

Proposed Updates to BACT Guidelines

BACT Scientific Review Committee Meeting October 15, 2025

Meeting Location: South Coast AQMD, Conference Room GB

Zoom Webinar: https://scaqmd.zoom.us/j/92579517440

Webinar ID: **925 7951 7440**

Call-in number: 1-669-900-6833

Outline

South Coast AQMD BACT Guidelines

Overview, Policy, and Procedures

Proposed Updates to Part B: Major Polluting Facilities

Proposed Updates to Part D: Non-Major Polluting Facilities

Next Steps and Public Comment

Outline

Overview, Policy, and Procedures

Proposed Updates to Part B: Major Polluting Facilities

Proposed Updates to Part D: Non-Major Polluting Facilities

Next Steps and Public Comment

South Coast AQMD BACT Guidelines BACT/LAER Applicability and Criteria

Best Available Control Technology (BACT) is the most stringent emission limitation or control technique for a class & category of equipment that is:

Achieved in Practice (AIP), or

Contained in a State Implementation Plan (SIP), or

Technologically Feasible and Cost-Effective

- BACT is a major element of Regulation XIII New Source Review (NSR). BACT analysis is performed for
 - New sources
 - Relocated sources
 - Modifications to an existing source
- BACT is required if BACT analysis shows:

Emissions increase

≥ 1.0 lb/day

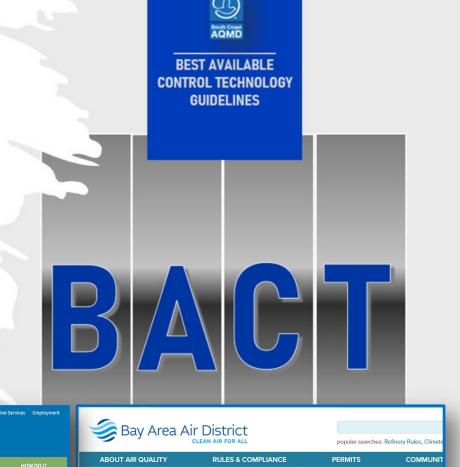
(Cumulative increases within a 5-year period will be subject to BACT)

Nonattainment air contaminant (NOx, VOC, SOx, PM10)

Ozone depleting compound

Ammonia

South Coast AQMD BACT Guidelines Achieved in Practice Criteria


Emission limit or control technology may be considered AIP for a category or class of source if

- It is included in any of the following regulatory documents or programs:
 - South Coast AQMD BACT Guidelines
 - CARB BACT Technology Clearinghouse
 - U.S. EPA RACT/BACT/LAER Clearinghouse
 - Other districts' and states' BACT Guidelines
 - BACT/LAER requirements in permits issued by South Coast AQMD or other agencies

BACT / TBACT Workbook

South Coast AQMD BACT Guidelines Achieved in Practice Criteria (cont'd)

Also includes if emission limit or control technology

Meets all the following criteria:

 Commercial availability: At least one vendor must offer this equipment for regular or full-scale operation in the U.S.

- Reliability: Control technology must have been installed and operated reliably for at least six months (for Major Polluting Facility) or one year (for Non-Major Polluting Facility)
- Effectiveness: The control technology must be verified to perform effectively over the range of operation expected for that type of equipment
- For Non-Major Polluting Facilities, the control technology or emission rate must be cost-effective

South Coast AQMD BACT Guidelines BACT Guidelines Structure

- Overview
- Policy and Procedures
 - Major Polluting Facilities (Part A)
 - Non-Major Polluting Facilities (Part C)
 - Facilities Subject to PSD* for Greenhouse Gases (Part E)

Determinations & Guidelines

- LAER**/BACT Determinations for Major Polluting Facilities (Part B)
 - Section I South Coast AQMD
 - Section II Other Agencies
 - Section III Other Technologies (not yet qualified as LAER)
- BACT Guidelines for Non-Major
 Polluting Facilities (Part D)

^{*} Prevention of Significant Deterioration

^{**} Lowest Achievable Emission Rate

South Coast AQMD BACT Guidelines BACT Guidelines Structure (cont'd)

Major Polluting Facilities

- Has the potential to emit criteria pollutants at or above Clean Air Act thresholds, depending on attainment status
- Additional stringencies due to federal regulations
- Does not allow for routine consideration of cost
- Determined based on info at time of permit to construct issuance

Non-Major (Minor) Polluting Facilities

- Smaller emitting facilities
- CA Health & Safety Code (H&SC) Section 40440.11
- Cost-effectiveness analysis required
- Requires Board approval
- Determined at the time an application is deemed complete

Cleaning The Air That We Breathe...

Outline

South Coast AQMD BACT Guidelines

Overview, Policy, and Procedures

Proposed Updates to Part B: Major Polluting Facilities

Proposed Updates to Part D: Non-Major Polluting Facilities

Next Steps and Public Comment

Overview, Policy, and Procedures BACT/LAER Update Process

- Periodic Updates to the BACT Guidelines
 - Reflect advancements in control technologies
 - Ensure affected equipment uses the cleanest available and applicable technologies

Achieved in Practice, or Contained in a State Implementation Plan

Required by federal law, as LAER for major sources

- LAER Update Process: Section I South Coast AQMD LAER/BACT Determinations
 - To make a LAER determination more stringent than current LAER
 - Notify the public and BACT Scientific Review Committee (SRC) through a public process, under 30-day public review
 - Include written comments in the BACT Docket
 - Evaluate comments filed during the 30-day period before making a permit decision
 - Provide standing status reports to the Stationary Source Committee and to the Governing Board

Overview, Policy, and Procedures BACT/LAER Update Process (cont'd)

- BACT Update Process
 - To make BACT more stringent than LAER
 (Requirements of CA H&SC Section 40440.11)
 or

Technologically Feasible and Cost-Effective

Unique to South Coast AQMD and some other areas in California and allows for more stringent controls than LAER

- In establishing Non-Major Polluting Facility BACT
 - Evaluate cost-effectiveness
 - Notify the public and BACT SRC through a public process, under 30-day public review
 - Include written comments in the BACT Docket
 - Evaluate comments filed during the 30-day period before making a permit decision
 - Provide a report to the Stationary Source Committee
 - Present to the Governing Board for approval at a public hearing
 - Update the BACT Guidelines

Overview, Policy, and Procedures Streamlining BACT and LAER Publication Process

Background

- Permitting Enhancement Program (PEP)
- Permit Streamlining TaskForce
 - Public feedback identified a need to post LAER listings more frequently to support timely permitting decisions

Goal

- Assist Major Polluting
 Facilities in planning and reducing permitting delays
- Enhance transparency for applicants
- Enable more frequent updates to reflect new LAER listings
- Maintain rigorous technical review while improving timelines for LAER listings

Current Process

- Update LAER and BACT determinations & Guidelines concurrently through the same public process
- Provide standing status reports to Stationary Source Committee and Governing Board
- Update BACT Guidelines
- Concurrent update processcould delay LAER listings

Overview, Policy, and Procedures Streamlining BACT and LAER Publication Process (cont'd)

Basis to Decouple LAER from BACT Update Process

- LAER is determined based on information at time of permit to construct issuance
- More frequent LAER listings allow facilities to:
 - Understand control expectations in advance
 - Incorporate the cleanest technologies earlier in the process

- Per CA H&SC requirements,
 BACT updates involve
 broader stakeholder review
 and take longer to finalize
- Decoupling allows faster publication of LAER while still updating BACT Guidelines through SRC and public engagement

BACT SRC Role

- The SRC will continue to:
 - Provide technical review and feedback on BACT/LAER determinations as part of the overall process
 - Review and comment on LAER listings prior to update

Overview, Policy, and Procedures **Proposed Changes to the BACT Guidelines Documents**

Overview

- Chapter 1 Introduction
 - Update listed manager of CARB Technology Clearinghouse database
 - Reorganize paragraphs to improve clarity and consistency
 - Update BACT Guidelines access instructions to reflect the current web address and eliminate the hardcopy ordering option
- Chapter 3 When is BACT Required?
 - Add a footnote to include a link to the CO Attainment Status memo
- **Chapter 5 Review of Staff BACT Determinations**
 - Add description of and link to BACT SRC Charter and updated **BACT SRC web address**

South Coast Air Quality Management District Best Available Control Technology Scientific Review Committee Charter

(Adopted December 2016) (Amended February 1, 2019)

In March 1994, the SCAQMD Governing Board initiated a program to update and revise the Best Available Control Technology (BACT) Guidelines. As part of this update, the Board established requirements for public review and comment. The BACT Scientific Review Committee (BACT SRC) was created to assist SCAQMD staff with the policy issues used to develop and implement BACT procedures in the BACT Methodology Report. The BACT SRC was initially convened in July 1994 and participated in a series of public meetings. Due to their contributions to the BACT Methodology Report, the BACT SRC was officially established by the Governing Board as a standing committee on September 8, 1995 to review matters dealing with BACT.

This BACT SRC Charter has been adopted to formalize the BACT SRC membership and its role in the development of the BACT Guidelines.

Mission of the BACT Scientific Review Committee

The BACT SRC shall consist of experts in the field of air quality who shall assist and advise SCAQMD staff to ensure the BACT Guidelines are developed in a public process that is clear, consistent, and based on sound, technical information and data.

Goals

- 1. Contribute to the development of the BACT Guidelines through the public process;
- 2. Provide SCAQMD staff with technical expertise regarding issues pertinent to the proposed
- 3. Advise SCAQMD staff to create a more certain and predictable BACT determination

Objectives

The BACT Scientific Review Committee shall achieve its goals by meeting periodically when BACT Guidelines updates are under development by:

- 1. Providing verbal and written comments to SCAQMD staff regarding proposed BACT Guidelines presented at the BACT SRC meetings;
- 2. Providing technical knowledge and promoting discussion regarding technologies for
- Assisting SCAQMD staff to ensure proposed BACT Guidelines are clear and consistent with local, state, and federal air quality requirements; and
- 4. Advising SCAQMD staff on the development, interpretation and implementation of

Overview, Policy, and Procedures Proposed Changes to the BACT Guidelines Documents (cont'd)

- Part A Policy and Procedures for Major Polluting Facilities
 - Chapter 1 How is LAER Determined for Major Polluting Facilities?
 - Correction to chapter number referenced in "Cost in LAER Determinations" section
- > Part C Policy And Procedures For Non-Major Polluting Facilities
 - Chapter 1 How Is Minor Source BACT (MSBACT) Determined for Minor Polluting Facilities?
 - Table 5: Update Maximum Cost-Effectiveness Criteria based on Marshall & Swift Cost Indexes

	2025 Quarte	r 2
Pollutant	Average (\$/ton)	Incremental (\$/ton)
ROG	43,117	129,352
NOx	40,770	122,095
SOx	21,559	64,676
PM ₁₀	9,605	28,603
CO	854	2,455

Outline

South Coast AQMD BACT Guidelines

Overview, Policy, and Procedures

Proposed Updates to Part B: Major Polluting Facilities

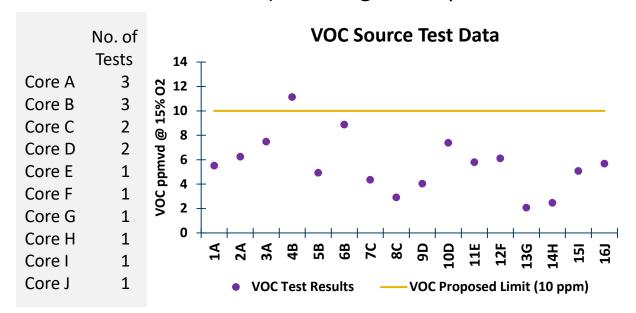
Proposed Updates to Part D: Non-Major Polluting Facilities

Next Steps and Public Comment

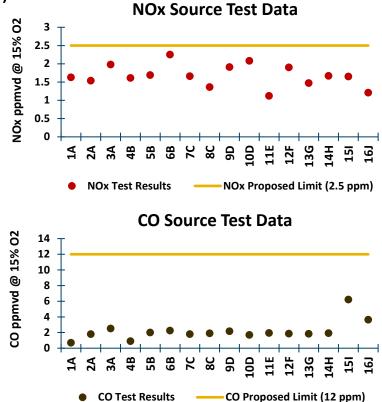
Part B - LAER/BACT Determination for Major Polluting Facilities

Section I – South Coast AQMD LAER/BACT Determinations Proposed Updated Listing

- Linear Generator, Non-Emergency Electrical Generator, Natural Gas Fired
 - Achieved in Practice case (Permit to Operate issued in March 2024)
 - 240 kWe linear generator consists of two identical 120 kWe cores
 - Exhaust is vented to the oxidation catalyst
 - Rule 1110.3 adopted in Nov. 2023 and required the VOC limit of 10 ppmv
 - Emissions:


Emissions	Proposed LAER	Source Test Results	@ Normal Load
(ppmv)*	Limits	Core 1	Core 2
NOx	2.5	1.40	2.09
СО	12	<2.07	<1.78
VOC	10	2.92	7.40

^{* @ 15%} O2 on a dry basis


 Source test was performed using South Coast AQMD Method 100.1 for NOx, O2, and CO; and Method 25.3 for VOC

- Linear Generator, Non-Emergency Electrical Generator, Natural Gas Fired (cont'd)
 - 10 linear generator cores (A J) tested
 - 16 total test results (including subsequent tests for Cores A to D)

Note: In 2021, Core B's initial source test measured 11.13 ppmv VOC @ 15% O2, well below the 25 ppmv permit limit. Subsequent tests demonstrated < 10 ppmv VOC @ 15% O2

Lithographic Printing, Non-Heatset, Sheet-fed

BACT SRC Comment

Update the BACT Guidelines with additional determinations to reflect the recently permitted UV sheet-fed subcategory

Response

Proposed adding sheet-fed BACT determination under non-heatset to ensure the BACT Guidelines reflect achieved in practice cases

Printing (Graphic Arts) - Lithographic, Non-Heatset

- Lithographic Non-Heatset, A/N 367452, Creative Mailings 11/30/00
- Offset Printing, Plastic Container Lids, A/N 357056, Container Supply Co. 12/13/00

- Achieved in Practice case (Permit to Operate issued in March 2021)
 - Sheet-fed lithographic printing
 - 170 kW rated ultraviolet (UV) dryer and 175 kW rated infrared dryer

Emissions:

- Low VOC fountain solution; less than or equal to 8% by volume
- Low VOC blanket and roller washes; less than or equal to 100 gram per liter
- UV-curable or oil-based inks
- Comply with Rule 1130 and Rule 1171

Landfill Gas Combustion and Sulfur Control System

- Achieved in Practice case (In operation since Nov. 2018)
 - Five parallel fixed-bed pressure vessels (four operational and one standby)

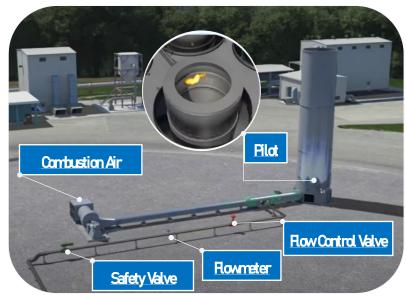
Each vessel containing granular media to reduce total sulfur in the landfill gas stream to 85

ppmv daily and 60 ppmv monthly prior to combustion

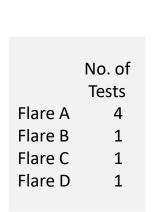
Emissions:

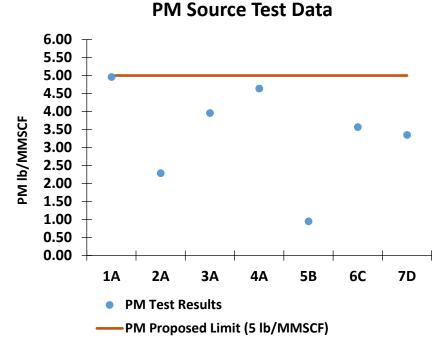
Emission (ppmv)	Proposed LAER Limits	Maximum Concentration* Feb. 2024 – Sep. 2024
Total Sulfur as H2S (Daily average)	85	69
Total Sulfur as H2S (Monthly average)	60	59

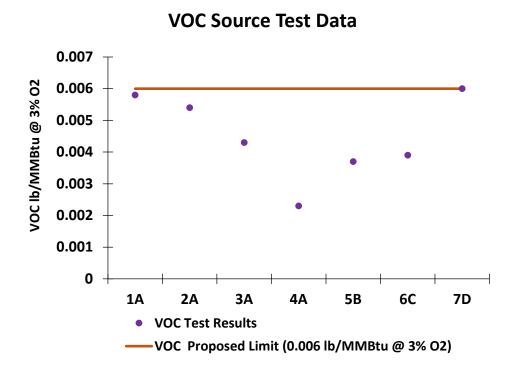
^{*} As measured by the facility's Continuous Fuel Gas Monitoring System


Flare, Landfill Gas Fired

- Achieved in Practice case (Permit to Operate issued in Feb. 2021)
 - Enclosed 167 MMBtu/hr ultra low emissions flare with automatic air damper, propane pilot, and 250 HP combustion air blower
 - Equipped with a flow meter and continuous temperature indicator/recorder
 - Flare capacity: 5,500 SCFM


Emissions:


Emissions	Proposed LAER Limits	Source Test Results Range 2022 - 2025
VOC as Hexane (lb/MMBtu)	0.006	0.0023 - 0.0058
PM10 as PM (lb/MMSCF)	5	2.29 - 4.96


Maintain ≥1400 °F (15-min avg.) during flare operation;
 excludes startup/shutdown

- Flare, Landfill Gas Fired
 - PM and VOC emissions

Part B - LAER/BACT Determination for Major Polluting Facilities Section III - Other Technologies

Boilers

- Emerging Technology case
 - Construction in progress Permit to Construct issued in Oct. 2023
 - Two boilers rated at 520.4 MMBtu/hr each, with low-NOx burners
 - Two Selective Catalytic Reduction (SCR) Systems
 - Fired on natural gas, process gas from the fume scrubber, and refinery gas

Emissions:

Emissions	Prop	osed LAER Limits	
(ppmv)	30-day average	24-hr average	1-hr average
NOx*	2.5	3.0	-
CO*	27	35	-
Ammonia	-	-	5

^{* @ 3%} O2 on a dry basis

Outline

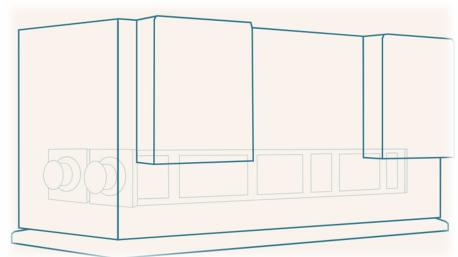
South Coast AQMD BACT Guidelines

Overview, Policy, and Procedures

Proposed Updates to Part B: Major Polluting Facilities

Proposed Updates to Part D: Non-Major Polluting Facilities

Next Steps and Public Comment


Part D - BACT Determination for Non-Major Polluting Facilities South Coast AQMD BACT Determinations Proposed New Category

- Linear Generator, Non-Emergency Electrical Generator, Natural Gas Fired
 - Achieved in Practice case (Permit to Operate issued in April 2024)
 - 240 kWe linear generator consists of two identical 120 kWe cores
 - Exhaust is vented to the oxidation catalyst
 - Rule 1110.3 adopted in Nov. 2023 and required the VOC limit of 10 ppmv
 - Emissions:

Emissions	Proposed LAER	Source Test Results	@ Normal Load
(ppmv)*	Limits	Core 1	Core 2
NOx	2.5	1.98	2.25
СО	12	2.51	2.24
VOC	10	7.48	8.87

^{* @ 15%} O2 on a dry basis

Source test was performed using South Coast AQMD Method 100.1 for NOx, O2, and CO and Method 25.3 for VOC

Part D - BACT Determination for Non-Major Polluting Facilities Other Updates Consistency with Rules and Regulations

- > Rule 1153.1 Emissions of Oxides of Nitrogen from Commercial Food Ovens (Aug. 4, 2023): update to comply with Rule 1153.1 NOx and CO requirements
 - Ribbon Burner: At all temperatures comply with 30 ppm NOx limit per Rule 1153.1
 - Indirect Fired Burner: Move from footnote to the table and add 30 ppm NOx and 800 ppm
 CO emission limits

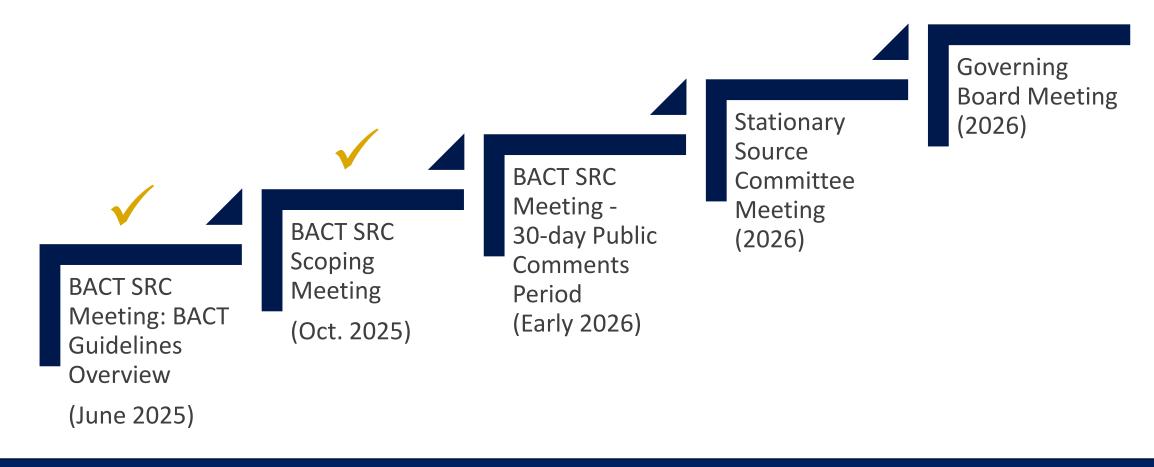
Equipment or	Process:	Food Oven				
			Criter	ia Pollutants		
Subcategory ¹	Rating/ Size	VOC	NOx	SOx	СО	PM10
Ribbon Burner	> 500°F		60-30 ppmvd @ 3% O ₂ (2-2-2018)(xx- xx-2026)	Natural Gas (2-2-2018)	800 ppmvd @ 3% O ₂ Compliance with applicable Rules 407 or 1153.1 (2-2-2018)(xx-xx- 2026)	Natural Gas (2-2-2018)
	≤ 500°F		30 ppmvd @ 3% O ₂ (2-2-2018)	Same as above	Same as above	Same as above
Other Direct Fired Burner			30 ppmvd @ 3% O ₂ (2-2-2018)	Same as above	Same as above	Same as above
Indirect Fired Burner			30 ppmvd @ 3% O ₂ (xx-xx-2026)			
Infrared Burner			30- <u>15 ppmvd @</u> 3% O ₂ (2-2-2018)			

- Infrared Burner: Update NOx limit to 15 ppm
- All categories: Add 800 ppm CO limit to comply with current rule requirements

Catalytic oOxidizer	Compliance with			
	Comphance with			
with 95% overall	Rule 1147 at the			
control efficiency	time of applicability			
(mass basis); catalyst	for Oxidizer			
inlet temperature ≥	(2-2-2018)(xx-xx-			
600°F; ceramic	2026)			
prefilter				
(2-2-2018)(xx-xx-				
2026)				
	control efficiency (mass basis); catalyst inlet temperature ≥ 600°F; ceramic prefilter (2-2-2018)(xx-xx- 2026)	control efficiency (mass basis); catalyst inlet temperature ≥ 600°F; ceramic prefilter (2-2-2018)(xx-xx-2026) time of applicability for Oxidizer (2-2-2018)(xx-xx-2026)	control efficiency (mass basis); catalyst inlet temperature ≥ 600°F; ceramic prefilter (2-2-2018)(xx-xx-2026) time of applicability for Oxidizer (2-2-2018)(xx-xx-2026)	control efficiency (mass basis); catalyst inlet temperature ≥ 600°F; ceramic prefilter (2-2-2018)(xx-xx-2018)(xx-

Outline

South Coast AQMD BACT Guidelines


Overview, Policy, and Procedures

Proposed Updates to Part B: Major Polluting Facilities

Proposed Updates to Part D: Non-Major Polluting Facilities

Next Steps and Public Comment

Next Steps

Stay Informed!

Receive Newsletter Updates via www.aqmd.gov/sign-up

Subscribe to: ☑ BACT Guidelines

Si	gn	U	p

The South Coast AQMD offers periodic newsletter updates via Email on a variety of topics. Click on the Manage Subscriptions link at the bottom of the form to update your subscriptions (unsubscribe from lists, subscribe to additional lists, or change your Email address).

If you wish to receive daily pollution forecasts or alerts for specific pollution levels in your area, sign up for Air Alerts.

For printed copies of South Coast AQMD publications that mailed to you, please visit Subscription Services (charges may apply).

Email Address:	Re-Enter Email Address:
First Name (optional):	Last Name (optional):

BACT Staff Contact Information

Please contact BACT staff with any questions

David Ono

Senior AQ Engineering Manager

(909) 396-2538

□ DOno@aqmd.gov

Bettina Burleigh Sanchez

Senior Air Quality Engineer
BACT Team

(909) 396-3245

BBurleigh@aqmd.gov

Bahareh Farahani

Program Supervisor BACT Team

(909) 396-2353

BFarahani@aqmd.gov

Ashkan Garshasbi

Air Quality Engineer
BACT Team

(909) 396-3593

AGarshasbi@aqmd.gov

http://www.aqmd.gov/home/permits/bact

Opportunities for Stakeholder Feedback

Currently seeking public comment on proposed updates to BACT Guidelines

Stakeholders can provide comment during BACT SRC Meetings

Submission of written comment requested by December 1, 2025

To: BACTTeam@aqmd.gov
Include "BACT Docket" in the subject line

Please note that under the California Public Records Act (Gov't. Code § 7920.000 et seq.) your written and oral comments, attachments, and associated contact information (e.g., your address, phone, email) become part of the public record and can be released to the public on request or posted on the South Coast AQMD website.