SUBCHAPTER 3.4 # HAZARDS AND HAZARDOUS MATERIALS # Introduction **Hazardous Materials Regulations** **Emergency Response to Hazardous Materials and Waste Incidents** **Hazardous Materials Incidents** Hazards Associated with Air Pollution Control, Coating Reformulations, and Alternative Fuels #### 3.4 HAZARDS AND HAZARDOUS MATERIALS #### 3.4.1 Introduction The goal of the 2012 AQMP is to attain the federal PM2.5 ambient air quality standards and make expeditious progress in attaining the federal one-hour and eight-hour ozone standards thereby improving air quality and protecting public health. Some of the proposed 2012 AQMP control measures intended to improve overall air quality may have direct or indirect hazards and hazardous materials impacts associated with their implementation. Hazard concerns are related to the potential for fires, explosions or the release of hazardous materials/substances in the event of an accident or upset conditions. The potential for hazards exist in the production, use, storage, and transportation of hazardous materials. Hazardous materials may be found at industrial production and processing facilities. Some facilities produce hazardous materials as their end product, while others use such materials as an input to their production process. Examples of hazardous materials used as consumer products include gasoline, solvents, and coatings/paints. Hazardous materials are stored at facilities that produce such materials and at facilities where hazardous materials are a part of the production process. Specifically, storage refers to the bulk handling of hazardous materials before and after they are transported to the general geographical area of use. Currently, hazardous materials are transported throughout the district via all modes of transportation including rail, highway, water, air, and pipeline. The Initial Study for the 2012 AQMP identified the use of reformulated coatings, solvents, and consumer products, potential exposure to toxic air contaminants, flammability and toxicity of reformulated products, add-on control devices (e.g., SCRs), and use of alternative fuels and fuel additives as possibly increasing the potential for hazards. #### 3.4.2 Hazardous Materials Regulations Incidents of harm to human health and the environment associated with hazardous materials have created a public awareness of the potential for adverse effects from careless handling and/or use of these substances. As a result, the use, storage and transport of hazardous materials are subject to numerous laws and regulations at all levels of government. The most relevant existing hazardous materials laws and regulations include hazardous materials management planning, hazardous materials transportation, hazardous materials worker safety requirements, hazardous waste handling requirements and emergency response to hazardous materials and waste incidents. Potential risk of upset is a factor in the production, use, storage and transportation of hazardous materials. Risk of upset concerns are related to the risks of explosions or the release of hazardous substances in the event of an accident or upset. The most relevant hazardous materials laws and regulations are summarized in the following subsection of this section. #### 3.4.2.1 Definitions A number of properties may cause a substance to be hazardous, including toxicity, ignitability, corrosivity, and reactivity. The term "hazardous material" is defined in different ways for different regulatory programs. For the purposes of this Final Program EIR, the term "hazardous materials" refers to both hazardous materials and hazardous wastes. A hazardous material is defined as hazardous if it appears on a list of hazardous materials prepared by a federal, state, or local regulatory agency or if it has characteristics defined as hazardous by such an agency. The California Health & Safety Code §25501 (k) defines hazardous material as follows: "Hazardous material" means any material that because of its quantity, concentrations, or physical or chemical characteristics, poses a significant present or potential hazard to human health and safety or to the environment if released into the workplace or the environment. "Hazardous materials" include but are not limited to hazardous substances, hazardous waste, and any material which a handler or the administering agency has a reasonable basis for believing would be injurious to the health and safety of persons or harmful to the environment if released into the workplace or the environment. Examples of the types of materials and wastes considered hazardous are hazardous chemicals (e.g., toxic, ignitable, corrosive, and reactive materials), radioactive materials, and medical (infectious) waste. The characteristics of toxicity, ignitability, corrosivity, and reactivity are defined in Title 22, California Code of Regulations (CCR), §66261.20-66261.24 and are summarized below: **Toxic Substances:** Toxic substances may cause short-term or long-lasting health effects, ranging from temporary effects to permanent disability, or even death. For example, such substances can cause disorientation, acute allergic reactions, asphyxiation, skin irritation, or other adverse health effects if human exposure exceeds certain levels. (The level depends on the substances involved and are chemical-specific.) Carcinogens (substances that can cause cancer) are a special class of toxic substances. Examples of toxic substances include benzene (a component of gasoline and a suspected carcinogen) and methylene chloride (a common laboratory solvent and a suspected carcinogen). **Ignitable Substances:** Ignitable substances are hazardous because of their ability to burn. Gasoline, hexane, and natural gas are examples of ignitable substances. Corrosive Materials: Corrosive materials can cause severe burns. Corrosives include strong acids and bases such as sodium hydroxide (lye) or sulfuric acid (battery acid). **Reactive Materials:** Reactive materials may cause explosions or generate toxic gases. Explosives, pure sodium or potassium metals (which react violently with water), and cyanides are examples of reactive materials. #### 3.4.2.2 Federal Regulations The U.S. EPA is the primary federal agency charged with protecting human health and with safeguarding the natural environment over air, water, and land. The U.S. EPA works to develop and enforce regulations that implement environmental laws enacted by Congress. The U.S. EPA is responsible for researching and setting national standards for a variety of environmental programs, and delegates to states and Indian tribes the responsibility for issuing permits and for monitoring and enforcing compliance. Since 1970, Congress has enacted numerous environmental laws that pertain to hazardous materials, for the U.S. EPA to implement as well as to other agencies at the federal, state and local level, as described in the following subsections. #### 3.4.2.2.1 Toxic Substances Control Act The Toxic Substances Control Act (TSCA) was enacted by Congress in 1976 (see 15 U.S.C. §2601 et seq.) and gave the U.S. EPA the authority to protect the public from unreasonable risk of injury to health or the environment by regulating the manufacture, sale, and use of chemicals currently produced or imported into the United States. The TSCA, however, does not address wastes produced as byproducts of manufacturing. The types of chemicals regulated by the act fall into two categories: existing and new. New chemicals are defined as "any chemical substance which is not included in the chemical substance list compiled and published under [TSCA] section 8(b)." This list included all of chemical substances manufactured or imported into the United States prior to December 1979. Existing chemicals include any chemical currently listed under section 8 (b). The distinction between existing and new chemicals is necessary as the act regulates each category of chemicals in different ways. The U.S. EPA repeatedly screens both new and existing chemicals and can require reporting or testing of those that may pose an environmental or human-health hazard. The U.S. EPA can ban the manufacture and import of those chemicals that pose an unreasonable risk. #### 3.4.2.2.2 Emergency Planning and Community Right-to-Know Act The Emergency Planning and Community Right-to-Know Act (EPCRA) is a federal law adopted by Congress in 1986 that is designed to help communities plan for emergencies involving hazardous substances. EPCRA establishes requirements for federal, state and local governments, Indian tribes, and industry regarding emergency planning and "Community Right-to-Know" reporting on hazardous and toxic chemicals. The Community Right-to-Know provisions help increase the public's knowledge and access to information on chemicals at individual facilities, their uses, and releases into the environment. States and communities, working with facilities, can use the information to improve chemical safety and protect public health and the environment. There are four major provisions of EPCRA: 1) Emergency Planning (Sections 301 – 303) requires local governments to prepare chemical emergency response plans, and to review plans at least annually. These sections also require state governments to oversee and coordinate local planning efforts. Facilities that maintain Extremely Hazardous Substances (EHS) on-site (see 40 CFR Part 355 for the list of EHS chemicals) in quantities greater than corresponding Threshold Planning Quantities must cooperate in the preparation of the emergency plan. - 2) Emergency Release Notification (Section 304) requires facilities to immediately report accidental releases of EHS chemicals and hazardous substances in quantities greater than corresponding Reportable Quantities (RQs) as defined under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to state and local
officials. Information about accidental chemical releases must be made available to the public. - 3) Hazardous Chemical Storage Reporting (Sections 311 312) requires facilities that manufacture, process, or store designated hazardous chemicals to make Material Safety Data Sheets (MSDSs) describing the properties and health effects of these chemicals available to state and local officials and local fire departments. These sections also require facilities to report to state and local officials and local fire departments, inventories of all on-site chemicals for which MSDSs exist. Lastly, information about chemical inventories at facilities and MSDSs must be available to the public. - 4) Toxic Chemical Release Inventory (Section 313) requires facilities to annually complete and submit a Toxic Chemical Release Inventory Form for each Toxic Release Inventory (TRI) chemical that are manufactured or otherwise used above the applicable threshold quantities. Implementation of EPCRA has been delegated to the State of California. The California Emergency Management Agency requires facilities to develop a Hazardous Materials Business Plan if they handle hazardous materials in quantities equal to or greater than 55 gallons, 500 pounds, or 200 cubic feet of gas or extremely hazardous substances above the threshold planning quantity. The Hazardous Materials Business Plan is provided to State and local emergency response agencies and includes inventories of hazardous materials, an emergency plan, and implements a training program for employees. # 3.4.2.2.3 Hazardous Materials Transportation Act Hazardous Materials Transportation Act: The Hazardous Material Transportation Act (HMTA), adopted in 1975 (see 49 U.S.C. 5101 – 5127), gave the Secretary of Transportation the regulatory and enforcement authority to provide adequate protection against the risks to life and property inherent in the transportation of hazardous material in commerce. The United States Department of Transportation (U.S. DOT) (see 49 CFR Parts 171-180) oversees the movement of hazardous materials at the federal level. The Hazardous Materials Transportation Act requires that carriers report accidental releases of hazardous materials to U.S. DOT at the earliest practical moment. Other incidents that must be reported include deaths, injuries requiring hospitalization, and property damage exceeding \$50,000. The hazardous material regulations also contain emergency response provisions which include incident reporting requirements. Reports of major incidents go to the National Response Center, which in turn is linked with CHEMTREC, a public service hotline established by the chemical manufacturing industry for emergency responders to obtain information and assistance for emergency incidents involving chemicals and hazardous materials The Research and Special Programs Administration (RSPA) of the U.S. DOT implements the hazardous materials regulations. The regulations cover the definition and classification of hazardous materials, communication of hazards to workers and the public, packaging and labeling requirements, operational rules for shippers, and training. These regulations apply to interstate, intrastate, and foreign commerce by air, rail, ships, and motor vehicles, and also cover hazardous waste shipments. The Federal Aviation Administration Office of Hazardous Materials Safety is responsible for overseeing the safe handling of hazardous materials aboard aircraft. The Federal Railroad Administration oversees the transportation of hazardous materials by rail. The U.S. Coast Guard regulates the bulk transport of hazardous materials by sea. The Federal Highway Administration (FHWA) is responsible for highway routing of hazardous materials and issuing highway safety permits. #### 3.4.2.2.4 Hazardous Materials Waste Regulations Resource Conservation and Recovery Act: The Resource Conservation and Recovery Act (RCRA) was adopted in 1976 (see 40 CFR Parts 238-282) and authorizes the U.S. EPA to control the generation, transportation, treatment, storage, and disposal of hazardous waste. The RCRA regulation specifies requirements for generators, including waste minimization methods, as well as for transporters and for treatment, storage, and disposal facilities. The RCRA regulation also includes restrictions on land disposal of wastes and used oil management standards. Under RCRA, hazardous wastes must be tracked from the time of generation to the point of disposal. In 1984, RCRA was amended with addition of the Hazardous and Solid Waste Amendments, which authorized increased enforcement by the U.S. EPA, more strict hazardous waste standards, and a comprehensive Underground Storage Tank (UST) program. Likewise, the Hazardous and Solid Waste Amendments focused on waste reduction and corrective action for hazardous releases. The use of certain techniques for the disposal of some hazardous wastes was specifically prohibited by the Hazardous and Solid Waste Amendments. Individual states may implement their own hazardous waste programs under RCRA, with approval by the U.S. EPA. Comprehensive Environmental Response, Compensation and Liability Act: The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), which is often commonly referred to as Superfund, is a federal statute that was enacted in 1980 to address abandoned sites containing hazardous waste and/or contamination. CERCLA was amended in 1986 by the Superfund Amendments and Reauthorization Act, and by the Small Business Liability Relief and Brownfields Revitalization Act of 2002. CERCLA contains prohibitions and requirements concerning closed and abandoned hazardous waste sites; establishes liability of persons responsible for releases of hazardous waste at these sites; and creates a trust fund to provide for cleanup when no responsible party can be identified. The trust fund is funded largely by a tax on the chemical and petroleum industries. CERCLA also provides federal jurisdiction to respond directly to releases or impending releases of hazardous substances that may endanger public health or the environment. CERCLA also enabled the revision of the National Contingency Plan (NCP) which provided the guidelines and procedures needed to respond to releases and threatened releases of hazardous substances, pollutants, or contaminants. The NCP also established the National Priorities List, which identifies hazardous waste sites eligible for long-term remedial action financed under the federal Superfund program. **Prevention of Accidental Releases and Risk Management Programs:** Requirements pertaining to the prevention of accidental releases are promulgated in Section 112 (r) of the Clean Air Act Amendments of 1990 [42 U.S.C. 7401 et. Seq.]. The objective of these requirements was to prevent the accidental release and to minimize the consequences of any such release of a hazardous substance. Under these provisions, facilities that produce, process, handle or store hazardous substance have a duty to: 1) identify hazards which may result from releases using hazard assessment techniques; 2) design and maintain a safe facility and take steps necessary to prevent releases; and, 3) minimize the consequence of accidental releases that occur. In accordance with the requirements in Section 112 (r), U.S. EPA adopted implementing guidelines in 40 CFR Part 68. Under this part, stationary sources with more than a threshold quantity of a regulated substance shall be evaluated to determine the potential for and impacts of accidental releases from any processes subject to the federal risk management requirements. Under certain conditions, the owner or operator of a stationary source may be required to develop and submit a Risk Management Plan (RMP). RMPs consist of three main elements: a hazard assessment that includes off-site consequences analyses and a five-year accident history, a prevention program, and an emergency response program. #### 3.4.2.2.5 Hazardous Material Worker Safety Requirements Occupational Safety and Health Administration Act: The federal Occupational Safety and Health Administration (OSHA) is an agency of the United States Department of Labor that was created by Congress under the Occupational Safety and Health Act in 1970. OSHA is the agency responsible for assuring worker safety in the handling and use of chemicals in the workplace. Under the authority of the Occupational Safety and Health Act of 1970, OSHA has adopted numerous regulations pertaining to worker safety (see 29 CFR Part 1910). These regulations set standards for safe workplaces and work practices, including the reporting of accidents and occupational injuries. Some OSHA regulations contain standards relating to hazardous materials handling to protect workers who handle toxic, flammable, reactive, or explosive materials, including workplace conditions, employee protection requirements, first aid, and fire protection, as well as material handling and storage. For example, facilities which use, store, manufacture, handle, process, or move hazardous materials are required to conduct employee safety training, have available and know how to use safety equipment, prepare illness prevention programs, provide hazardous substance exposure warnings, prepare emergency response plans, and prepare a fire prevention plan. Subpart H is a pertinent section of 29 CFR Part 1910 which includes procedures and standards for safe handling, storage, operation, remediation, and emergency response activities involving hazardous materials and waste. Some key subsections in Subpart H include §1910.106 (Flammable and Combustible Liquids) and §1910.120 (Hazardous Waste Operations and Emergency Response). The Hazardous Waste Operations and Emergency Response regulations contain requirements for worker training programs, medical surveillance for workers engaging in the handling of hazardous materials or wastes, and waste site emergency and
remediation planning, for those who are engaged in specific cleanup, corrective action, hazardous material handling, and emergency response activities (see 29 CFR §1910.120 (a)(1)(i-v) and §1926.65 (a)(1)(i-v)). **Process Safety Management**: As part of the numerous regulations pertaining to worker safety adopted by OSHA, specific requirements that pertain to Process Safety Management (PSM) of Highly Hazardous Chemicals were adopted in 29 CFR Part 1910.119 and 8 CCR §5189 to protect workers at facilities that have toxic, flammable, reactive or explosive materials. PSM program elements are aimed at preventing or minimizing the consequences of catastrophic releases of chemicals and include process hazard analyses, formal training programs for employees and contractors, investigation of equipment mechanical integrity, and an emergency response plan. Specifically, the PSM program requires facilities that use, store, manufacture, handle, process, or move hazardous materials to conduct employee safety training; have an inventory of safety equipment relevant to potential hazards; have knowledge on use of the safety equipment; prepare an illness prevention program; provide hazardous substance exposure warnings; prepare an emergency response plan; and prepare a fire prevention plan. Emergency Action Plan: An Emergency Action Plan (EAP) is a written document required by OSHA standards promulgated in 29 CFR 1910.38 (a) to facilitate and organize a safe employer and employee response during workplace emergencies. An EAP is required by all that are required to have fire extinguishers. At a minimum, an EAP must include the following: 1) a means of reporting fires and other emergencies; 2) evacuation procedures and emergency escape route assignments; 3) procedures to be followed by employees who remain to operate critical plant operations before they evacuate; 4) procedures to account for all employees after an emergency evacuation has been completed; 5) rescue and medical duties for those employees who are to perform them; and, 6) names or job titles of persons who can be contacted for further information or explanation of duties under the plan. **National Fire Regulations:** The National Fire Codes (NFC), Title 45, published by the National Fire Protection Association (NFPA) contains standards for laboratories using chemicals, which are not requirements, but are generally employed by organizations in order to protect workers. These standards provide basic protection of life and property in laboratory work areas through prevention and control of fires and explosions, and also serve to protect personnel from exposure to non-fire health hazards. In addition to the NFC, the NFPA adopted a hazard rating system (e.g., NFPA 704). NFPA 704 is a "standard (that) provides a readily recognized, easily understood system for identifying specific hazards and their severity using spatial, visual, and numerical methods to describe in simple terms the relative hazards of a material. It addresses the health, flammability, instability, and related hazards that may be presented as short-term, acute exposures that are most likely to occur as a result of fire, spill, or similar emergency¹." In NFPA, FAQ for Standard 704. http://www.nfpa.org/faq.asp?categoryID=928&cookie%5Ftest=1#23057 addition, the hazard ratings per NFPA 704 are used by emergency personnel to quickly and easily identify the risks posed by nearby hazardous materials in order to help determine what, if any, specialty equipment should be used, procedures followed, or precautions taken during the first moments of an emergency response. The scale is divided into four color-coded categories, with blue indicating level of health hazard, red indicating the flammability hazard, yellow indicating the chemical reactivity, and white containing special codes for unique hazards such as corrosivity and radioactivity. Each hazard category is rated on a scale from 0 (no hazard; normal substance) to 4 (extreme risk). Table 3.4-1 summarizes what the codes mean for each hazards category. **TABLE 3.4-1**NFPA 704 Hazards Rating Codes | Hazard
Rating Code | Health
(Blue) | Flammability
(Red) | Reactivity
(Yellow) | Special
(White) | |-----------------------|--|--|--|--| | 4 = Extreme | Very short
exposure could
cause death or
major residual
injury (extreme
hazard) | Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 73 °F. | Readily capable of detonation or explosive decomposition at normal temperatures and pressures. | ₩ = Reacts
with water in
an unusual or
dangerous
manner. | | 3 = High | Short exposure could cause serious temporary or moderate residual injury | Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 73 °F and 100 °F. | Capable of detonation or explosive decomposition but requires a strong initiating source, must be heated under confinement before initiation, reacts explosively with water, or will detonate if severely shocked. | OXY =
Oxidizer | | 2 = Moderate | Intense or
continued but not
chronic exposure
could cause
temporary
incapacitation or
possible residual
injury. | Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 100 °F and 200 °F. | Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. | SA = Simple
asphyxiant
gas (includes
nitrogen,
helium, neon,
argon,
krypton and
xenon). | | 1 = Slight | Exposure would cause irritation with only minor residual injury. | Must be heated before ignition can occur. Flash point over 200 °F. | Normally stable, but can become unstable at elevated temperatures and pressures | | # **TABLE 3.4-1 (Concluded)** ## NFPA 704 Hazards Rating Codes | Hazard | Health | Flammability | Reactivity | Special | |----------------------|---|---------------|---|---------| | Rating Code | (Blue) | (Red) | (Yellow) | (White) | | 0 =
Insignificant | Poses no health
hazard, no
precautions
necessary | Will not burn | Normally stable, even under fire exposure conditions, and is not reactive with water. | | In addition to the above information, there are also a number of other physical or chemical properties may cause a substance to be a fire hazard. With respect to determining whether any substance is classified as a fire hazard, MSDS lists the National Fire Protection Association 704 flammability hazard ratings (e.g., NFPA 704). NFPA 704 is a "standard (that) provides a readily recognized, easily understood system for identifying flammability hazards and their severity using spatial, visual, and numerical methods to describe in simple terms the relative flammability hazards of a material2." Although substances can have the same NFPA 704 Flammability Ratings Code, other factors can make each substance's fire hazard very different from each other. For this reason, additional chemical characteristics, such as auto-ignition temperature, boiling point, evaporation rate, flash point, lower explosive limit (LEL), upper explosive limit (UEL), and vapor pressure, are also considered when determining whether a substance is fire hazard. The following is a brief description of each of these chemical characteristics. Auto-ignition Temperature: The auto-ignition temperature of a substance is the lowest temperature at which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Boiling Point: The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the environmental pressure surrounding the liquid. Boiling is a process in which molecules anywhere in the liquid escape, resulting in the formation of vapor bubbles within the liquid. Evaporation Rate: Evaporation rate is the rate at which a material will vaporize (evaporate, change from liquid to a vapor) compared to the rate of vaporization of a specific known material. This quantity is a represented as a unitless ratio. For example, a substance with a high evaporation rate will readily form a vapor which can be inhaled or explode, and thus have a higher hazard risk. Evaporation rates generally have an inverse relationship to boiling points (i.e., the higher the boiling point, the lower the rate of evaporation). Flash Point: Flash point is the lowest temperature at which a volatile liquid can vaporize to form an ignitable mixture in air. Measuring a liquid's flash point requires an ignition source. At the flash point, the vapor may cease to burn when the source of ignition is _ National Fire Protection Association, FAQ for Standard 704. http://www.nfpa.org/faq.asp?categoryID=928&cookie%5Ftest=1#23057. removed. There are different methods that can be used to determine the flashpoint of a solvent but the most frequently used method is the Tagliabue Closed Cup standard (ASTM D56), also known as the TCC. The flashpoint is determined by a TCC laboratory device which is used to
determine the flash point of mobile petroleum liquids with flash point temperatures below 175 degrees Fahrenheit (79.4 degrees Centigrade). Flash point is a particularly important measure of the fire hazard of a substance. For example, the Consumer Products Safety Commission (CPSC) promulgated Labeling and Banning Requirements for Chemicals and Other Hazardous Substances in 15 U.S.C. §1261 and 16 CFR Part 1500. Per the CPSC, the flammability of a product is defined in 16 CFR Part 1500.3 (c)(6) and is based on flash point. For example, a liquid needs to be labeled as: 1) "Extremely Flammable" if the flash point is below 20 degrees Fahrenheit; 2) "Flammable" if the flash point is above 20 degrees Fahrenheit but less than 100 degrees Fahrenheit; or, 3) "Combustible" if the flash point is above 100 degrees Fahrenheit up to and including 150 degrees Fahrenheit. Lower Explosive Limit (LEL): The lower explosive limit of a gas or a vapor is the limiting concentration (in air) that is needed for the gas to ignite and explode or the lowest concentration (percentage) of a gas or a vapor in air capable of producing a flash of fire in presence of an ignition source (e.g., arc, flame, or heat). If the concentration of a substance in air is below the LEL, there is not enough fuel to continue an explosion. In other words, concentrations lower than the LEL are "too lean" to burn. For example, methane gas has a LEL of 4.4 percent (at 138 degrees Centigrade) by volume, meaning 4.4 percent of the total volume of the air consists of methane. At 20 degrees Centigrade, the LEL for methane is 5.1 percent by volume. If the atmosphere has less that 5.1 percent methane, an explosion cannot occur even if a source of ignition is present. When the concentration of methane reaches 5.1 percent, an explosion can occur if there is an ignition source. Upper Explosive Limit (UEL): The upper explosive limit of a gas or a vapor is the highest concentration (percentage) of a gas or a vapor in air capable of producing a flash of fire in presence of an ignition source (e.g., arc, flame, or heat). Concentrations of a substance in air above the UEL are "too rich" to burn. Vapor Pressure: Vapor pressure is an indicator of a chemical's tendency to evaporate into gaseous form. **Health Hazards Guidance:** In addition to fire impacts, health hazards can also be generated due to exposure of chemicals present in both conventional as well as reformulated products. Using available toxicological information to evaluate potential human health impacts associated with conventional solvents and potential replacement solvents, the toxicity of the conventional solvents can be compared to solvents expected to be used in reformulated products. As a measure of a chemical's potential health hazards, the following values need to be considered: the Threshold Limit Values (TLVs) established by the American Conference of Governmental Industrial Hygiene (ACGIH), OSHA's Permissible Exposure Limits (PELs), the Immediately Dangerous to Life and Health (IDLH) levels recommended by the National Institute for Occupational Safety and Health (NIOSH), permissible exposure limits (PEL) established by OSHA, and health hazards developed by the National Safety Council. The following is a brief description of each of these values. Threshold Limit Values (TLVs): The TLV of a chemical substance is a level to which it is believed a worker can be exposed day after day for a working lifetime without adverse health effects. The TLV is an estimate based on the known toxicity in humans or animals of a given chemical substance, and the reliability and accuracy of the latest sampling and analytical methods. The TLV for chemical substances is defined as a concentration in air, typically for inhalation or skin exposure. Its units are in parts per million (ppm) for gases and in milligrams per cubic meter (mg/m³) for particulates. The TLV is a recommended guideline by ACGIH. Permissible Exposure Limits (PEL): The PEL is a legal limit, usually expressed in ppm, established by OSHA to protect workers against the health effects of exposure to hazardous substances. PELs are regulatory limits on the amount or concentration of a substance in the air. A PEL is usually given as a time-weighted average (TWA), although some are short-term exposure limits (STEL) or ceiling limits. A TWA is the average exposure over a specified period of time, usually eight hours. This means that, for limited periods, a worker may be exposed to concentrations higher than the PEL, so long as the average concentration over eight hours remains lower. A short-term exposure limit is one that addresses the average exposure over a 15 to 30 minute period of maximum exposure during a single work shift. A ceiling limit is one that may not be exceeded for any period of time, and is applied to irritants and other materials that have immediate effects. The OSHA PELs are published in 29 CFR 1910.1000 Table Z1. Immediately Dangerous to Life and Health (IDLH): IDLH is an acronym defined by NIOSH as exposure to airborne contaminants that is "likely to cause death or immediate or delayed permanent adverse health effects or prevent escape from such an environment." IDLH values are often used to guide the selection of breathing apparatus that are made available to workers or firefighters in specific situations. #### 3.4.2.2.6 Oil and Pipeline Regulations and Oversight **Oil Pollution Act:** The Oil Pollution Act was signed into law in 1990 to give the federal government authority to better respond to oil spills (see 33 U.S.C. §2701). The Oil Pollution Act improved the federal government's ability to prevent and respond to oil spills, including provision of money and resources. The Oil Pollution Act establishes polluter liability, gives states enforcement rights in navigable waters of the State, mandates the development of spill control and response plans for all vessels and facilities, increases fines and enforcement mechanisms, and establishes a federal trust fund for financing clean-up. The Oil Pollution Act also establishes the National Oil Spill Liability Trust Fund to provide financing for cases in which the responsible party is either not readily identifiable, or refuses to pay the cleanup/damage costs. In addition, the Oil Pollution Act expands provisions of the National Oil and Hazardous Substances Pollution Contingency Plan, more commonly called the National Contingency Plan, requiring the federal government to direct all public and private oil spill response efforts. It also requires area committees, composed of federal, 3.4-11 November 2012 state, and local government officials, to develop detailed, location-specific area contingency plans. In addition, the Oil Pollution Act directs owners and operators of vessels, and certain facilities that pose a serious threat to the environment, to prepare their own specific facility response plans. The Oil Pollution Act increases penalties for regulatory non-compliance by responsible parties; gives the federal government broad enforcement authority; and provides individual states the authority to establish their own laws governing oil spills, prevention measures, and response methods. The Oil Pollution Act requires oil storage facilities and vessels to submit to the Federal government plans detailing how they will respond to large discharges. The U.S. EPA has published regulations for aboveground storage facilities and the Coast Guard has done the same for oil tankers. Oil Pollution Prevention Regulation: In 1973, EPA issued the Oil Pollution Prevention regulation (see 40 CFR 112), to address the oil spill prevention provisions contained in the Clean Water Act of 1972. The Spill Prevention, Control, and Countermeasure (SPCC) Rule is part of the Oil Pollution Prevention regulations (see Subparts A through C of 40 CFR Part 112). Specifically, the SPCC rule includes requirements for oil spill prevention, preparedness, and response to prevent oil discharges to navigable waters and adjoining shorelines. The rule requires specific facilities to prepare, amend, and implement SPCC Plans. SPCC Plans require applicable facilities to take steps to prevent oil spills including: 1) using suitable storage containers/tanks; 2) providing overfill prevention (e.g., high-level alarms); 3) providing secondary containment for bulk storage tanks; 4) providing secondary containment to catch oil spills during transfer activities; and, 5) periodically inspecting and testing pipes and containers. **U.S. Department of Transportation, Office of Pipeline Safety:** The Office of Pipeline Safety, within the U.S. DOT, Pipeline and Hazards Material Safety Administration, has jurisdictional responsibility for developing regulations and standards to ensure the safe and secure movement of hazardous liquid and gas pipelines under its jurisdiction in the United States. The Office of Pipeline Safety has the following key responsibilities: - Support the operation of, and coordinate with the United States Coast Guard on the National Response Center and serve as a liaison with the Department of Homeland Security and the Federal Emergency Management Agency on matters involving pipeline safety; - Develop and maintain partnerships with other federal, state, and local agencies, public interest groups, tribal governments, and the regulated industry and other underground utilities to address threats to pipeline integrity, service, and reliability and to share responsibility for the safety of communities; - Administer pipeline safety regulatory programs and develops regulatory policy involving pipeline safety; - Oversee pipeline operator implementation of risk management and risk-based programs and administer a national pipeline inspection and enforcement program; - Provide technical and resource assistance for state pipeline safety programs to ensure oversight of intrastate pipeline systems and educational programs at the local level; and. -
Support the development and conduct of pipeline safety training programs for federal and state regulatory and compliance staff and the pipeline industry. 49 CFR Parts 178 – 185 relates to the role of transportation, including pipelines, in the United States. 49 CFR Parts 186-199 establishes minimum pipeline safety standards. The Office of the State Fire Marshal works in partnership with the Federal Pipeline and Hazardous Materials Safety Administration to assure pipeline operators are meeting requirements for safe, reliable, and environmentally sound operation of their facilities for intrastate pipelines within California. Chemical Facility Anti-Terrorism Standards: The Federal Department of Homeland Security is responsible for implementing the Chemical Facility Anti-Terrorism Standards that were adopted in 2007 (see 6 CFR Part 27). These standards establish risk-based performance standards for the security of chemical facilities and require covered chemical facilities to prepare Security Vulnerability Assessments, which identify facility security vulnerabilities, and to develop and implement Site Security Plans. # 3.4.2.3 State Regulations # 3.4.2.3.1 Hazardous Materials and Waste Regulations Hazardous Waste Control Law: California's Hazardous Waste Control Law is administered by the California Environmental Protection Agency (CalEPA) to regulate hazardous wastes within the State of California. While the California Hazardous Waste Control Law is generally more stringent than RCRA, both the state and federal laws apply in California. The California Department of Toxic Substances Control (DTSC) is the primary agency in charge of enforcing both the federal and state hazardous materials laws in California. The DTSC regulates hazardous waste, oversees the cleanup of existing contamination, and pursues avenues to reduce hazardous waste produced in California. The DTSC regulates hazardous waste in California under the authority of RCRA, the Hazardous Waste Control Law, and the California Health and Safety Code. Under the direction of the CalEPA, the DTSC maintains the Cortese and Envirostor databases of hazardous materials and waste sites as specified under Government Code §65962.5. The Hazardous Waste Control Law (22 CCR Chapter 11, Appendix X) also lists 791 chemicals and approximately 300 common materials which may be hazardous; establishes criteria for identifying, packaging, and labeling hazardous wastes; prescribes management controls; establishes permit requirements for treatment, storage, disposal, and transportation; and identifies some wastes that cannot be disposed of in landfills. California Occupational Safety and Health Administration: The California Occupational Safety and Health Administration (CalOSHA) is the primary state agency responsible for worker safety in the handling and use of chemicals in the workplace. CalOSHA requires employers to monitor worker exposure to listed hazardous substances and notify workers of exposure (8 CCR Sections 337-340). The regulations specify requirements for employee training, availability of safety equipment, accident-prevention programs, and hazardous substance exposure warnings. CalOSHA's standards are generally more stringent than federal regulations. **Hazardous Materials Release Notification:** Many state statutes require emergency notification when a hazardous chemical is released, including: - California Health and Safety Code §25270.7, §25270.8, and §25507; - California Vehicle Code §23112.5; - California Public Utilities Code §7673 (General Orders #22-B, 161); - California Government Code §51018 and §8670.25.5 (a); - California Water Code §13271 and §13272; and, - California Labor Code §6409.1 (b)10. California Accident Release Prevention (CalARP) Program: The California Accident Release Prevention Program (19 CCR Division 2, Chapter 4.5) requires the preparation of Risk Management Plans (RMPs). CalARP requires stationary sources with more than a threshold quantity of a regulated substance to be evaluated to determine the potential for and impacts of accidental releases from any processes subject to state risk management requirements. RMPs are documents prepared by the owner or operator of a stationary source containing detailed information including: 1) regulated substances held onsite at the stationary source; 2) offsite consequences of an accidental release of a regulated substance; 3) the accident history at the stationary source; 4) the emergency response program for the stationary source; 5) coordination with local emergency responders; 6) hazard review or process hazard analysis; 7) operating procedures at the stationary source; 8) training of the stationary source's personnel; 9) maintenance and mechanical integrity of the stationary source's physical plant; and, 10) incident investigation. The CalARP program is implemented at the local government level by Certified Unified Program Agencies (CUPAs) also known as Administering Agencies (AAs). Typically, local fire departments are the administering agencies of the CalARP program because they frequently are the first responders in the event of a release. **Unified Hazardous Waste and Hazardous Materials Management Regulatory Program:** The Unified Hazardous Waste and Hazardous Materials Management Regulatory Program (Unified Program) as promulgated by CalEPA in Title 27 CCR Chapter 6.11 requires the administrative consolidation of six hazardous materials and waste programs (program elements) under one agency, a CUPA. The Unified Program administered by the State of California consolidates, coordinates, and makes consistent the administrative requirements, permits, inspections, and enforcement activities for the state's environmental and emergency management programs, which include Hazardous Waste Generator and On-Site Hazardous Waste Treatment Programs ("Tiered Permitting"); Above ground SPCC Program; Hazardous Materials Release Response Plans and Inventories (business plans); the CalARP Program; the UST Program; and the Uniform Fire Code Plans and Inventory Requirements. The Unified Program is implemented at the local government level by CUPAs. Hazardous Materials Management Act: The State of California (California Health and Safety Code Division 20, Chapter 6.95) requires any business handling more than a specified amount of hazardous or extremely hazardous materials, termed a "reportable quantity," to submit a Hazardous Materials Business Plan to its CUPA. Business plans must include an inventory of the types, quantities, and locations of hazardous materials at the facility. Businesses are required to update their business plans at least once every three years and the chemical portion of their plans every year. Also, business plans must include emergency response plans and procedures to be used in the event of a significant or threatened significant release of a hazardous material. These plans need to identify the procedures to follow for immediate notification to all appropriate agencies and personnel of a release, identification of local emergency medical assistance appropriate for potential accident scenarios, contact information for all company emergency coordinators, a listing and location of emergency equipment at the business, an evacuation plan, and a training program for business personnel. The requirements for hazardous materials business plans are specified in the California Health and Safety Code and 19 CCR. Hazardous Materials Transportation in California: California regulates the transportation of hazardous waste originating or passing through the State in Title 13, CCR. The California Highway Patrol (CHP) and Caltrans have primary responsibility for enforcing federal and State regulations and responding to hazardous materials transportation emergencies. The CHP enforces materials and hazardous waste labeling and packing regulations that prevent leakage and spills of material in transit and provide detailed information to cleanup crews in the event of an incident. Vehicle and equipment inspection, shipment preparation, container identification, and shipping documentation are all part of the responsibility of the CHP. Caltrans has emergency chemical spill identification teams at locations throughout California. California Fire Code: While NFC Standard 45 and NFPA 704 are regarded as nationally recognized standards, the California Fire Code (24 CCR) also contains state standards for the use and storage of hazardous materials and special standards for buildings where hazardous materials are found. Some of these regulations consist of amendments to NFC Standard 45. State Fire Code regulations require emergency pre-fire plans to include training programs in first aid, the use of fire equipment, and methods of evacuation. #### 3.4.2.4 Local Regulations **SCAQMD Rule 1166** – **Volatile Organic Compound Emissions from Decontamination of Soil:** SCAQMD Rule 1166 establishes requirements to control the emission of VOCs from excavating, grading, handling, and treating soil contaminated from leakage, spillage, or other means of VOCs deposition. Rule 1166 stipulates that any parties planning on excavating, grading, handling, transporting, or treating soils contaminated with VOCs must first apply for and obtain, and operate pursuant to, a mitigation plan approved by the Executive Officer prior to commencement of operation. BACT is required during all phases of remediation of soil contaminated with VOCs. Rule 1166 also sets forth testing, record keeping and reporting procedures that must be followed at all times. Non-compliance with Rule 1166 can result in the revocation of the approved mitigation plan, the owner and/or the operator being served with a Notice of Violation for creating a public nuisance, or an order to halt the offending operation until the public nuisance is mitigated to the satisfaction of the Executive Officer. **Other Local Agencies:** In addition to the SCAQMD, other local
agencies throughout the four counties in the district and their respective fire departments have a variety of local laws that regulate reporting, storage and handling of hazardous materials and wastes. Los Angeles County: The Office of Emergency Management is responsible for organizing and directing the preparedness efforts of the Emergency Management Organization of Los Angeles County. Los Angeles County's policies towards hazardous materials management include enforcing stringent site investigations for factors related to hazards; limiting the development in high hazard areas, such as floodplains, high fire hazard areas, and seismic hazard zones; facilitating safe transportation, use, and storage of hazardous materials; supporting lead paint abatement; remediating brownfield sites; encouraging the purchase of homes on the FEMA Repeat Hazard list and designating the land as open space; enforcing restrictions on access to important energy sites; limiting development downslope from aqueducts; promoting safe alternatives to chemical-based products in households; and prohibiting development in floodways. The county has defined effective emergency response management capabilities to include supporting county emergency providers with reaching their response time goals; promoting the participation and coordination of emergency response management between cities and other counties at all levels of government; coordinating with other county and public agency emergency planning and response activities; and encouraging the development of an early warning system for tsunamis, floods and wildfires. The County of Los Angeles Fire Department, Fire Prevention Guide #9 regulates spray application of flammable or combustible liquids. The guide requires no open flame, spark-producing equipment or exposed surfaces exceeding the ignition temperature of the material being sprayed within the area. For open spraying, as would be the case for the field application of the acetone-based coatings, no spark-producing equipment or open flame shall be within 20 feet horizontally and 10 feet vertically of the spray area. Anyone not complying with these guidelines would be in violation of the current fire codes. The fire department also limits the residential storage of flammable liquids to five gallons and recommends storage in a cool place. If the flammable coating container will be exposed to direct sunlight or heat, storage in cool water is recommended. Finally, all metal containers involving the transfer of five gallons or more should be grounded and bonded. **Orange County:** The regulatory agency responsible for enforcement, as well as inspection of pipelines transporting hazardous materials, is the California State Fire Marshal's Office, Hazardous Liquid Pipeline Division. The Orange County Health Care Agency (OCHCA) has been designated by the Board of Supervisors as the agency to enforce the UST program. The OCHCA UST Program regulates approximately 7,000 of the 9,500 underground tanks in Orange County. The program includes conducting regular inspections of underground tanks; oversight of new tank installations; issuance of permits; regulation of repair and closure of tanks; ensuring the mitigation of leaking USTs; pursuing enforcement action; and educating and assisting the industries and general public as to the laws and regulations governing USTs. Under mandate from the California Health and Safety Code, the Orange County Fire Authority is the designated agency to inventory the distribution of hazardous materials in commercial or industrial occupancies, develop and implement emergency plans, and require businesses that handle hazardous materials to develop emergency plans do deal with these materials. Orange County's Hazardous Materials Program Office is responsible for facilitating the coordination of various parts of the County's hazardous materials program; assisting in coordinating County hazardous materials activities with outside agencies and organization; providing comprehensive, coordinated analysis of hazardous materials issues; and directing the preparation, implementation, and modification of the county's Hazardous Waste Management Plan. With regard to San Onofre Nuclear Generating Station, in an effort to prepare those who live and work in areas outside, but adjacent to SONGS, the federal and state governments have established three levels of emergency zones. Orange County is responsible for its own emergency plans concerning a nuclear power plant accident, and the Incident Response Plan is updated regularly. San Bernardino County: San Bernardino County's Hazardous Waste Management Plan (HWMP) serves as the primary planning document for the management of hazardous waste in San Bernardino County. The HWMP identifies the types and amounts of wastes generated; establishes programs for managing these wastes; identifies an application review process for the siting of specified hazardous waste facilities; identifies mechanisms for reducing the amount of waste generated; and identifies goals, policies, and actions for achieving effective hazardous waste management. One of the county's stated goals is to minimize the generation of hazardous waste and reduce the risk posed by storage, handling, transportation, and disposal of hazardous wastes. In addition, the county will protect its residents and visitors from injury and loss of life and protect property from fires by deploying firefighters and requiring new land developments to prepare site-specific fire protection plans. Riverside County: Through its membership in the Southern California Hazardous Waste Management Authority (SCHWMA), the County of Riverside has agreed to work on a regional level to solve problems involving hazardous waste. SCHWMA was formed through a joint powers agreement between Santa Barbara, Ventura, San Bernardino, Orange, San Diego, Imperial, and Riverside Counties and the Cities of Los Angeles and San Diego. Working within the concept of "fair share," each SCHWMA county has agreed to take responsibility for the treatment and disposal of hazardous waste in an amount that is at least equal to the amount generated within that county. This responsibility can be met by siting hazardous waste management facilities (transfer, treatment, and/or repository) capable of processing an amount of waste equal to or larger than the amount generated within the 3.4-17 November 2012 county, or by creating intergovernmental agreements between counties to provide compensation to a county for taking another county's waste, or through a combination of both facility siting and intergovernmental agreements. When and where a facility is to be sited is primarily a function of the private market. However, once an application to site a facility has been received, the county will review the requested facility and its location against a set of established siting criteria to ensure that the location is appropriate and may deny the application based on the findings of this review. The County of Riverside does not presently have any of these facilities within its jurisdiction and, therefore, must rely on intergovernmental agreements to fulfill its fair share responsibility to SCHWMA. # 3.4.3 Emergency Response To Hazardous Materials And Waste Incidents The California Emergency Management Agency (CalEMA) exists to enhance safety and preparedness in California through strong leadership, collaboration, and meaningful partnerships. The goal of CalEMA is to protect lives and property by effectively preparing for, preventing, responding to, and recovering from all threats, crimes, hazards, and emergencies. CalEMA under the Fire and Rescue Division coordinates statewide implementation of hazardous materials accident prevention and emergency response programs for all types of hazardous materials incidents and threats. In response to any hazardous materials emergency, CalEMA is called upon to provide state and local emergency managers with emergency coordination and technical assistance. Pursuant to the Emergency Services Act, the State of California has developed an Emergency Response Plan to coordinate emergency services provided by federal, state, and local government agencies and private persons. Response to hazardous materials incidents is one part of this plan. The Plan is administered by CalEMA which coordinates the responses of other agencies. Six mutual aid and Local Emergency Planning Committee (LEPC) regions have been identified for California that are divided into three areas of the state designated as the Coastal (Region II, which includes 16 counties with 151 incorporated cities and a population of about eight million people.), Inland (Region III, Region IV and Region V, which includes 31 counties with 123 incorporated cities and a population of about seven million people), and Southern (Region I and Region VI, which includes 11 counties with 226 incorporated cities and a population of about 21.6 million people). The SCAQMD jurisdiction covers portions of Region I and Region VI. In addition, pursuant to the Hazardous Materials Release Response Plans and Inventory Law of 1985, local agencies are required to develop "area plans" for response to releases of hazardous materials and wastes. These emergency response plans depend to a large extent on the business plans submitted by persons who handle hazardous materials. An area plan must include pre-emergency planning of procedures for emergency response, notification, coordination of affected government agencies and responsible parties, training, and follow-up. #### 3.4.4 Hazardous Materials Incidents Hazardous materials move through southern California by a variety of modes including truck, rail, air, ship, and pipeline. The movement of hazardous materials implies a degree of risk, depending on the materials being moved, the mode of transport, and numerous other factors (e.g., weather). Hazardous materials move through the region
by a variety of modes: Truck, rail, air, ship, and pipeline. According to the Office of Hazardous Materials Safety (OHMS) in the U.S. Department of Transportation, hazardous materials shipments can be regarded as equivalent to deliveries, but any given shipment may involve one or more movements or trip segments, that may occur by different routes (e.g., rail transport with final delivery by truck). According to the Commodity Flow Survey data (U.S. DOT, 2010), there were approximately 2.3 billion tons of hazardous materials shipments in the United States in 2007. Table 3.4-2 indicates that trucks move more than 50 percent of total hazardous materials shipped via all transportation modes from a location in the United States. By contrast, rail accounts of only six percent of total shipments of hazardous materials (U.S. DOT, 2010). **TABLE 3.4-2**Hazardous Material Shipments in the United States | Mode | Total Commercial
Freight
(thousand tons) | Hazardous Materials
Shipped
(thousand tons) | Percent of
Hazardous Materials
Shipped | |----------|--|---|--| | Truck | 8,778,713 | 1,202,825 | 13.7% | | Rail | 1,861,307 | 129,743 | 7.0% | | Water | 403,639 | 149,794 | 37.1% | | Pipeline | 650,859 | 628,905 | 96.6% | | TOTAL | 11,694,518 | 2,111,267 | 18.1% | Source: U.S. DOT, 2010. The movement of hazardous materials through the U.S. transportation system represents almost 18 percent of total tonnage for all freight shipments as measured by the Commodity Flow Survey. The total commercial freight moved in 2007 in California by all transportation modes was 900,817 thousand tons, of which about 738,550 thousand tons were moved by truck (U.S. DOT, 2010). The California Hazardous Materials Incident Reporting System (CHMIRS) is a post-incident reporting system to collect data on incidents involving the accidental release of hazardous materials in California. Information on accidental releases of hazardous materials are reported to and maintained by CalEMA. While information on accidental releases are reported to CalEMA, according to discussions with Mr. Greg Renick of Cal-EMA on July 25, 2012, CalEMA no longer conducts statistical evaluations of the releases (e.g., total number of releases per year) for the entire State, or data by county. The U.S. DOT Pipeline and Hazardous Materials Safety Administration provides access to retrieve data from the Incident Reports Database, which also includes non-pipeline incidents (e.g., truck and rail events). Incident data and summary statistics (e.g., release date, geographical location for state and county) and type of material released, are available online from the Hazardous Materials Incident Report Form 5800.1. Table 3.4-3 provides a summary of the reported hazardous material incidents for Los Angeles, Orange, Riverside, and San Bernardino counties for 2010 and 2011 from the Hazardous Materials Incident Report Form 5800.1. Data presented is for the entire county and not limited to the portion of the county located within the jurisdiction of the SCAQMD. In 2010, there were a total of 672 incidents reported for Los Angeles, Orange, Riverside and San Bernardino counties, and in 2011 a total of 698 incidents four these four counties. San Bernardino and Los Angeles counties accounted for the largest number of incidents, followed by Orange and Riverside counties. **TABLE 3.4-3**Reported Hazardous Materials Incidents for 2010 and 2011 | County | 2010 | 2011 | |----------------|------|------| | Los Angles | 273 | 256 | | Orange | 71 | 93 | | Riverside | 46 | 51 | | San Bernardino | 282 | 298 | | Total | 672 | 698 | # 3.4.5 Hazards Associated With Air Pollution Control, Coating Reformulations and Alternative Fuels The SCAQMD has evaluated the hazards associated with previous AQMPs, proposed SCAQMD rules, and non-SCAQMD projects where the SCAQMD is the Lead Agency pursuant to CEQA. The analyses covered a range of potential air pollution control technologies and equipment. EIRs prepared for the previous AQMPs have specifically evaluated hazard impacts from: 1) add-on control equipment; 2) alternative coating methods; and, 3) alternative fuels. Add-on pollution control technologies which have been previously analyzed for hazards include: carbon adsorption, incineration, post-combustion flue-gas treatment, SCR and selective non-catalytic reduction (SNCR), scrubbers, bag filters, and electrostatic precipitators. The use of add-on pollution control equipment may concentrate or utilize hazardous materials. A malfunction or accident when using add-on pollution control equipment could potentially expose people to hazardous materials, explosions, or fires. The SCAQMD has determined that the transport, use, and storage of ammonia, both aqueous and anhydrous, (used in SCR and SNCR systems) may have significant hazard impacts in the event of an accidental release. Further analyses have indicated that the use of aqueous ammonia (instead of anhydrous ammonia) can usually reduce the hazards associated with ammonia use in SCR and SNCR systems to less than significant. The potential hazards associated with alternative coating reformulations have been analyzed including powder coatings, radiation-curable coatings, high solids coatings, and waterborne coatings. The greatest hazard associated with both current and alternative coating reformulations is flammability. Alternative fuels may be used to reduce emissions from both stationary source equipment and motor vehicles. The alternative fuels which have been analyzed include reformulated gasoline, methanol, compressed natural gas, LPG or propane, and electrically charged batteries. Like conventional fossil fuels, alternative fuels may create fire hazards, explosions or accidental releases during fuel transport, storage, dispensing, and use. Electric batteries also present a slight fire and explosion hazards due to the presence of reactive compounds, which may be subjected to high temperatures. #### Ammonia Ammonia is the primary hazardous chemical identified with the use of air pollution control equipment (e.g., SCR and SNCR systems). Ammonia, though not a carcinogen, can have chronic and acute health impacts. Therefore, a potential increase in the use of ammonia may increase the current existing risk setting associated with deliveries (e.g., truck and road accidents) and onsite or offsite spills for each facility that currently uses or will begin to use ammonia. Exposure to a toxic gas cloud is the potential hazard associated with this type of control equipment. A toxic gas cloud is the release of a volatile chemical such as anhydrous ammonia that could form a cloud that migrates off-site, thus exposing individuals. Anhydrous ammonia is heavier than air such that when released into the atmosphere, would form a cloud at ground level rather than be dispersed "Worst-case" conditions tend to arise when very low wind speeds coincide with the accidental release, which can allow the chemicals to accumulate rather than disperse. Though there are facilities that may be affected by the proposed 2012 AQMP control measures that are currently permitted to use anhydrous ammonia, for new construction, however, current SCAQMD policy no longer allows the use of anhydrous ammonia. Instead, to minimize the hazards associated with ammonia used in the SCR or SNCR process, aqueous ammonia, 19 percent by volume, is typically required as a permit condition associated with the installation of SCR or SNCR equipment for the following reasons: 1) 19 percent aqueous ammonia does not travel as a dense gas like anhydrous ammonia; and, 2) 19 percent aqueous ammonia is not on any acutely hazardous material lists unlike anhydrous ammonia or aqueous ammonia at higher percentages. #### **LNG** LNG is essentially no different from the natural gas used in homes and businesses everyday, except that it has been refrigerated to minus 259 degrees Fahrenheit at which point it becomes a clear, colorless, and odorless liquid. LNG currently is used as a combustion fuel in both stationary and mobile sources. As a liquid, natural gas occupies only one six-hundredth of its gaseous volume and can be transported economically between continents in special tankers. LNG weighs slightly less than half as much as water, so it floats on fresh or sea water. However, when LNG comes in contact with any warmer surface such as water or air, it evaporates very rapidly ("boil"), returning to its original, gaseous volume. As the LNG vaporizes, a vapor cloud resembling ground fog will form under relatively calm atmospheric conditions. The vapor cloud is initially heavier than air since it is so cold, but as it absorbs more heat, it becomes lighter than air, rises, and can be carried away by the wind. An LNG vapor cloud cannot explode in the open atmosphere, but it could burn. LNG is considered a hazardous material. The primary safety concerns are the potential consequences of an LNG spill. LNG hazards result from three of its properties: - Cryogenic temperatures - Dispersion characteristics - Flammability characteristics The extreme cold of LNG can directly cause injury or damage. Although momentary contact on the skin can be harmless, extended contact will cause severe freeze burns. On contact with certain metals, such as ship decks, LNG can cause immediate cracking. Although not poisonous, exposure to the center of a vapor cloud could cause asphyxiation due to the absence of oxygen. LNG vapor clouds can ignite within the portion of the cloud where the concentration of natural gas is between a five and a 15 percent (by volume) mixture with air. To catch fire, however, this portion of the vapor cloud must encounter an ignition source. Otherwise, the LNG vapor cloud will simply dissipate into the atmosphere. An ignited LNG vapor cloud is very dangerous, because of its
tremendous radiant heat output. Furthermore, as a vapor cloud continues to burn, the flame could burn back toward the evaporating pool of spilled liquid, ultimately burning the quickly evaporating natural gas immediately above the pool, giving the appearance of a "burning pool" or "pool fire." An ignited vapor cloud or a large LNG pool fire can cause extensive damage to life and property. Spilled LNG would disperse faster on the ocean than on land, because water spills provide very limited opportunity for containment. Furthermore, LNG vaporizes more quickly on water, because the ocean provides an enormous heat source. For these reasons, most analysts conclude that the risks associated with shipping, loading, and off-loading LNG are much greater than those associated with land-based storage facilities. Preventing spills and responding immediately to spills should they occur are major factors in the design of LNG facilities (CEC, 2003). Beyond routine industrial hazards and safety considerations, LNG presents specific safety considerations. In the event of an accidental release of LNG, the safety zone around a facility protects neighboring communities from personal injury, property damage or fire. The one and only case of an accident that affected the public was in Cleveland, Ohio in 1944. Research stemming from the Cleveland incident has influenced safety standards used today. Indeed, during the past four decades, growth in LNG use worldwide has led to a number of technologies and practices that will be used in the U.S. and elsewhere in North America as the LNG industry expands. Generally, multiple layers of protection create four critical safety conditions, all of which are integrated with a combination of industry standards and regulatory compliance. The four requirements for safety – primary containment, secondary containment, safeguard systems and separation distance apply across the LNG value chain, from production, liquefaction and shipping, to storage and regasification. The term "containment" means safe storage and isolation of LNG (Foss, 2003). #### **LPG** More than 350,000 light-and medium-duty vehicles travel the nation's highways using liquefied petroleum gas (LPG or LP gas), while over 4 million vehicles use it worldwide. LPG is a mixture of several gases that is generally called "propane," in reference to the mixture's chief ingredient. LPG changes to the liquid state at the moderately high pressures found in an LPG vehicle's fuel tank. LPG is formed naturally, interspersed with deposits of petroleum and natural gas. Natural gas contains LPG, water vapor, and other impurities that must be removed before it can be transported in pipelines as a salable product. About 55 percent of the LPG processed in the U.S. is from natural gas purification. The other 45 percent comes from crude oil refining. Since a sizable amount of U.S. LPG is derived from petroleum, LPG does less to relieve the country's dependency on foreign oil than some other alternative fuels. However, because over 90 percent of the LPG used in the United States is produced here, LPG does help address the national security component of the nation's overall petroleum dependency problem. Propane vehicles emit about one-third fewer reactive organic gases than gasoline-fueled vehicles. Nitrogen oxide and carbon monoxide emissions are also 20 percent and 60 percent less, respectively. Unlike gasoline-fueled vehicles, there are no evaporative emissions while LPG vehicles are running or parked, because LPG fuel systems are tightly sealed. Small amounts of LPG may escape into the atmosphere during refueling, but these vapors are 50 percent less reactive than gasoline vapors, so they have less of a tendency to generate smogforming ozone. LPG's extremely low sulfur content means that the fuel does not contribute significantly to acid rain. Many propane vehicles are converted gasoline vehicles. The relatively inexpensive conversion kits include a regulator/vaporizer that changes liquid propane to a gaseous form and an air/fuel mixer that meters and mixes the fuel with filtered intake air before the mixture is drawn into the engine's combustion chambers. Also included in conversion kits is closed-loop feedback circuitry that continually monitors the oxygen content of the exhaust and adjusts the air/fuel ratio as necessary. This device communicates with the vehicle's onboard computer to keep the engine running at optimum efficiency. LPG vehicles additionally require a special fuel tank that is strong enough to withstand the LPG storage pressure of about 130 pounds per square inch. The gaseous nature of the fuel/air mixture in an LPG vehicle's combustion chambers eliminates the cold-start problems associated with liquid fuels. In contrast to gasoline engines, which produce high emission levels while running cold, LPG engine emissions remain similar whether the engine is cold or hot. Also, because LPG enters an engine's combustion chambers as a vapor, it does not strip oil from cylinder walls or dilute the oil when the engine is cold. This helps LPG powered engines to have a longer service life and reduced maintenance costs. Also helping in this regard is the fuel's high hydrogen-to-carbon ratio (C3H8), which enables propane powered vehicles to have less carbon build-up than gasoline- and diesel powered vehicles. LPG delivers roughly the same power, acceleration, and cruising speed characteristics as gasoline. It does yield a somewhat reduced driving range, however, because it contains only about 70-75 percent of the energy content of gasoline. Its high octane rating (around 105) means, though, that an LPG engine's power output and fuel efficiency can be increased beyond what would be possible with a gasoline engine without causing destructive "knocking." Such fine-tuning can help compensate for the fuel's lower energy density. Fleet owners find that propane costs are typically 5 to 30 percent less than those of gasoline. The cost of constructing an LPG fueling station is also similar to that of a comparably sized gasoline dispensing system. Fleet owners not wishing to establish fueling stations of their own may avail themselves of over 3,000 publicly accessible fueling stations nationwide. Propane is an odorless, nonpoisonous gas that has the lowest flammability range of all alternative fuels. High concentrations of propane can displace oxygen in the air, though, causing the potential for asphyxiation. This problem is mitigated by the presence of ethyl mercaptan, which is an odorant that is added to warn of the presence of gas. While LPG itself does not irritate the skin, the liquefied gas becomes very cold upon escaping from a high-pressure tank, and may therefore cause frostbite, should it contact unprotected skin. As with gasoline, LPG can form explosive mixtures with air. Since the gas is slightly heavier than air, it may form a continuous stream that stretches a considerable distance from a leak or open container, which may lead to a flashback explosion upon contacting a source of ignition (U.S. DOE, 2003). While LPG is classified as a fire hazard, it is not classified as a toxic or as a hazardous air pollutant. LPG is a regulated substance subject to both the California and Federal RMP programs in accordance with the CCR, Title 19, §2770.4.1 and Chapter 40 of the CFR Part 68, §68.126³. A RMP is a document prepared by the owner or operator of a stationary source containing detailed information including, but not limited to: - Regulated substances held onsite at the stationary source; - Offsite consequences of an accidental release of a regulated substance; - The accident history at the stationary source; - The emergency response program for the stationary source; - Coordination with local emergency responders; - Hazard review or process hazard analysis; - Operating procedures at the stationary source; - Training of the stationary source's personnel; - Maintenance and mechanical integrity of the stationary source's physical plant; and - Incident investigation. The threshold quantity for LPG (as propane) as a regulated substance for accidental release prevention is 10,000 pounds. However, when LPG is used as a fuel by an end user (as is 3.4-24 November 2012 The federal RMP program is administered in California through the California Accidental Release Prevention (CalARP) program (Health & Safety Code (H&SC), §§ 25531 to 25543.3 and California Code of Regulations, Title 19 (19 CCR or "Title 19"), §§ 2735.1 to 2785.1). frequently the case with residential portable and stationary storage tanks), or when it is held for retail sale as a fuel, it is excluded from these RMP requirements, even if the amount exceeds the threshold quantity. On June 1, 2012, SCAQMD adopted Rule 1177 - Liquefied Petroleum Gas Transfer and Dispensing to reduce fugitive VOC emissions released during the transfer and dispensing of LPG at residential, commercial, industrial, chemical, agricultural and retail sales facilities. Rule 1177 applies to the transfer of LPG to and from stationary storage tanks, cylinders and cargo tanks, including bobtails, truck transports and rail tank cars, and into portable refillable cylinders. In addition, Rule 1177 requires the use of low emission fixed liquid level gauges or equivalent alternatives during filling of LPG-containing tanks and cylinders, use of LPG low emission connectors, routine leak checks and repairs of LPG transfer and dispensing equipment, and recordkeeping and reporting to demonstrate compliance. With respect to suppliers and sellers of LPG, Health and Safety Code §25506 specifically requires all businesses handling hazardous materials to submit a business emergency response plan to assist local administering agencies in the emergency release or threatened release of a hazardous material. Business emergency response plans generally require the following: - 1. Identification of individuals who are responsible for various
actions, including reporting, assisting emergency response personnel and establishing an emergency response team; - 2. Procedures to notify the administering agency, the appropriate local emergency rescue personnel, and the California Office of Emergency Services; - 3. Procedures to mitigate a release or threatened release to minimize any potential harm or damage to persons, property or the environment; - 4. Procedures to notify the necessary persons who can respond to an emergency within the facility; - 5. Details of evacuation plans and procedures; - 6. Descriptions of the emergency equipment available in the facility; - 7. Identification of local emergency medical assistance; and - 8. Training (initial and refresher) programs for employees in: - a. The safe handling of hazardous materials used by the business; - b. Methods of working with the local public emergency response agencies; - c. The use of emergency response resources under control of the handler; and d. Other procedures and resources that will increase public safety and prevent or mitigate a release of hazardous materials. In general, every county or city and all facilities using a minimum amount of hazardous materials are required to formulate detailed contingency plans to eliminate, or at least minimize, the possibility and effect of fires, explosion, or spills. In conjunction with the California Office of Emergency Services, local jurisdictions have enacted ordinances that set standards for area and business emergency response plans. These requirements include immediate notification, mitigation of an actual or threatened release of a hazardous material, and evacuation of the emergency area. Lastly, operators who currently transfer and dispense LPG are well aware of the hazardous nature of LPG, including its flammability and receive periodic training for the safe handling of LPG for the following reasons. Facility operators with a dispensing system for LPG are required to comply with operating pressures pursuant to the standards developed by the American Society of Mechanical Engineers (ASME) Pressure Vessel Code, Section 8; NFPA 58 with regard to venting LPG to the atmosphere; and for LPG tanks that are subject to RMP requirements, the operators must obtain permits from, and submit RMPs to the local Certified Unified Program Agency (CUPA) with is typically the city or county fire department. For similar reasons, industrial and commercial customers on the receiving end of LPG deliveries are also well aware of the safety issues associated with LPG. Residential customers, through warning labels on the portable cylinders and on the units to which the portable cylinders connect, are notified of the flammability dangers associated with LPG.