# Laboratory Evaluation PurpleAir – PA-II-FLEX





## **Outline**

- 1. Background
- 2. PM<sub>1.0</sub>
- 3. PM<sub>2.5</sub>

### Background

Three **PurpleAir PA-II-FLEX** (hereinafter **PA-II-FLEX**) sensors were field-tested at the South Coast AQMD Rubidoux fixed ambient monitoring station (03/17/2022 to 05/24/2022) under ambient environmental conditions. Following field-testing, the same units (except for Unit 7f6d, unit damaged during transport) were evaluated in the South Coast AQMD Sensor Environmental Testing Chamber 2 (SENTEC-2) under controlled artificial aerosol concentration/size range, temperature, and relative humidity.

#### PA-II-FLEX (2 units tested in the lab):

- ➤ Particle sensor: optical; non-FEM (dual Plantower PMS6003)
- $\triangleright$  Each unit reports: PM<sub>1.0</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> ( $\mu$ g/m<sup>3</sup>)
- ➤ Also measures: internal temperature (°F) and internal relative humidity (%)
- ➤ Unit cost: \$299
- ➤ Time resolution: 1-min
- ➤ Units IDs: Unit #1 (7fd9-a, 7fd9-b); Unit #3 (2bf1-a, 2bf1-b)

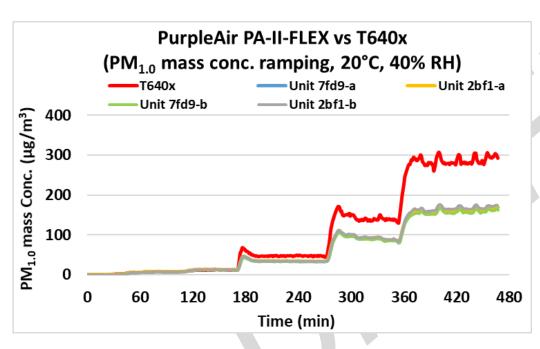
Note: each unit has two PM sensors and reports two PM values (Channel A and Channel B. Sensors are named Unit ID-a and Unit ID-b for Channel A and Channel B values, respectively.)

#### Reference instruments:

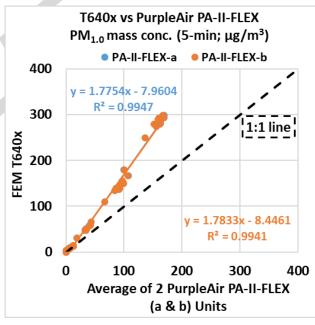
- ➤ PM<sub>2.5</sub> instrument (Teledyne T640x, San Diego, CA; hereinafter FEM T640x); cost: ~\$37,000
  - > Time resolution: 1-min



PurpleAir PA-II-FLEX




**FEM T640x** 


# $PM_{1.0}$

- 1. T640x vs PA-II-FLEX
- 2. Accuracy, data recovery and intra-model variability
- 3. Precision
- 4. Climate susceptibility
- 5. Discussion

### PA-II-FLEX vs T640x ( $PM_{1.0}$ )



#### **Coefficient of Determination**

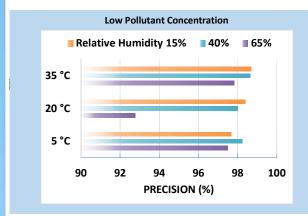


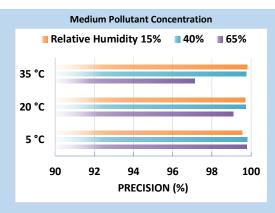
- The PA-II-FLEX sensors tracked well with the concentration variation but underestimated PM<sub>1.0</sub>, compared to the T640x in the concentration range of 0 - 300 μg/m<sup>3</sup>.
- The PA-II-FLEX sensors showed very strong correlations with the T640x PM<sub>1.0</sub> mass conc. (R<sup>2</sup> > 0.99)

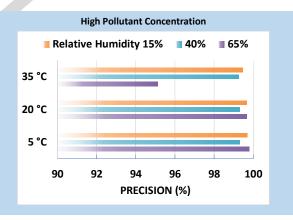
#### PA-II-FLEX vs T640x PM<sub>1.0</sub> Accuracy

Accuracy (20 °C and 40% RH)

| Steady State<br># | a-Sensor Mean<br>(μg/m³) | T640x<br>(μg/m³) | Accuracy<br>(%) | Steady State<br># | b-Sensor Mean<br>(μg/m³) | T640x<br>(μg/m³) | Accuracy<br>(%) |
|-------------------|--------------------------|------------------|-----------------|-------------------|--------------------------|------------------|-----------------|
| 1                 | 7.0                      | 8.4              | 82.7            | 1                 | 7.2                      | 8.4              | 84.9            |
| 2                 | 12.2                     | 13.1             | 92.6            | 2                 | 12.4                     | 13.1             | 94.5            |
| 3                 | 33.2                     | 47.5             | 70.0            | 3                 | 33.5                     | 47.5             | 70.7            |
| 4                 | 86.4                     | 138.0            | 62.6            | 4                 | 86.6                     | 138.0            | 62.7            |
| 5                 | 166.4                    | 293.3            | 56.7            | 5                 | 166.0                    | 293.3            | 56.6            |


Overall, the PA-II-FLEX sensors underestimated PM<sub>1.0</sub> concentration values compared to the T640x PM<sub>1.0</sub> mass concentration at 20°C and 40% RH. The PA-II-FLEX sensors' accuracy initially increased from 10 to 15 μg/m³ then decreased as concentrations increased from 15 to 300 μg/m³ as compared to the reference T640x. The PA-II-FLEX sensors' accuracy ranged from 56.6% to 94.5% in the range of 10 to 300 μg/m³ as compared to the reference T640x.

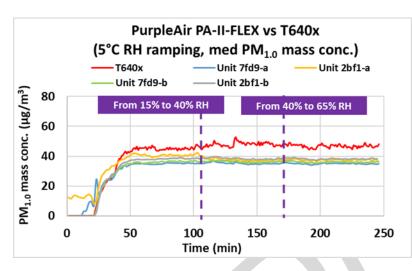

#### PA-II-FLEX Data Recovery and Intra-model Variability


- Data recovery for PM<sub>1.0</sub> measurements was 100% for all units.
- Low PM<sub>1.0</sub> concentration variations were observed between the units at 20°C and 40% RH, at low, medium, and high PM<sub>1.0</sub> as measured by the T640x.

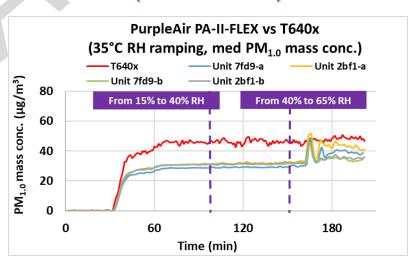
### PA-II-FLEX vs T640x ( $PM_{1.0}$ )

Precision results from Channel A (effect of PM<sub>1,0</sub> conc., temperature and relative humidity)









 Overall, PA-II-FLEX sensors showed high precision for all the combinations of low, medium, and high PM<sub>1.0</sub> conc., T, and RH.

#### Climate Susceptibility: PA-II-FLEX (PM<sub>1.0</sub>)

# Low Temp - RH ramping (medium conc.)

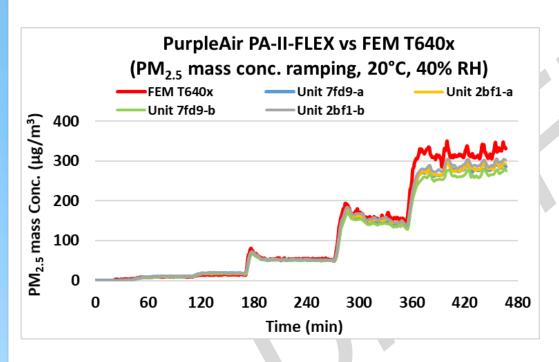


# High Temp – RH ramping (medium conc.)

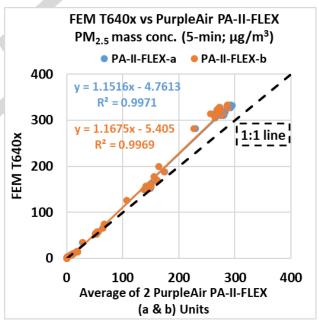


# Discussion: PM<sub>1.0</sub>

- Accuracy: Overall, the PA-II-FLEX sensors underestimated PM<sub>1.0</sub> concentration values compared to the T640x PM<sub>1.0</sub> mass concentration at 20°C and 40% RH. The PA-II-FLEX sensors' accuracy initially increased from 10 to 15 μg/m³ then decreased as concentrations increased from 15 to 300 μg/m³ as compared to the reference T640x. The PA-II-FLEX sensors' accuracy ranged from 56.6% to 94.5% in the range of 10 to 300 μg/m³ as compared to the reference T640x.
- ➤ **Precision**: The two PA-II-FLEX sensors exhibited high precision during all tested PM<sub>1.0</sub> conc., T, and RH conditions.
- ➤ Intra-model variability: Low PM<sub>1.0</sub> measurement variations were observed among the two PA-II-FLEX sensors at 20°C and 40% RH.
- > Data Recovery: Data recovery for PM<sub>1.0</sub> measurements was 100% for all units.
- ➤ Bias: N/A
- > **Detection limit**: The detection limit cannot be estimated due to limitations in the chamber system design.
- ➤ **Response time**: Response time could not be studied due to the design of the chamber system. With a 1.6 m³ chamber volume, it was not possible to reach a high pollutant concentration within a short time.
- ➤ **Linear Correlation**: The two PA-II-FLEX sensors showed very strong correlation/linear response with the corresponding T640x PM<sub>1.0</sub> measurement data (R<sup>2</sup> > 0.99).
- > Selectivity: N/A for PM sensors test
- Interferences: N/A for PM sensors test


# Discussion: PM<sub>1.0</sub>

- ➤ **Measurement duration**: PA-II-FLEX sensors report 2-min averaged values.
- ➤ **Measurement frequency:** PA-II-FLEX sensors report 2-min averaged values. The obtained data was used for calculation of statistics (e.g. data recovery, intra-model variability, mean, accuracy, precision), and condensed to 5-minute averages for linear correlation studies against the T640x.
- ➤ **Sensor contamination and expiration**: Prior to the laboratory evaluation, the PA-II-FLEX sensors were tested in the field for two months. The PM<sub>1.0</sub> laboratory studies lasted for about three weeks with intermittent non-operating periods and a storage period of ~12 months.
- **Concentration range**: 0 to 500 μg/m³ as suggested by the manufacturer. During the laboratory evaluation, the PA-II-FLEX sensors were challenged with PM<sub>1.0</sub> concentrations up to 300 μg/m³.
- > Drift: N/A
- ➤ Climate susceptibility: During the lab studies, climate did not significantly impact sensors' precision. Spiked concentrations were observed at the RH change points, especially at the 65% RH change point. The sensors underestimated the PM<sub>1.0</sub> concentrations at 65% RH at 20°C and 35°C compared to the T640x.
- Response to loss of power: PA-II-FLEX sensors were powered through the entirety of the lab tests.


# PM<sub>2.5</sub>

- 1. Data recovery and intra-model variability
- 2. FEM T640x vs PA-II-FLEX
- 3. Climate susceptibility
- 4. Accuracy
- 5. Precision
- 6. Discussion

### PA-II-FLEX vs FEM T640x ( $PM_{2.5}$ )



#### **Coefficient of Determination**



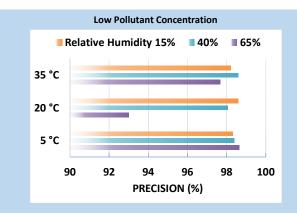
- Overall, the PA-II-FLEX sensors overestimated low PM<sub>2.5</sub> levels (10 to 15 μg/m3) and underestimated high PM<sub>2.5</sub> levels (50 to 300 μg/m3) compared to the FEM T640x PM<sub>2.5</sub> mass concentration at 20°C and 40% RH.
- The PA-II-FLEX sensors showed very strong correlations with the FEM T640x PM<sub>2.5</sub> mass conc. (R<sup>2</sup> > 0.99)

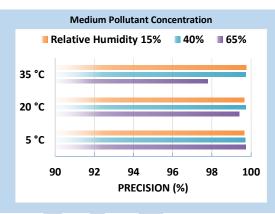
#### PA-II-FLEX vs FEM T640x PM<sub>2.5</sub> Accuracy

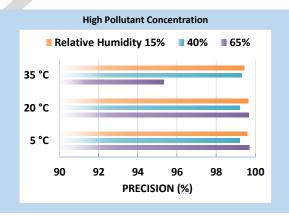
Accuracy (20 °C and 40% RH)

| Steady State # | a-Sensor Mean<br>(μg/m³) | FEM T640x<br>(μg/m³) | Accuracy<br>(%) |  |
|----------------|--------------------------|----------------------|-----------------|--|
| 1              | 10.5                     | 9.3                  | 87.2            |  |
| 2              | 18.4                     | 14.3                 | 71.4            |  |
| 3              | 51.3                     | 52.6                 | 97.6            |  |
| 4              | 4 142.1                  |                      | 92.2            |  |
| 5              | 287.3                    | 327.1                | 87.8            |  |

| Steady State # | b-Sensor Mean<br>(μg/m³) | FEM T640x<br>(μg/m³) | Accuracy<br>(%) |  |
|----------------|--------------------------|----------------------|-----------------|--|
| 1              | 10.8                     | 9.3                  | 83.4            |  |
| 2              | 18.4                     | 14.3                 | 71.4            |  |
| 3              | 51.6                     | 52.6                 | 98.1            |  |
| 4              | 141.0                    | 154.1                | 91.4            |  |
| 5              | 283.8                    | 327.1                | 86.7            |  |


Overall, the PA-II-FLEX sensors overestimated low PM<sub>2.5</sub> levels (10 to 15 μg/m³) and underestimated high PM<sub>2.5</sub> levels (50 to 300 μg/m³) compared to the FEM T640x PM<sub>2.5</sub> mass concentration at 20°C and 40% RH. The PA-II-FLEX sensors' accuracy ranged from 71.4% to 98.1% in the range of 10 to 300 μg/m³ as compared to the reference FEM T640x.

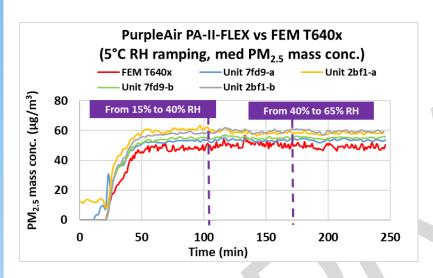

#### PA-II-FLEX Data Recovery and Intra-model Variability


- Data recovery for PM<sub>2.5</sub> measurements was 100% for all units.
- Low PM<sub>2.5</sub> concentration variations were observed between the units at 20°C and 40% RH, at low, medium, and high PM<sub>2.5</sub> as measured by the T640x.

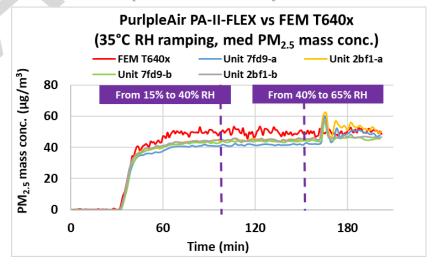
### PA-II-FLEX vs FEM T640x ( $PM_{2.5}$ )

Precision results from Channel A (effect of PM<sub>2.5</sub> conc., temperature and relative humidity)









 Overall, PA-II-FLEX sensors showed high precision for all the combinations of low, medium, and high PM<sub>2.5</sub> conc., T, and RH.

#### Climate Susceptibility: PA-II-FLEX (PM<sub>2.5</sub>)

# Low Temp - RH ramping (medium conc.)



# High Temp – RH ramping (medium conc.)



# Discussion: PM<sub>2.5</sub>

- Accuracy: Overall, the PA-II-FLEX sensors overestimated low PM<sub>2.5</sub> levels (10 to 15 μg/m³) and underestimated high PM<sub>2.5</sub> levels (50 to 300 μg/m³) compared to the FEM T640x PM<sub>2.5</sub> mass concentration at 20°C and 40% RH. The PA-II-FLEX sensors' accuracy ranged from 71.4% to 98.1% in the range of 10 to 300 μg/m³ as compared to the reference FEM T640x.
- ➤ **Precision**: The two PA-II-FLEX sensors exhibited high precision during all tested PM<sub>2.5</sub> conc., T, and RH conditions.
- ➤ Intra-model variability: Low PM<sub>2.5</sub> measurement variations were observed among the two PA-II-FLEX sensors at 20°C and 40% RH.
- ➤ Data Recovery: Data recovery for PM<sub>2.5</sub> measurements was 100% for all units.
- ➤ Bias: N/A
- > **Detection limit**: The detection limit cannot be estimated due to limitations in the chamber system design.
- Response time: Response time could not be studied due to the design of the chamber system. With a 1.6 m³ chamber volume, it was not possible to reach a high pollutant concentration within a short time.
- ➤ **Linear Correlation**: The two PA-II-FLEX sensors showed very strong correlation/linear response with the corresponding FEM T640x PM<sub>2.5</sub> measurement data (R<sup>2</sup> > 0.99).
- > Selectivity: N/A for PM sensors test
- > Interferences: N/A for PM sensors test

# Discussion: PM<sub>2.5</sub>

- Measurement duration: PA-II-FLEX sensors report 2-min averaged values.
- ➤ **Measurement frequency:** PA-II-FLEX sensors report 2-min averaged values. The obtained data was used for calculation of statistics (e.g. data recovery, intra-model variability, mean, accuracy, precision), and condensed to 5-minute averages for linear correlation studies against the FEM T640x.
- ➤ **Sensor contamination and expiration**: Prior to the laboratory evaluation, the PA-II-FLEX sensors were tested in the field for two months. The PM<sub>2.5</sub> laboratory studies lasted for about three weeks with intermittent non-operating periods and a storage period of ~12 months.
- **Concentration range**: 0 to 500 μg/m³ as suggested by the manufacturer. During the laboratory evaluation, the PA-II-FLEX sensors were challenged with PM<sub>2.5</sub> concentrations up to 300 μg/m³.
- > Drift: N/A
- ➤ Climate susceptibility: During the lab studies, climate did not significantly impact sensors' precision. Spiked concentrations were observed at the RH change points, especially at the 65% RH change point. Increasing RH led to less underestimation compared to the FEM T640x.
- > Response to loss of power: PA-II-FLEX sensors were powered through the entirety of the lab tests.