AQ-SPEC

Air Quality Sensor Performance Evaluation Center

Sensor Description

Manufacturer/Model: PurpleAir/PA-II-FLEX

 $Pollutants: \\ PM_{1.0}, PM_{2.5} \, and \, PM_{10} \, mass \\ concentration$

Time Resolution: 2-min

Type: Optical

Additional Information

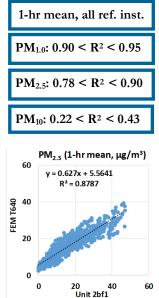
Field evaluation report:

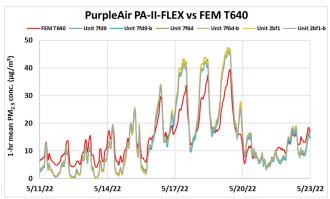
http://www.aqmd.gov/aqspec/evaluations/field

Lab evaluation report:

http://www.aqmd.gov/aq-spec/evaluations/laboratory

AQ-SPEC website:


http://www.aqmd.gov/aq-spec


Evaluation Summary

- The accuracy of the PA-II-FLEX sensors was 56.6% to 94.5% and 71.4% to 98.1% for PM_{1.0} and PM_{2.5}, respectively, in the laboratory evaluation. Overall, the PA-II-FLEX sensors underestimated PM_{1.0} levels and overestimated low PM_{2.5} levels (10 to 15 μg/m³) and underestimated high PM_{2.5} levels (50 to 300 μg/m³) compared to the T640x in the lab.
- The PA-II-FLEX sensors exhibited high precision for all conc., T/RH combinations for PM_{1.0} and PM_{2.5}.
- The PA-II-FLEX sensors showed low intra-model variability for PM_{1.0} and PM_{2.5} in both the field and lab evaluations.
- Data recovery was ~94% and 100% from all units tested in the field and laboratory evaluations, respectively.
- PA-II-FLEX sensors showed very strong, strong and very weak to weak correlations for PM_{1.0}, PM_{2.5} and PM₁₀, respectively, with GRIMM and T640 from the field; and very strong correlations with the T640x in the laboratory studies (R² > 0.99 for PM_{1.0} and PM_{2.5}).
- The same PA-II-FLEX units were tested both in the field (1st stage of testing) and in the laboratory (2nd stage of testing) against reference PM instruments (except for Unit 7f6d, unit damaged during transport)

Field Evaluation Highlights

- Deployment period 03/17/2022 05/24/2022: the PA-II-FLEX sensors showed very strong and strong correlations for PM_{1.0} and PM_{2.5}, respectively; and very weak to weak correlations for PM₁₀ as compared to GRIMM and T640
- Data recovery from the units was ~94% for all PM fractions.

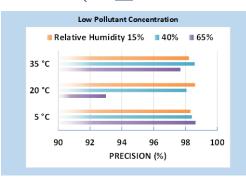
Coefficient of Determination (R²) quantifies how the two sensors followed the PM_{1.0}, PM_{2.5}, or PM₁₀ concentration change by the reference instruments.

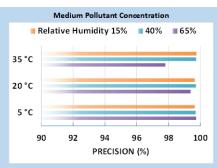
An R² approaching the value of 1 reflects a near perfect agreement, whereas a value of 0 indicates a complete lack of correlation.

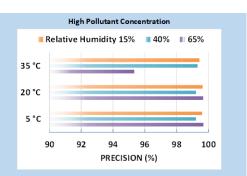
Laboratory Evaluation Highlights

Accuracy (PM_{2.5})

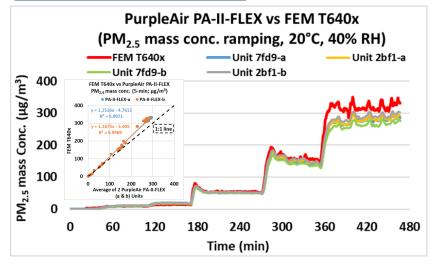
A (%) =
$$100 - \frac{|\bar{X} - \bar{R}|}{\bar{R}} * 100$$


Steady State#	a-Sensor Mean (μg/m³)	FEM T640x (μg/m³)	Accuracy (%)
1	10.5	9.3	87.2
2	18.4	14.3	71.4
3	51.3	52.6	97.6
4	142.1	154.1	92.2
5	287.3	327.1	87.8


Accuracy was evaluated by a concentration ramping experiment at 20°C and 40% RH. The sensor's readings at each ramping steady state are compared to the reference instrument.


A negative % means sensor's overestimation by more than two fold. The higher the positive value (close to 100%), the higher the sensor's accuracy.

Precision (PM_{2.5} from channel A))



100% represents high precision.

Sensor's ability to generate precise measurements of PM_{2.5} concentration at low, medium, and high pollutant levels were evaluated under 9 combinations of T and RH, including extreme weather conditions like cold and dry (5°C and 15% RH) cold and humid (5°C and 65% RH), hot and humid (35°C and 65% RH), or hot and dry (35°C and 15% RH).

Coefficient of Determination

The PA-II-FLEX sensors showed very strong correlations with the corresponding FEM $PM_{2.5}$ data ($R^2 > 0.99$) at 20 °C and 40% RH. For conc. ramping experiments of $PM_{1.0}$, please see the lab report.

Climate Susceptibility

From the laboratory studies, temperature and relative humidity had minimal effect on the PA-II-FLEX sensors' precision. Spiked concentrations were observed at the 65% RH change point.

Observed Interferents

N/A

All documents, reports, data, and other information provided in this document are for informational use only. Mention of trade names or commercial products does not constitute endorsement or recommendation. As a Government Agency, the South Coast AQMD and its AQ-SPEC program highly recommend interested entities to make use and purchase decisions based on the requirements of their study design, the technical aspects and features of their specific project applications.