up to 300 µg/m³.
- > Drift: N/A
- Climate susceptibility: During the lab studies, climate did not significantly impact precision. Spiked concentrations were observed at the 65% RH change point.
- **Response to loss of power**: AirBeam3 sensors were powered through the entirety of the lab tests.