AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: Alphasense/OPC-R2

Pollutants:

PM_{1.0} (only analyzed from field evaluation), PM_{2.5}, and PM₁₀ mass concentration

Time Resolution: 30-sec

Type: Optical

Additional Information

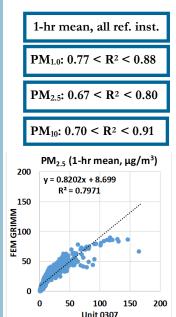
Field evaluation report:

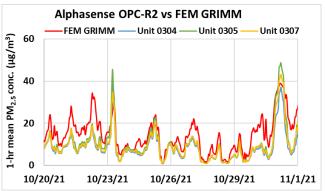
http://www.aqmd.gov/aqspec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:


http://www.aqmd.gov/aq-spec


Evaluation Summary

- The accuracy of the Alphasense OPC-R2 sensors for PM_{2.5} was 15.1% to 24.9% and for PM₁₀ was 36.8% to 69.8% in the lab. The Alphasense OPC-R2 sensors underestimated PM_{2.5} and PM₁₀ measurements compared to the T640x and the APS in the lab.
- The Alphasense OPC-R2 sensors exhibited high precision for all conc., T/RH combinations for PM_{2.5}. Precision for PM₁₀ mass conc. cannot be determined due to the inherent variability of the test dust used.
- The Alphasense OPC-R2 sensors showed high and moderate intra-model variability for PM_{2.5} and PM₁₀ in the lab, respectively.
- Data recovery was 100% from all units tested in the field and laboratory evaluations.
- For PM_{1.0}, Alphasense OPC-R2 sensors showed strong correlations, moderate to strong correlations for PM_{2.5} and strong to very strong correlations for PM₁₀ with GRIMM and T640 from the field; and very strong correlations with the reference instruments in the laboratory studies (R² > 0.97 for PM_{2.5} and PM₁₀).
- The same Alphasense OPC-R2 units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing) against reference PM instruments.

Field Evaluation Highlights

- Deployment period 10/16/2021 12/15/2021: the Alphasense OPC-R2 sensors showed moderate to strong correlations with the PM_{1.0} and PM_{2.5} mass concentration as recorded by GRIMM and T640 and strong to very strong correlations with the corresponding GRIMM and T640 data for PM₁₀ mass conc.
- Data recovery from the units was $\sim 100\%$.

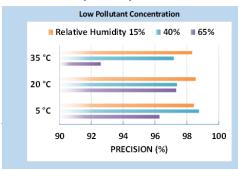
Coefficient of Determination (R²) quantifies how the two sensors followed the PM_{1.0}, PM_{2.5}, or PM₁₀ concentration change by the reference instruments.

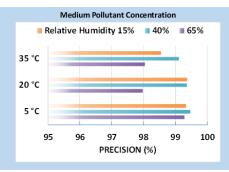
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

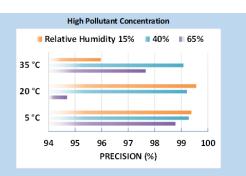
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

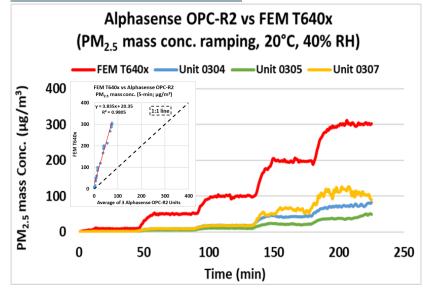
A (%) =
$$100 - \frac{|\overline{X} - \overline{R}|}{\overline{R}} * 100$$


Steady State #	Sensor Mean (μg/m³)	FEM T640x (μg/m³)	Accuracy (%)
1	1.4	9.1	15.1
2	7.8	50.4	15.5
3	15.6	99.3	15.7
4	42.5	197.5	21.5
5	75.2	301.6	24.9


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40% RH. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensor's overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15% RH) cold and humid (5 °C and 65% RH), hot and humid (35 °C and 65% RH), or hot and dry (35 °C and 15% RH).

Coefficient of Determination

The Alphasense OPC-R2 sensors showed very strong correlations with the corresponding FEM PM_{2.5} data ($R^2 \sim 0.98$) at 20 °C and 40% RH.

At the time of testing, the reference monitor did not report $PM_{1.0}$. For conc. ramping experiments of PM_{10} , please see the lab report.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the Alphasense OPC-R2 sensors' precision.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.