AQ-SPEC Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: IQAir/ AirVisual Pro v1.1683 Pollutants: PM_{2.5} mass concentration

Measurement Size Range: 0.3 - 2.5 µm

Type: Optical

Additional Information

Field evaluation report:

http://www.aqmd.gov/aqspec/evaluations/field

Lab evaluation report:

60

0

y = 0.99x + 5.2743

 $R^2 = 0.8236$

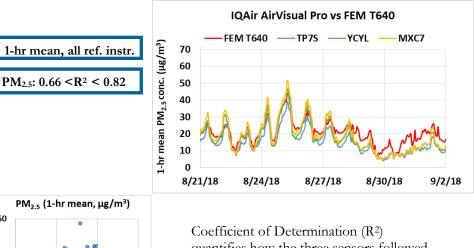
40

Unit TP7S

60

20

http://www.aqmd.gov/aqspec/evaluations/laboratory


AQ-SPEC website: http://www.aqmd.gov/aq-spec

Evaluation Summary

- Overall, the IQAir AirVisual Pro sensors showed good accuracy as compared to the reference instrument for PM_{2.5}, except at $\sim 300 \,\mu\text{g/m^3}$.
- The IQAir AirVisual Pro sensors exhibited high precision for all T/RH • combinations and all PM concentrations.
- The IQAir AirVisual Pro sensors (IDs: TP7S, YCYL, MXC7) showed low intra-• model variability.
- Data recovery was ~100% from all units in the field and in the laboratory, except for Unit YCYL which did not report data in several laboratory experiments.
- For PM2.5, the IQAir AirVisual Pro sensors showed moderate to strong correlations with the FEM GRIMM, FEM BAM and FEM T640 from the field ($PM_{2.5} 0.66 < R^2 < 0.82$). The IQAir AirVisual Pro sensors showed very strong correlations with the FEM GRIMM in the laboratory studies ($R^2 = 0.99$ for PM_{2.5}).
- The same three IQAir AirVisual Pro units were tested both in the field (1st stage • of testing) and in the laboratory (2nd stage of testing)

Field Evaluation Highlights

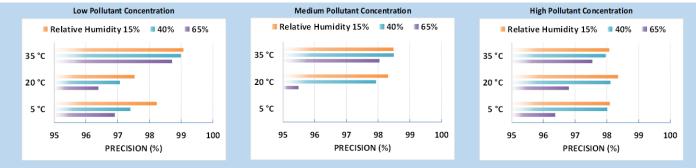
- Deployment period 08/15/2018 10/11/2018: the three IQAir AirVisual Pro sensors showed moderate to strong correlations with PM2.5 mass concentration as monitored by FEM GRIMM, FEM BAM and FEM T640.
- The units showed very low intra-model variability and data recovery of $\sim 100\%$.

quantifies how the three sensors followed the PM_{2.5} concentration change by the reference instruments.

An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

Laboratory Evaluation Highlights

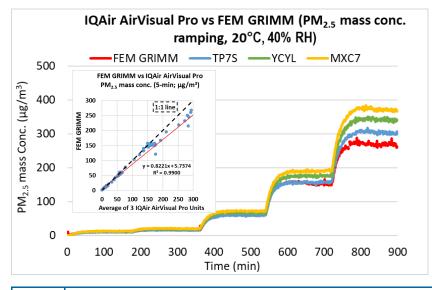
Accuracy (PM_{2.5})


A (%) = $100 - \frac{ \overline{X} - \overline{R} }{\overline{R}} * 100$			
Steady state #	Sensor Mean (µg/m³)	FEM GRIMM (μg/m³)	Accuracy (%)
1	11.2	10.18	89.7
2	17.5	15.20	84.9
3	64.6	59.62	91.7
4	172.4	153.11	87.4
5	338.2	270.07	74.8

Accuracy was evaluated by a concentration ramping experiment at 20 °C and 40%. The sensor's readings at each ramping steady state are compared to the reference instrument.

A negative % means sensors' overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5})



100% represents high precision.

Sensor's ability to generate precise measurements of $PM_{2.5}$ concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5 °C and 15%) cold and humid (5 °C and 65%), hot and humid (35 °C and 65%), or hot and dry (35 °C and 15%).

Coefficient of Determination

i

The IQAir AirVisual Pro sensors showed very strong correlations with the corresponding FEM PM_{2.5} data ($R^2 = 0.99$) at 20 °C and 40% RH.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had effect on the IQAir AirVisual Pro sensor performance at 65% RH.

Observed Interferents N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.