AQ-SPEC

Air Quality Sensor Performance Evaluation Center Evaluation Summary

Sensor Description

Manufacturer/Model: Elitech/ Temtop LKC-1000S+

Pollutants: PM_{2.5} and PM₁₀ mass concentration

Time Resolution: 1 min.

Type: Optical

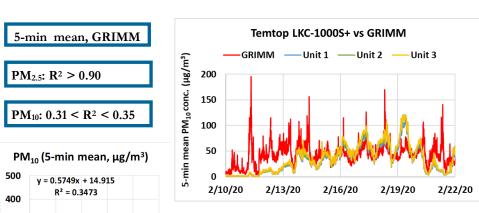
Additional Information

Field evaluation report:

http://www.aqmd.gov/aqspec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory


AQ-SPEC website:

http://www.aqmd.gov/aq-spec

- Overall, the accuracy of the Temtop LKC-1000S+ sensors was fairly constant (57% to 69%) over the PM_{2.5} mass concentration range tested. The Temtop LKC-1000S+ sensors overestimated PM_{2.5} measurements from FEM GRIMM in the laboratory experiments at 20 °C and 40% RH.
- The Temtop LKC-1000S+ sensors showed high precision for all test combinations (PM concentrations, T and RH) for PM_{2.5} mass concentrations
- The Temtop LKC-1000S+ sensors (IDs: 1, 2, and 3) showed low intra-model variability in both the field and laboratory evaluations.
- Data recovery was $\sim 93\%$ and 100% from all units in the field and laboratory evaluations, respectively.
- For PM_{2.5}, Temtop LKC-1000S+ sensors showed very strong correlations with the FEM GRIMM from the field ($R^2 > 0.90$) and weak correlations with GRIMM for PM₁₀ (0.31 < R^2 < 0.35). The Temtop LKC-1000S+ sensors showed very strong correlations with the FEM GRIMM in the laboratory evaluations ($R^2 > 0.99$ for PM_{2.5}).
- The same three Temtop LKC-1000S+ units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing)

Field Evaluation Highlights

- Deployment period 01/27/2020 to 03/27/2020: the three Temtop LKC-1000S+ sensors showed very strong and weak correlations with the corresponding GRIMM PM_{2.5} and PM₁₀ mass concentrations, respectively.
- The units exhibited low intra-model variability and data recovery for PM_{2.5} was ~93% from all units.

PM₁₀ (5-min mean, μg/m³)

y = 0.5749x + 14.915

R² = 0.3473

200

100

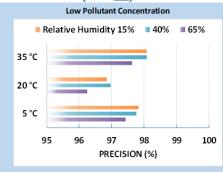
0 100 200 300 400 500

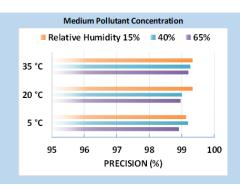
Coefficient of Determination (R²) quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments.

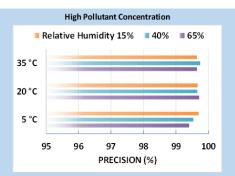
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

Laboratory Evaluation Highlights

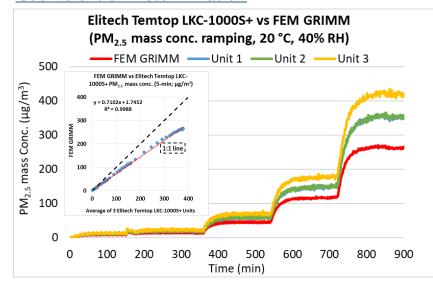
Accuracy (PM_{2.5})


Steady state #	Sensor Mean (μg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	11.0	8.4	68.9
2	19.2	13.7	60.1
3	61.9	45.3	63.3
4	160.1	117.7	64.1
5	375.1	261.5	56.6


Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40%. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%) cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

The Temtop LKC-1000S+ sensors showed very strong correlations with the corresponding FEM PM_{2.5} data ($R^2 > 0.99$) at 20 °C and 40% RH.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the Temtop LKC-1000S+ sensors' precision; the sensors showed small spiked conc. changes at the 65% RH change points at 5 °C for high PM level.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.