

E-Mailed: June 24, 2015 markg@moval.org June 24, 2015

Mr. Mark Gross Community and Economic Development Department 14177 Frederick Street Moreno Valley, CA 92553

<u>Final Program Environmental Impact Report (Final PEIR)</u> for the Proposed World Logistics Center Project

The South Coast Air Quality Management District (SCAQMD) staff appreciates the opportunity to submit comments on the Final PEIR for the World Logistics Center Project. SCAQMD staff appreciates the time that city staff and the project applicant have taken to meet with us to discuss this project and the inclusion of some mitigation measures in the Final PEIR, such as the requirement for 100% Tier 4 construction equipment. However, we continue to have significant concerns about this project that were raised in previous comments, including those not adequately addressed in the Final PEIR. Most importantly, given the magnitude of the air quality impacts, the project must provide more substantial mitigation for the significant emissions from the additional on-road truck trips generated by this project.

SCAQMD staff recognizes the critical role that warehousing and goods movement have in our regional and national economy. While there has been tremendous growth in warehousing in our region over the past several years to accommodate the needs of the logistics sector, the scale of the proposed World Logistics Center is unprecedented. The 40.6 million square feet of new warehousing in this single project make up almost ten percent of the total new warehousing space projected to be needed in the region by 2035², and also represents an area that is bigger than 32 individual cities in our jurisdiction. As a further indication of the scale of this project, the estimated ~14,000 trucks per day serving this project at project build out will be more than half the total number of trucks that currently visit the entire Port of Long Beach³. Below we present the major air quality issues that the lead agency must address before it considers approving this project.

http://www.aqmd.gov/docs/default-source/ceqa/comment-letters/2012/march/world-logistics-center-specific-plan.pdf
http://www.aqmd.gov/docs/default-source/ceqa/comment-letters/2012/may/world-logistics-center-specific-plan-may-2012.pdf
http://www.aqmd.gov/docs/default-source/ceqa/comment-letters/2013/april/world-logistics-center.pdf
http://www.aqmd.gov/docs/default-source/ceqa/comment-letters/2015/june/fpeirworldlog.pdf

² Industrial Space in Southern California: Future Supply and Demand for Warehousing and Intermodal Facilities, Southern California Association of Governments (2010) http://www.freightworks.org/DocumentLibrary/Comprehensive%20Regional%20Goods%20Movement%20Plan%20and%20Implementation%20Strategy%20-%20Reigonal%20Warehousing%20Needs%20Assessment%20Final%20Report.pdf

Based on the most recent emission inventory: http://www.polb.com/civica/filebank/blobdload.asp?BlobID=12246

Inadequate Mitigation of Trucking Emissions

While the proposed project includes a seemingly stringent requirement to only allow trucks that meet the 2010 emissions standard onsite, in reality this measure will do very little to reduce air quality impacts beyond current regulatory requirements. Due to the state Air Resources Board's existing Truck and Bus Regulation, by the time the first warehouse will become operational (likely no sooner than 2018), approximately 75 percent of all truck miles in our region will already be driven by trucks meeting the 2010 emissions standard. By 2023 (when half of this project is still unbuilt), the proposed mitigation will affect no more than about 1 percent of the project's trucking emissions from then onwards.

As currently proposed, the mitigated emissions from this project will reach between about one half and three quarters of a ton of nitrogen oxide (NOx) emissions each day for the majority of the project's life. To put this in perspective, this level of emissions is comparable to facilities in the top ten largest stationary sources of NOx in the air basin (e.g., power plants or refineries). Despite this substantial air quality impact, the proposed mitigation from this project does not include all feasible measures to reduce impacts, nor does it provide a fair-share reduction in NOx to meet air quality standards, as demonstrated below.

In order to meet federal requirements to achieve air quality standards, our air basin must reduce NOx emissions beyond existing regulations by up to 65% by 2023 and up to 75% by 2032⁵. If these ozone and particulate matter air quality standards are not achieved, the region faces two significant challenges. First, we will continue to experience poor air quality and the resulting health impacts, including lung damage and premature deaths. Second, federally mandated sanctions will be imposed, including higher operating costs for businesses with air permits and more importantly for this project, loss of federal transportation funding. It is for these reasons that we are disappointed that this project does not propose more measures to mitigate its air quality impacts. This project can and must do more.

The unprecedented scale of this project requires all feasible mitigation measures for the large amount of NOx emissions that will be generated by the project. Although the PEIR investigated the truck technologies currently utilized by the ports of Los Angeles and Long Beach to determine what is feasible to implement for this project today, it ignored the more important actions taken by both ports to encourage and implement newer technologies in the future. For example, because vehicle technology is evolving rapidly, both ports have programs in place to demonstrate and deploy newer truck tailpipe and infrastructure technologies as they become available. 6 These actions are implemented both as mitigation measures within individual CEQA projects⁷, and as measures separate

⁴ NOx is a key ingredient to both ozone and particulate matter formation in the atmosphere, two pollutants for which the air basin and the Inland Empire in particular do not meet air quality standards.

⁵ Based on estimates from the 2012 Air Quality Management Plan.

⁶ http://www.cleanairactionplan.org/

⁷ See the following Mitigation, Monitoring, and Reporting Programs for examples of how projects have incorporated future technology reviews and implementation into project approvals:

from development projects. This approach has proven to be generally successful to ensure continued growth at the ports by bringing stakeholders together to build consensus regarding feasible mitigation measures without excessive litigation and corresponding delays, subsequently resulting in sizable air quality improvements.

The Final PEIR's response to SCAQMD staff and ARB staff comments regarding the implementation of an alternative technology truck phase-in was not sufficient and did not consider the feasible measures that are, or soon will be, available to implement new technologies early and throughout the life of the project. It is inappropriate to simply dismiss as 'speculative' the comments of two public agencies who have considerable expertise in truck engine technologies and who have devoted considerable financial resources to ensure that these technologies will be commercially available in the time frames specified. Establishing a program of enforceable mitigation that actually will reduce emissions for most of the project's life is particularly important at this juncture because the PEIR is being used to approve a Development Agreement, which may not receive any further environmental review.

More specifically, the lead agency and project applicant should consider developing strategies that are consistent with ARB's Draft Sustainable Freight Strategy (SFS) document⁸. For example, the project could include a project-wide cap (e.g., SFS page 45) that declines through time as newer truck engine types become commercially available and/or are required to be manufactured per future regulations. Today there are already many trucks that are commercially available that have certification levels that are below ARB's current NOx standard (Attachment A). Further, trucks that meet ARB's lowest Optional NOx standard (90% lower than the current standard) are expected to be commercially available in the 2018 timeframe, very early in the life of the project (Attachment B). Lastly, engine technologies that may achieve even greater reductions in emissions are being demonstrated widely today for potential commercialization well before project buildout (Attachment C).

Requested Modification to PEIR⁹: SCAQMD staff strongly recommends that the PEIR implement a program that includes elements such as:

- Steps to implement new truck and infrastructure technologies as a part of the project based on periodic and frequent technology/feasibility reviews as individual buildings are leased or sold.
- Project-wide or building-specific emissions caps that decline through time.
 The lowering of emission caps could be tied to the advancement of engine
 technologies. For example, in a set period of time after the commercial
 introduction of trucks meeting ARB's lowest Optional NOx Standard the
 emission caps could be reduced by a certain percentage. These caps could be
 implemented as individual buildings are leased or sold.

http://www.polb.com/civica/filebank/blobdload.asp?BlobID=6261 (e.g., MMAQ-8 & 25) http://www.portoflosangeles.org/EIR/YTI/FEIR/MMRP_FINAL.pdf (e.g., MMAQ-8 & LMAQ-1 & 2 & 4)

⁸ Draft document available here: http://www.arb.ca.gov/gmp/sfti/Sustainable Freight Draft 4-3-2015.pdf

⁹ SCAQMD staff is available to help craft detailed revisions to the project's mitigation on an expedited basis.

• Similar to the SCAQMD Surplus Off-road Option for NOx (SOON) program for owners of off-road vehicles ¹⁰, tenants that occupy buildings in the project site should be required to apply in good faith for incentive funding assistance ¹¹ to replace and retrofit older trucks. Should awards be granted, the applicant must also be required to use them.

Misleading Discussion of Potential Health Risks

The PEIR misinterprets and then relies heavily on a single study published by the Health Effects Institute (HEI) to determine that "new technology diesel exhaust does not cause cancer." (PEIR pg. 4.3-1). The PEIR should not make such sweeping conclusions based on a single study. While the study identifies real reductions in the mass of particulate matter with newer truck technologies, the study size was too small to identify potential cancer effects for exposures similar to what people will experience from this project. This study did not, nor was it designed to, evaluate the question of whether the toxicity per unit mass of diesel exhaust particulate (e.g., the cancer potency factor) was different compared to older engines. At the concentrations studied, one would not expect to find any tumors given the number of animals used, even if the carcinogenic potency of the new technology particulate emissions were the same as that of the particulate from the older technology engines. From the study results, it is not possible to make any conclusions on the relative carcinogenic potency of diesel exhaust particulates.

Further, the state Office of Environmental Health Hazard Assessment (OEHHA) is charged with determining the cancer potency factors of all pollutants for use in Health Risk Assessment (HRAs) throughout the state. The cancer potency factors from OEHHA have been used in the HRA prepared for this EIR, and the emission factors from the state Air Resources Board's EMFAC model already account for the reduced diesel exhaust coming from 2010 trucks. Therefore, the EIR's conclusions regarding diesel exhaust from this single HEI study are wholly unsupported by the volume of studies that OEHHA and ARB rely on to determine the carcinogenicity of diesel particulate matter coming from 2010 trucks.

We note that in response to ARB staff's comments expressing concern about the misuse of the HEI study, the PEIR consultant provided a response using a partial quote taken from the study's Executive Summary.

RESPONSE TO ARB STAFF'S CONCERNS ABOUT THE HEI STUDY IN JUNE 10, 2015 MEMO FROM LSA ASSOCIATES TO MORENO VALLEY PLANNING DEPARTMENT.

"The primary conclusion of the HEI ACES is 'that the [New Technology Diesel Exhaust] would not cause an increase in tumor formation or substantial toxic health effects.' (HEI ACES Report p.3)"

SCAQMD staff is concerned that the lead agency is selecting this quote out of the full context of the report and ignoring an important aspect of the HEI publication process, the

 $^{^{10}\} http://www.aqmd.gov/home/programs/business/business-detail?title=off-road-diesel-engines\&parent=vehicle-engine-upgradesel-engineswarent=vehicle-engine-upgradesel-engineswarent=vehicle-engine-upgradesel-engineswarent=vehicle-engine-upgradesel-engineswarent=vehicle-engine-upgradesel-engineswarent=vehicle-engine-upgradesel-engin$

¹¹ For example, Carl Moyer, Proposition 1B, VIP, or other similar funding programs. http://www.aqmd.gov/home/programs/business/business-detail?title=vehicle-engine-upgrades

independent peer review. Importantly, in the Commentary prepared by HEI's own independent review panel, the peer reviewers felt it necessary to modify the quote from above to the statement below.

HEI PEER REVIEW PANEL CONCLUSION ON STUDY (PAGE 165 OF THE HEI STUDY) (EMPHASIS ADDED):

"Using appropriate statistical approaches to analyze the data, the investigators in this core study confirmed the a priori hypothesis, namely, that lifetime exposure to [New Technology Diesel Exhaust] at the concentrations studied would not cause an increase in tumor formation or substantial toxic health effects in rats, although some biologic effects might occur."

The HEI study as designed cannot determine whether diesel exhaust from the World Logistics Center project would pose a potential cancer risk in the surrounding community. The study does not contain sufficient information to determine whether 2010 diesel truck exhaust can cause cancer in humans. The number of animals in the study was too low to detect any cancer risk that would be expected at the concentrations evaluated. Therefore in SCAQMD staff's expert opinion, the whole of the scientific literature leads us to conclude that 2010 diesel truck exhaust be considered carcinogenic.

Requested Modification to PEIR: SCAQMD staff strongly recommends that the lead agency not rely on an approach that cherry picks and misuses a single study to conclude that diesel exhaust emitted from this project would not be carcinogenic. In particular, this study – which contradicts the general consensus of air quality experts that diesel exhaust is a carcinogen – should not be used as substantial evidence to support a Statement of Overriding Considerations. For significance determinations, the PEIR instead should only rely on the HRA that was already prepared following standard procedures to account for reduced emissions from 2010 trucks. If the lead agency chooses to keep references to the HEI study as part of the PEIR, then it should only be as supplementary information and characterized correctly.

Conclusion

As demonstrated in this letter, the project's mitigation is insufficient, but the city still has several options to improve this project and the PEIR prior to approval that would reduce the substantial and significant impacts on air quality. The choice is not about promoting jobs OR promoting clean air. It is about promoting a future that provides both. It has been done before and it should be done for this project.

We appreciate your willingness to consider these comments, and we look forward to continuing to work with you in developing strategies that can be implemented to reduce the air quality impacts of the World Logistics Center project. If you have any questions, don't hesitate to contact me at (909) 396-3244.

Sincerely,

Ian MacMillan

Planning & Rules Manager

In V. M. Mill

ATTACHMENT A1 Trucks That Have Certification Levels That Are Lower Than the Current NOx Standard of 0.2 (g/bhp-hr)

ARB Executive Order	OEM/Engine MFR	Engine Family	Heavy-Duty Engine Model	Fuel Type	Liters	Max BHP	Low BHP	NOx Cert. Level (g/bhp-hr)
A-364-0051	BAF	FBAFE06.83NN	V-10	CNG	6.8	285	285	0.100
A-364-0052	BAF	FBAFE06.89NN	V-10	CNG	6.8	242	242	0.050
A-338-0012	Capstone Turbine	FCSTH0.31NGL	Turbine	CNG		30kW	30kW	0.050
A-338-0013	Capstone Turbine	FCSTH0.51NGB	Turbine	CNG		65kW	65kW	0.050
A-338-0014	Capstone Turbine	FCSTH0.51NGH	Turbine	CNG		65kW	65kW	0.050
A-290-0148	Detroit Diesel Corp.	FDDXH14.8EAD	DD15	Diesel/SCR	14.8	505	455	0.090
A-290-0149	Detroit Diesel Corp.	FDDXH14.8EED	DD15	Diesel/SCR	14.8	560	455	0.090
A-290-0154	Detroit Diesel Corp.	FDDXH15.6GED	DD16	Diesel/SCR	15.6	600	475	0.070
A-010-1814-2	Ford Motor Company	FFMXE06.8BW5	F450/550 Chassis Cab; F650 Chassis Cab; Step Van; Motor Home	Gasoline	6.8	362	362	0.030
A-398-0012-1	Greenkraft, Inc.	FGKTE06.8FM1	V10	CNG	6.8	362	362	0.010
A-328-0068	IMPCO Technologies	FZ9XE06.0DCA	6.0L CNG	CNG	6.0	265	265	0.080
A-328-0069	IMPCO Technologies	FZ9XE06.8DC3	F- Series	CNG	6.8	308	308	0.080
A-328-0070	IMPCO Technologies	FZ9XE06.8DC2	E- Series	CNG	6.8	251	251	0.060
A-328-0074	IMPCO Technologies	FZ9XE06.8DC4	E- Series	CNG	6.8	251	251	0.060
A-400-0014	Landi Renzo USA	FLDRE06.8C10	F450/550 Chassis Cab; Step Van; Motor Home; F650 Chassis Cab	CNG	6.8	362	362	0.100
A-400-0018	Landi Renzo USA	FLDRE06.8B10	E450	CNG	6.8	362	362	0.080
A-415-0003-1	Power Solutions International	FPSIE08.8CNG	PSI CNG 235-180	CNG	8.8	235	180	0.100
A-415-0001-1	Power Solutions Intl	FPSIE08.8LPG	PSI LPG 270	LPG	8.8	270	270	0.100
A-344-0052-4	Roush Industries	FRIIE06.8BW5	Bluebird Vision School Bus: F450, 550, 650, Motor Home, Step Van	LPG	6.8	362	362	0.080
A-344-0056	Roush Industries	FRIIE06.8BWX	E450	LPG	6.8	305	305	0.090
A-242-0076	Volvo Powertrain Corp.	FVPTH10.8G01	MP7: 325E, 355E, 405E, 345A, 345C, 365C, 395C, 325M, 365M, 405M; D11H: 325, 355, 365, 385, 405	Diesel/SCR	10.8	405	325	0.060
A-242-0077	Volvo Powertrain Corp.	FVPTH12.8G01	D13H: 375, 405, 425, 435, 435P, 475, 500, 500P; MP8: 415 E, 415C, 425M, 445C, 445E, 455M, 505C, 505E	Diesel/SCR	12.8	505	375	0.060
A-242-0078	Volvo Powertrain Corp.	FVPTH16.1G01	D16H: 500, 550; MP10: 515M, 525C, 555M, 565C, 605C	Diesel/SCR	16.1	605	515	0.060

ATTACHMENT A2

Heavy Duty Vehicles that Have Emissions Benefits Beyond NOx Standard of 0.2 g/bhp-hr That are Funded Through the State HVIP Program

https://www.californiahvip.org/docs/HVIP_Year4_EligibleVehicles.pdf

Type: **Utility**

Aerial Boom Vehicle with JEMS: 16-20 kWh Lithium-Ion battery and 3000 PSI maximum hydraulic pressure

Chassis Model TA50, AM55 TA50, TA60, AM55,

AM55E

Gross Vehicle Weight > 26,000 > 26,000

Vehicle Year/Engine Model Year ΑII ΑII

Exportable Power N/A > 3.0 kW

Year 4 ARB Preliminary Voucher Amount \$20,000 \$22,000

PDF Spec Sheet

Manufacturer: AMP Electric Vehicles

Type: Delivery

E-100 Workhorse Zero-Emissions Walk-In Van

Gross Vehicle Weight 19,501-26,000

Vehicle Year/Engine Model Year 2013/2013

Year 4 ARB Preliminary Voucher Amount

PDF Spec Sheet

Manufacturer: Autocar

Type: Refuse

Xpeditor E3 Refuse Vehicle with Cummins ISL9 Engine and Parker RunWise Advanced Series

Hydraulic Hybrid Drive

Gross Vehicle Weight 38,001-66,000 38,001-66,000

Vehicle Year/Engine Model Year 2013/2012 2015/2012

Year 4 ARB Preliminary Voucher Amount \$40,000 \$40,000

PDF Spec Sheet

Manufacturer: **BYD Motors**

Type: Bus

40-Ft All Electric Zero-Emission Transit Bus

Gross Vehicle Weight 33,001-55,000 33,001-55,000

Li-Ion Battery Specification 324 kWh 324kWh Vehicle Year/Engine Model Year 2014/2014 2015/2015

Year 4 ARB Preliminary Voucher Amount \$95,000 \$95,000

60-Ft Articulated All Electric Zero-Emission Transit Bus

Gross Vehicle Weight 33,001-55,000 **Li-Ion Battery Specification** 547.5 kWh Vehicle Year/Engine Model Year 2015/2015 **Year 4 ARB Preliminary Voucher Amount** \$95,000

PDF Spec Sheet

30-Ft All Electric Zero-Emission Transit Bus

Gross Vehicle Weight >26,000 Li-Ion Battery Specification 182.5 kWh Vehicle Year/Engine Model Year 2015/2015 \$95,000 **Year 4 ARB Preliminary Voucher Amount**

PDF Spec Sheet

Manufacturer: EVI

Type: Delivery

EVI WI (Walk In)

Gross Vehicle Weight 19,501-26,000 14,001-19,500 Vehicle Year/Engine Model Year 2013/2013 2013/2013 Year 4 ARB Preliminary Voucher Amount \$80,000 \$90,000

PDF Spec Sheet

EVI MD (Medium Duty)

Gross Vehicle Weight 19,501-26,000 19,501-26,000 14,001-19,500 Vehicle Year/Engine Model Year 2013/2013 2013/2013 2014/2014 Year 4 ARB Preliminary Voucher Amount \$90,000 \$90,000 \$80,000

PDF Spec Sheet

Type: **Delivery**

195h Delivery Truck with Parallel Hybrid System

Delivery Type	Beverage Delivery	Package Delivery	Food Distribution	Liquid Propane Pick-Up & Delivery	Uniform & Linen Delivery	Other Delivery
Gross Vehicle Weight	14,001- 19,500	14,001- 19,500	14,001- 19,500	14,001- 19,500	14,001- 19,500	14,001- 19,500
Vehicle Year/Engine Model Year	2016/2015	2016/2015	2016/2015	2016/2015	2016/2015	2016/2015
	2015/2014	2015/2014	2015/2014	2015/2014	2015/2014	2015/2014
	2014/2013	2014/2013	2014/2013	2014/2013	2014/2013	2014/2013
Year 4 ARB Preliminary Voucher Amount	\$18,000	\$18,000	\$18,000	\$18,000	\$18,000	\$18,000

PDF Spec Sheet

195h-DC Delivery Truck with Parallel Hybrid System

Delivery Type	Package Delivery	Other Delivery
Gross Vehicle Weight	14,001-19,500	14,001-19,500
Vehicle Year/Engine Model Year	2016/2015	2016/2015
Year 4 ARB Preliminary Voucher Amount	\$18,000	\$18,000

PDF Spec Sheet

Manufacturer: Motiv Power

Zero-Emission FE4 Vehicle with Ford Chassis

Chassis Model	School Bus, Shuttle Bus, Delivery, Utility	School Bus, Shuttle Bus, Delivery, Utility
Gross Vehicle Weight	14,500	22,000
Li-Ion Battery Specification	80 kWh, 100 kWh, 120 kWh	4, 5, and 6-Battery Variations
Vehicle Year/Engine Model Year	2015/2015	2015/2015
Year 4 ARB Preliminary Voucher Amount	\$80,000	\$90,000

PDF Spec Sheet

Manufacturer: Phoenix

Type: **Bus**

ZEUS 300 Bus with Lithium-Ion 102-120kWh Battery Pack

Chassis Model	Shuttle Bus
Gross Vehicle Weight	10,001-14,000
Vehicle Year/Engine Model Year	2015/2015
Year 4 ARB Preliminary Voucher Amount	\$50,000

Type: Utility

Zero-Emission Flat Bed Truck with Lithium-Ion 102kWh Battery Pack

Chassis Model Shuttle Bus

Gross Vehicle Weight 10,001-14,000

Vehicle Year/Engine Model Year 2015/2015

Year 4 ARB Preliminary Voucher Amount \$50,000

PDF Spec Sheet

Manufacturer: New Flyer

Type: Bus

Xcelsior Bus with Lithium-Ion Battery Pack

Chassis Model XE35 XE40

Gross Vehicle Weight 42,540-44,312 42,540-44,312

Li-Ion Battery Specification 100 kWh, 150 kWh, 100 kWh, 150 kWh,

200 kWh 200 kWh, 300 kWh

Vehicle Year/Engine Model Year 2015/2015 2015/2015

Year 4 ARB Preliminary Voucher Amount \$117,000 \$117,000

No Photo Available.

PDF Spec Sheet

Manufacturer: Proterra

Type: Bus

Catalyst 40-foot Urban Transit Bus

Chassis Model BE40 BE35-74T

Gross Vehicle Weight >38,000 >26,000

Vehicle Year/Engine Model Year 2015/2015 2013/2013

Year 4 ARB Preliminary Voucher Amount \$115,000 \$115,000

PDF Spec Sheet

Manufacturer: Smith Electric

Type: **Delivery**

Newton Box Truck

Gross Vehicle Weight 14,001-19,500 19,501-26,000 26,001-33,000

Chassis Length (ft.) 18.8, 21.3, 23.8 18.8, 21.3, 23.8 18.8, 21.3, 23.8

Vehicle Year/Engine Model Year 2013/2013 2013/2013 2013/2013

Year 4 ARB Preliminary Voucher Amount \$95,000 \$80,000 \$90,000

Newton Step Van

 Gross Vehicle Weight
 14,001-19,500
 19,501-26,000
 26,001-33,000

 Chassis Length (ft.)
 18.8, 21.3, 23.8
 18.8, 21.3, 23.8
 18.8, 21.3, 23.8
 18.8, 21.3, 23.8

 Vehicle Year/Engine Model Year
 2013/2013
 2013/2013
 2013/2013
 2013/2013

 Vehicle Year/Engine Model Year
 2013/2013
 2013/2013
 2013/2013

 Year 4 ARB Preliminary Voucher Amount
 \$80,000
 \$90,000
 \$95,000

Manufacturer: Zenith Motors

Type: Bus

Electric Shuttle Van

Gross Vehicle Weight 8,500-10,000 10,001-14,000

Li-Ion Battery Specification 51.84kWh 62.1kWh

Vehicle Year/Engine Model Year 2014/2014 2014/2014

Year 4 ARB Preliminary Voucher Amount \$25,000 \$50,000

Type: **Delivery**

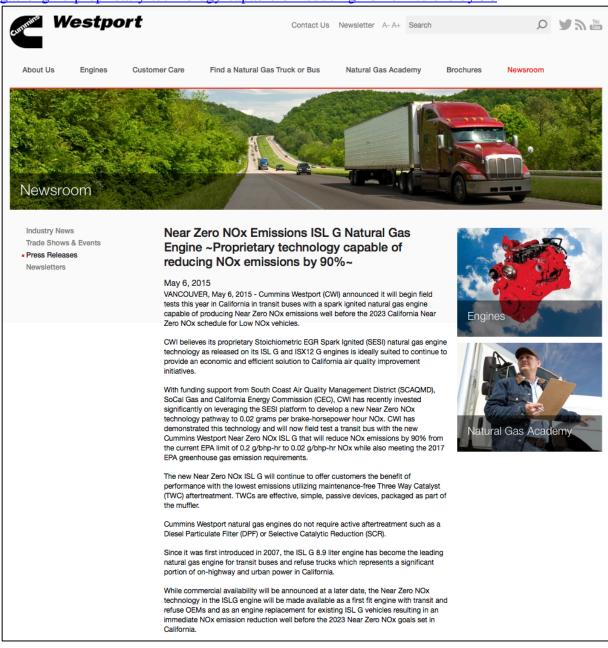
Electric Cargo Van

Gross Vehicle Weight 10,001-14,000 10,001-14,000

Wheelbase 159" 136"

Li-Ion Battery Specification 62.1kWh 51.8kWh

Vehicle Year/Engine Model Year 2014/2014 2014/2014


Year 4 ARB Preliminary Voucher Amount \$50,000 \$50,000

ATTACHMENT B

Trucks Engines That Will Be Available Very Early in The Life of the Project That Will Meet ARB's Optional NOx Standard

http://www.cumminswestport.com/press-releases/2015/near-zero-nox-emissions-isl-g-natural-gas-engine-proprietary-technology-capable-of-reducing-nox-emissions-by-90

ATTACHMENT B

Trucks Engines That Will Be Available Very Early in The Life of the Project That Will Meet ARB's Optional NOx Standard

Southern California Gas Company Briefing for A Business Case for Clean Air White Paper Working Group: Natural Gas Near Zero Emission Technologies Near-Zero Emission Natural Gas Opportunities, October 31, 2014

http://www.aqmd.gov/docs/default-source/Agendas/aqmp/white-paper-working-groups/business-case-socalgas-pres-final.pdf

Heavy Duty Trucks

Current Focus

Greenhouse Gas (GHG) Goals Technologies Also Address

SCG-Supported CNG RD&D Programs for HHD Trucks

Gas/Hydrogen Efficiency Improvements & Renewables Availability Increase Over Time Renewable **NGV Efficiency Improvements** Natural Blends Advanced Engines, And Hybridization Aerodynamics, Vehicles (NGV) Natural Gas 100% 70% %09 %06 50% 40% GHG Emissios (from 1990 Levels)

2050 Goal Compressed Natural Gas and Liquefied Petroleum Fuels

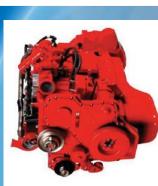
2								
2020					ercial	ercial		ē
2019				Commercia	Commercial	Commercial	Pre-commercial	Pre-commercial
2018	П			Ö	ial	mercial	Pre-	Pre-
2017	П	Commercial		mercial	Pre-commercial	Pre-commercial		
2016	ercial	Comr		Pre-commercial	Pre		RD&D	RD&D
2015	Commercial		Commercial			RD&D		
2014	П				RD&D			
2013			RD&D	RD&D				
2012								
2011								
NOx Goal (g/bhp- hr)	0.20	0.20	0.20	0.05	0.05	0.02	TBD	TBD
Project	CWI ISL-G 8.9L	CWI ISX 12G	CWI 6.7L	Doosan 11G	Brayton Gas Turbine	CW 8.9L, PSI 8.9L & Cummins 15L	BAE/GTI ZEV- Catenary with CNG Genset	Three HEV Trucks
		CNG Engines			CNG HEVS			

CWIS.9L and Cummins 15L Engines Near-zero Emission Development

Natural Gas

10% %0

30%


Project Overview

- Reduce emissions through stoichiometric combustion achieve near zero emission (i.e., 90% reduction from with high rates of EGR and a three way catalyst to current CARB standards) focusing on:
 - dedicated NG engine
- Power cylinder and cylinder head
 - Air handling (i.e. turbocharger)
 - Ignition system
- Control system and fuel supply module Cummins-Westport 8.9 liter
- Cummins Inc. 15 liter

Goals / Targets

- NOx: 0.02 g/hp-hr vs. 2010 0.2 g/hp-hr / PM: near
- CO2: 15% reduction from current diesel options Performance/Efficiency: 2010 diesel equivalent
 - Secondary goal: NH3< 10 ppm
- **Funding Partners**
- CEC (\$4M), SCAQMD (\$2M), Cummins, SCG (\$0.5M)

ICR-350 Multi-fuel Vehicular Engine

Technology Description

- combustor for the existing 350 kW microturbine designed for a Develop a near zero emissions dual natural gas and diesel hybrid Class-8 trucks
- readily available, the engine will seamlessly transition to operate Use natural gas as a priority, but when the truck is required to travel outside its normal territory or when CNG fueling is not on liquid fuel
- Plan to demonstrate a Kenworth & FedEx Class 8 dual fuel truck in

Goals / Targets

Fuel Efficiency: 10-20% savings

Price: Same as emission compliant diesel engine system

- Maintenance: 16x longer interval
- Life: +1,000,000 miles with only routine maintenance Fuel Flexibility: any liquid or gas
 - Emissions: 5x-10x better CARB & no treatment
- Size: half size/half weight (+ aerodynamics)
- Any drivetrain: mechanical/electric/hybrid

Funding Partners

Brayton, CEC

US Hybrid: Plug-in Hybrid Drayage and Hybrid Natural Gas Trucks

Technology Description

- Utilizes CWI ISL-G (8.9 L) CARB certified engine, 100 kWh Li-Ion Battery-Pack, 500 HP Electric Drive Motor, 300 amp converter Demo of 80,000 GVWR Nat Gas Plug-in Hybrid Drayage Truck
- Eliminates frequent periods of idling typical at Port facilities where drayage trucks often queue for long periods. Hybrid truck will operate in electric mode (EV mode) around 25% of time (30 miles) in charge depletion mode, then in hybrid mode with sustaining charge.

Hybrid

8.9L CWI ISL-G engine integration with 200kW motor, battery storage and engine controllers

Goals & TargetS

- Low NOx plus target of 30% fuel reduction due to HEV operation
- Overcomes perceived issue of lack of power from CWI 8.9 liter
- No limitation of the range and usage and will have higher number of operating hours than a diesel truck.
 - CNG / LNG / biomethane capable

Funding Partners

- PHEV CEC (\$1.6M), GTI, US Hybrid, CWI, Calko Transport, Freightliner, UC-Riverside, SCG (two trucks)
 - Hybrid CEC(\$900K) US Hybrid, SCG (\$100K)

GTI Class 8 CNG- Hybrid

Technology Description

- Develop a Class 8 CNG-hybrid truck with an advanced systems approach to NOx reduction.
- 200 kW electric motor, battery storage and engines Utilize a 9 Liter CWI ISL-G Engine integrated with a controls optimized for hybrid operations
- Reduce the NOx emissions beyond current CARB imits
- of CNG the economic attractiveness vehicles for fleet operators Showcase

Goals / Targets

- Demonstrate improved fuel economy
- Demonstrate ability to meet and exceed CARB emissions limits
 - Test the vehicle in a typical duty cycle
- Prepare a Chassis Dynamometer Demon Report with recommendations for extended field testing by a fleet operator as well as summaries of the emissions and fuel economy profiles

Funding Partners

CEC (\$900K), US Hybrid (In-Kind), SCG (\$100K)

nfrastructure - Centra

Gas Technology Institute Team – Electric Drayage Truck with CNG 6.7L Genset Range Extender

Recent Project Funding by SCAQMD and SoCalGas

- efficiencies
- Better controls,
- including for time-Smaller footprint
- Lower cost

Based on Kenworth Model T-370 (Cummins 6.7L CNG engine)

Approx. one mile each way along Alameda St

in Carson (current north bound route for

trucks to warehouses and I-405)

Develop HEV truck with CNG 6.7L engine and Siemens pantograph hardware enabling catenary connection capability. ZEV operation in port, catenary power outside of port,

board CNG engine genset providing extended range when off of catenary.

1/1/15 (Project Start) thru 7/31/18 (Commercialization Roadmap)

Schedule

Budget

Scope

- **Hydrogen Station** Co-Locating with
- On-site Hydrogen Production (SMR)

Demonstrates zero-emissions capability of heavy duty truck with extended range provided by CNG and hybrid-Total of about \$10M (DOE & SCAQMD 50/50 cost share) - SoCalGas contributing \$0.5M in total to SCAQMD


electric technology; breaking new "ground"

share of \$5M

Less/Conforming Space

Lower Cost

Extending the Pathways to The Ports LNG for Marine Vessels

2018-2023 2015-2018 2013-2015 Today

Tankers Fier 3 LNG nev

First LNG work boats, ferries, short marine vessels in

Existing Tier 1 & 2

ECAs • IMO Tier 3 NOx

standards

Ongoing RD&D for LNG fuel systems and vessel retrofits. Development of LNG bunkering

standards and infrastructure

1,000 ppm fuel sulfur limit for

Expanded LNG bunkering hydrodynamics Tug boats (new builds) Vessel size Vessel

at 10,000+ vessel marine vessel of LNG into Container Ships

evond IMO

Summary

- Engine technology advancements can achieve power-plant equivalent / nearzero emission NOx levels and diesel equivalent GHG emissions reductions
- Pure economics of transportation fuel will drive natural gas technology adoption by the heavy-duty trucking sector
- Near term and consistent financial and other incentives can accelerate and increase the adoption of conventional natural gas technologies
- New storage technologies will have tremendous impact on CNG for both heavy and light duty vehicles
- □ In-use mobile emissions need further evaluation
- Significant opportunities exist for natural gas trucks and buses, but also for both locomotive and large marine engine emissions reductions

A Sempra Energy utility

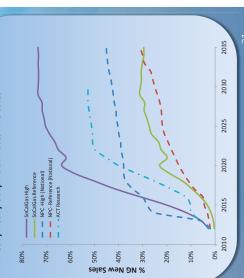
GINO GLADSTEIN,
NEANDROSS
& ASSOCIATES

in the South Coast Air Basin Natural Gas Opportunities Near-Zero Emission

Southern California Gas Lee Wallace

Project Goals

- Evaluate NOx benefits of near-zero natural gas engines in heavy-duty vehicles.
- Explore the effect of incentives on natural gas vehicle penetration rates.



Economic Analysis via the "NPC Model"

- **Economically Derived Analyses**
- rates of NGV adoption by the open was used to determine
- consistent with projections published NPC Model Projections are by independent research
- to the NPC Model settings specific to SoCalGas Adjustments are made the South Coast Air Basin
- "High" NGV adoption curves via the SoCalGas "Reference" and

South Coast Air Basin NG Penetration Analysis Heavy Heavy-duty Truck Tractor NG Sales

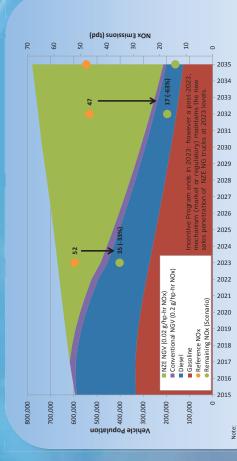
SoCalGas NPC modeled cases, NG truck pricing assumptions.

Fuel Price Projections are based on

Economic Analysis via the "NPC Model" (cont'd)

		NG Incremental Price in 2023	I Price in 2023
	2023 Base Diesel	SoCalGas	SoCalGas
Truck Group	Vehicle Cost	Reference	High
Class 7/8 Combination	\$144,953	\$47,355	\$30,028
Class 7/8 Single	\$ 190,399	\$18,906	\$7,463
Drayage	\$144,953	\$34,604	\$18,399
Refuse	\$190,399	\$18,906	\$7,463
Class 3-6	\$61,529	\$21,165	\$15,682

SoCalGas scenarios include *natural gas* SoCalgas Reference Penetration vehicle cost and the natural gas **Model variables** adjusted for


SoCalGas High Penetration Rate

to increase NGV new sales projections NG Financial Incentives are applied

SoCalGas High Incentive Scenario

SoCalGas High- BASE CASE
In-state Heavy-duty Truck Fleet Composition 1

- MODIFIED Maximum Incentivized² NG Truck Purchases In-State Heavy-duty Truck Fleet Composition 1

(bqt) snoissim3 xON 40

30

20

■ Conventional NGV (0.2 g/hp-hr)

200,000 100,000

Vehicle Population 500,000 400,000 000,000 000,000

700,000 800,000

000,000

10

nstruction, T7 Public, T7 Utility Small, LHDDT, and LHDGT.

2035

2034

2033

2032 2031

2030 2029

2028 2027

2026

2025

2024 2023

2021

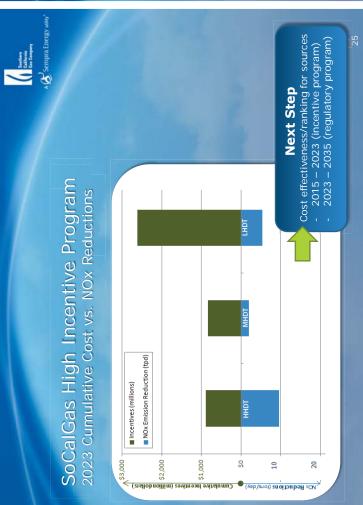
2020

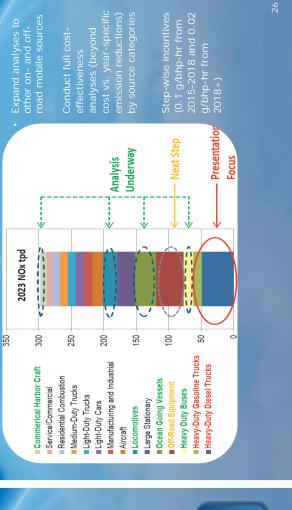
2019

2018

2017 2016 2015

Reference NOx


Gasoline Diesel


9

20

onstruction, T7 Public, T7 Ut Small, LHDDT, and LHDGT. istate Small, TG Utility, T6 Public, T6 TS, T6 Agriculture, T6 instate Construction Hea from \$15,500 - \$35,000/Truck depending on the vehicle type and engine size after the incentive period ends remain at the 2023 level due to some mechanism.

Technical Analyses: Next Steps

Summary

- Pure economics of transportation fuel will drive natural gas technology adoption by the heavy-duty trucking sector.
- Financial incentives can accelerate and increase the adoption of conventional natural gas technologies.
- Additional financial incentives (<\$10K/vehicle) can shift conventional natural gas technology purchases to "NZE" (90% NOx reductions) natural gas purchases.
- Maximized NOx reductions can be achieved through postincentive period mechanisms (TBD) to maintain NZE natural gas vehicle penetration rates.

77

ATTACHMENT C
Advanced Technology Demonstration Projects for Truck Engines That Will Meet or Surpass ARB's Optional NOx Standard
Before Full Project Buildout

Project	Truck Manufacturer	Number of Vehicles in Project	Truck Class	Technology Type	Project Completion Year	Total Project Cost
Zero Emission Cargo Transport (ZECT) I - 2012	TransPower	4	8	Battery Electric	2016	\$2.8M
ZECT I - 2012	US Hybrid	2	8	Battery Electric	2017	\$2.0M
ZECT I - 2012	TransPower	2	8	CNG plug in hybrid	2017	\$2.1M
ZECT I - 2012	US Hybrid	3	8	LNG plug in hybrid	2017	\$2.1M
ZECT II -2014	BAE Systems	1	8	Battery Electric - Hydrogen Fuel Extender	2018	\$7.1M
ZECT II -2014	TransPower	2	8	Battery Electric - Hydrogen Fuel Extender	2017	\$2.4M
ZECT II -2014	US Hybrid	2	8	Battery Electric - Hydrogen Fuel Generator	2017	\$3.2M
ZECT II -2014	BAE Systems & Kenworth	1	8	Battery Electric - CNG Range Extender	2018	\$5.6M
ZECT II -2014	International Rectifier	1	8	Plug in Hybrid	2017	\$1.7M
Volvo PHEV Project	Volvo	1	8	Plug in Hybrid	2014	\$2.4M
SCAQMD Project	Transpower	2	8	Catenary	2016	\$3.2M
Siemens Project	Siemens + Volvo	1	8	Infrastructure + 1 Volvo PHEV catenary truck	2016	\$13.5M
UPS	EVI	40	6	Electric	2013	\$7.45M