

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

SoCalGas Honor Rancho Compressor Modernization Project: SCE Component

Addendum to the November 2019 Final Subsequent Environmental Assessment for Proposed Amended Rule 1110.2 and Proposed Amended Rule 1100, and the March 2017 Final Program Environmental Impact Report for the 2016 Air Quality Management Plan

December 2025

State Clearinghouse No. 2016071006

[November 2019 Final Subsequent Environmental Assessment for Proposed Amended Rule 1110.2 and Proposed Amended Rule 1100, Certified on November 1, 2019]

[March 2017 Final Program Environmental Impact Report for the 2016 Air Quality Management Plan, Certified on March 3, 2017]

Executive Officer

Wayne Nastri

Deputy Executive Officer Planning, Rule Development, and Implementation

Sarah Rees

Assistant Deputy Executive Officer Planning, Rule Development, and Implementation

Michael Krause

Assistant Deputy Executive Officer

Planning, Rule Development, and Implementation

Ian MacMillan

Prepared by: Dudek and Rincon

Reviewed by: Farzaneh Khalaj, Ph.D. – Air Quality Specialist
Kevin Ni – Program Supervisor, CEQA
Barbara Radlein – Planning and Rules Manager
Jillian Wong, Ph.D. – Assistant Deputy Executive Officer, Engineering and Permitting
Barbara Baird – Chief Deputy Counsel

This page intentionally left blank

**SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT
GOVERNING BOARD**

CHAIR: VANESSA DELGADO
Senator (Ret.)
Senate Rules Committee Appointee

VICE CHAIR: MICHAEL A. CACCIOTTI
Council Member, South Pasadena
Cities of Los Angeles County/Eastern Region

MEMBERS:

CURT HAGMAN
Supervisor, Fourth District
County of San Bernardino

PATRICIA LOCK DAWSON
Mayor, Riverside
Cities of Riverside County Representative

LARRY MCCALLON
Mayor Pro Tem, Highland
Cities of San Bernardino County

HOLLY J. MITCHELL
Supervisor, Second District
County of Los Angeles

JANET NGUYEN
Supervisor, First District
County of Orange

BRENDA OLmos
Vice Mayor, City of Paramount
Cities of Los Angeles County/Western Region

VERONICA PADILLA-CAMPOS
Speaker of the Assembly Appointee

V. MANUEL PEREZ
Supervisor, Fourth District
County of Riverside

NITHYA RAMAN
Councilmember, Fourth District
City of Los Angeles Representative

CARLOS RODRIGUEZ
Mayor, Yorba Linda
Cities of Orange County

VACANT
Governor's Appointee

EXECUTIVE OFFICER:

WAYNE NASTRI

This page intentionally left blank

TABLE OF CONTENTS

SOCALGAS HONOR RANCHO COMPRESSOR MODERNIZATION PROJECT: SCE COMPONENT

ADDENDUM TO THE NOVEMBER 2019 FINAL SEA FOR PAR 1110.2 AND PAR 1100, AND THE MARCH 2017 FINAL PROGRAM EIR FOR THE 2016 AQMP

	Page No.
1.0 Introduction.....	1
1.1 Overview of SoCalGas Natural Gas Delivery System and Honor Rancho Storage Field	1
1.2 Honor Rancho Compressor Modernization Project.....	3
1.3 Environmental Documentation Overview	6
1.5 Addendum Organization.....	8
2.0 California Environmental Quality Act and Basis for Decision to Prepare an Addendum.....	10
2.1 CEQA and Summary of Previous Approvals	10
2.2 Physical Modifications Required for Control Measures.....	11
2.3 Basis for Decision to Prepare an Addendum	12
2.4 CEQA Guidelines Revisions.....	14
3.0 Previous CEQA Documents Applicable to the Proposed HRCM Project.....	16
3.1 South Coast Air Quality Management District Final Program Environmental Impact Report for the 2016 Air Quality Management Plan.....	17
3.2 Final Subsequent Environmental Assessment for Amended Rule 1110.2, Emissions from Gaseous- and Liquid-Fueled Engines, and Amended Rule 1100, Implementation Schedule for NOx Facilities	19
3.3 Relationship of the HRCM Project and the SCE Component to the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100	19
4.0 HRCM Project Location	21
5.0 Background and Project Description	24
5.1 Purpose, Need, and Objectives of Proposed HRCM Project	24
5.2 HRCM Project Components	24
5.2.1 HRCM Project Design Features Specific to the SCE Component	29
5.2.2 SCE Substation and Upgrades	33
5.3 HRCM Project Activities Specific to the SCE Component.....	35
5.3.1 Pre-Construction Activities.....	35
5.3.2 Construction Schedule	35
5.3.3 Construction Activities	36

6.0	HRCM Project Setting	41
6.1	Environmental Setting	41
6.1.1	Setting for On-Site HRCM Project Components	41
6.1.2	Setting for Off-Site HRCM Project Components	41
6.2	Honor Rancho Operations.....	42
6.2.1	Main Campus Overview	42
6.2.2	Safety Features of the HRCM Project	42
6.3	Regulatory Setting	43
6.3.1	South Coast Air Quality Management District	43
6.3.2	California Public Utilities Commission	43
6.3.3	California Department of Conservation, Geologic Energy Management Division.....	44
6.4	Intended Uses of This Addendum.....	44
6.4.1	Lead Agency Approval	44
6.4.2	Responsible and Trustee Agencies	45
7.0	Impact Analysis	46
7.1	Summary of Environmental Impacts Identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100	46
7.1.1	Final Program EIR for the 2016 AQMP	46
7.1.2	Final SEA for Rule 1110.2 and Rule 1100	47
7.1.3	HRCM Components Considered Under the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100	48
7.2	Analysis of Impacts from the Proposed SCE Component of the HRCM Project.....	52
7.2.1	Aesthetics.....	52
7.2.2	Air Quality and Greenhouse Gases.....	57
7.2.3	Energy	73
7.2.4	Hazards and Hazardous Materials	78
7.2.5	Hydrology and Water Quality	85
7.2.6	Noise	94
7.2.7	Solid/Hazardous Waste	99
7.2.8	Transportation and Traffic	102
8.0	Potential Environmental Impacts in the Final Program EIR for the 2016 AQMP/2016 AQMP Initial Study and Final SEA for Rule 1110.2 and Rule 1100 Found Not to Be Significant	108
8.1	Analysis of Impacts for Environmental Topics Included in the Final Program EIR for the 2016 AQMP/2016 AQMP Initial Study and Final SEA For Rule 1110.2 and Rule 1100	108
8.1.1	Agriculture and Forestry Resources.....	108
8.1.2	Biological Resources	109
8.1.3	Cultural Resources	114

8.1.4	Geology and Soils	117
8.1.5	Land Use and Planning	121
8.1.6	Mineral Resources	123
8.1.7	Population and Housing	123
8.1.8	Public Services	124
8.1.9	Recreation	126
8.2	Analysis of Impacts for Environmental Topics Not Included in the Final Program EIR for the 2016 AQMP/2016 AQMP Initial Study and the Final SEA for Rule 1110.2 and Rule 1100	127
8.2.1	Wildfire	127
9.0	Conclusions	131
9.1	SCE Component Impact Summary	131
10.0	References	133
	Acronyms and Abbreviations	137

FIGURES

Figure 1-1	SoCalGas' Gas Transmission System	2
Figure 4-1	Regional and Local Vicinity Map	22
Figure 4-2	Honor Rancho Main Campus	23
Figure 5-1	HRCM Project Components	26
Figure 5-2	Main Campus Areas of Impact	28
Figure 5-3A	Proposed SCE Component	30
Figure 5-3B	Proposed SCE Component	31
Figure 5-3C	Proposed SCE Component	32
Figure 7-1	Locations of Construction Emission Source Areas and Specific Receptors Identified for the LST and Tier 2 HRA Analyses	64

TABLES

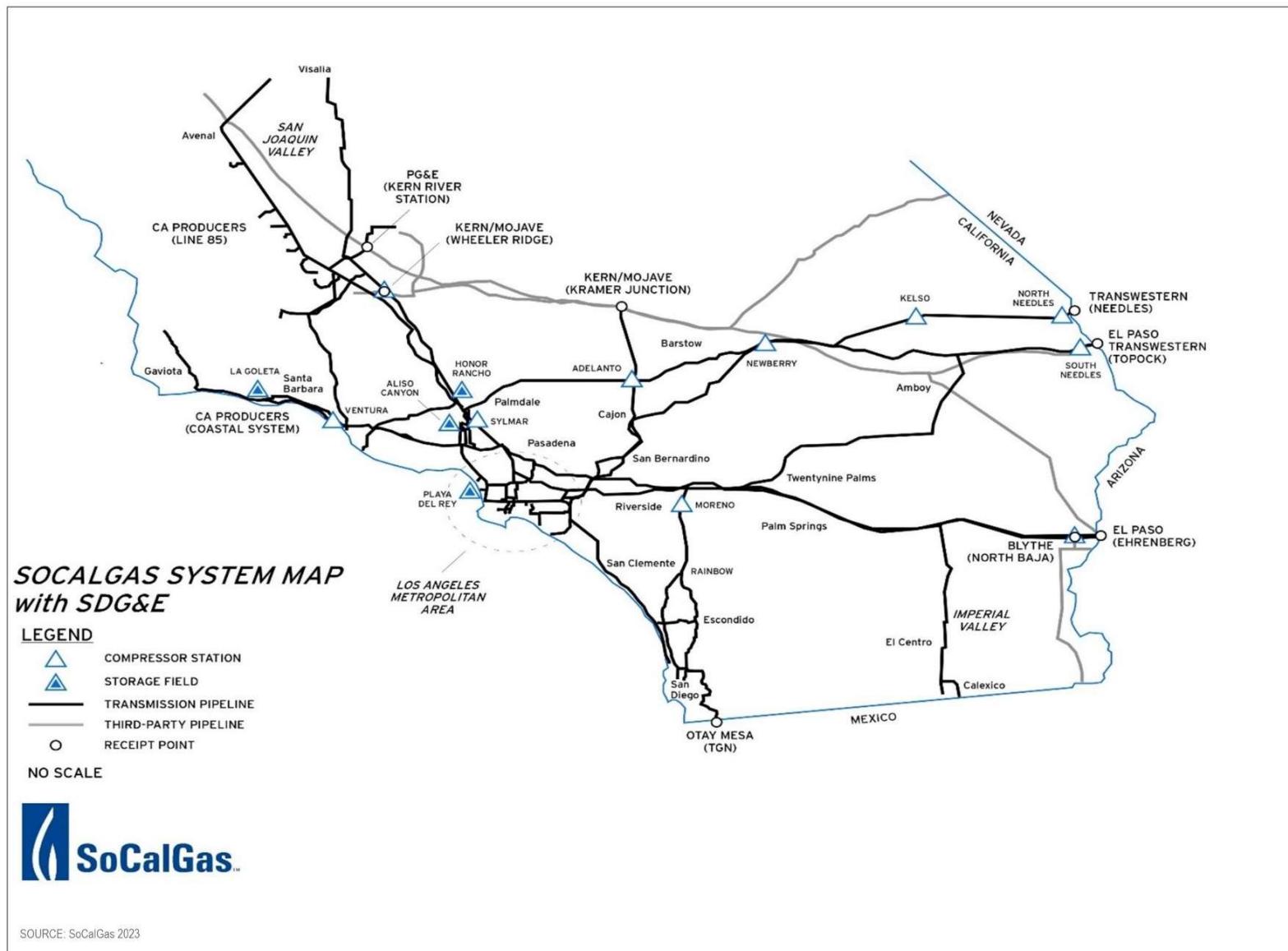
TABLE 1-1	South Coast AQMD Permit Application Numbers	Error! Bookmark not defined.
TABLE 1-2	Existing Equipment Proposed for Decommissioning and Demolition	Error! Bookmark not defined.
TABLE 5-1	Project Design Features	29
TABLE 5-2	Estimated Construction Schedule	36
TABLE 5-3	Proposed SCE Component Construction Equipment	37
TABLE 7-1	Summary of Proposed HRCM Project Components Included in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100	50

TABLE 7-2	South Coast AQMD Air Quality Significance Thresholds.....	58
TABLE 7-3	Construction Peak Daily Emissions Summary and Significance Evaluation	60
TABLE 7-4	Comparison of Peak Daily Construction Emissions from the November 2019 Final SEA for Rule 1110.2 and Rule 1100 Facility-wide Engine Modernization Scenario to the Peak Daily Construction Emissions for the SCE Component of the HRCM Project.....	61
TABLE 7-5	Peak Daily Construction Emissions and Localized Significance Threshold Evaluation...	65
TABLE 7-6	Project Construction Tier 2 HRA Tool Model Inputs	66
TABLE 7-7	Project Construction Tier 2 Health Risk Assessment Results	67
TABLE 7-8	Peak Daily Operational Emissions at One Facility.....	67
TABLE 7-9	SCE Component Estimated Construction GHG Emissions.....	72
TABLE 7-10	Estimated Construction Fuel Consumption Based on CalEEMod	76

APPENDICES

Appendix A	Retention Substation Project Description
Appendix B	Air Quality and Greenhouse Gas Technical Summary Memorandum
Appendix C-1	MMRP for the Final Program EIR for the 2016 AQMP
Appendix C-2	Mitigation Measures from the MMRP for the Final Program EIR for the 2016 AQMP which Are Applicable to the HRCM Project
Appendix D-1	Stormwater and Erosion Control Plan
Appendix D-2	Urban Stormwater Mitigation Plan
Appendix D-3	Hydrology and Hydraulic Report
Appendix E	HRCM Predictive Modeling Input/Output Worksheets
Appendix F-1	Biological Resources Assessment
Appendix F-2	2022 Jurisdictional Delineation
Appendix F-3	2023 Jurisdictional Delineation
Appendix G-1	Cultural Resources Report
Appendix G-2	Built Environment Report
Appendix H-1	Geotechnical Report
Appendix H-2	Access Road Geotechnical Report
Appendix H-3	Substation Geotechnical Report
Appendix H-4	Slope Stability Report
Appendix I	Paleontological Resources Memorandum
Appendix J-1	Construction Fire Protection Plan
Appendix J-2	Industrial Site-Specific Safety Plan

1.0 INTRODUCTION


The Southern California Gas Company (SoCalGas) operates a natural gas compressor station within the 693.4-acre Honor Rancho Storage Field (Honor Rancho) located at 25205 West Rye Canyon Road in Santa Clarita, California. Honor Rancho, which was constructed in 1975, operates pursuant to South Coast Air Quality Management District (South Coast AQMD) air permits issued under Facility ID 005973. The proposed SoCalGas Honor Rancho Compressor Modernization (HRCM) Project is located within Honor Rancho, and Project-related activities would occur in both the City of Santa Clarita (City or Santa Clarita) and the unincorporated County of Los Angeles (County).

1.1 Overview of SoCalGas Natural Gas Delivery System and Honor Rancho Storage Field

SoCalGas, a wholly owned subsidiary of Sempra, owns and operates an integrated natural gas delivery system consisting primarily of pipelines, compressor stations, storage fields, and other appurtenant facilities designed to provide natural gas to over 21 million residential, commercial, and industrial customers who use natural gas for cooking, heating air and water, and generating electricity. SoCalGas' service territory encompasses approximately 24,000 square miles throughout Central and Southern California, from Visalia to the U.S./Mexico border, as shown in Figure 1-1.

SoCalGas's natural gas delivery system is designed to use both interstate pipeline supplies and supplies from its four underground natural gas storage fields, including Honor Rancho, to meet customer demand. The transmission pipelines transport natural gas from the California/Arizona border and other receipt points in Central and Southern California, to areas throughout SoCalGas's service territory. However, interstate pipeline supplies of natural gas may not be available to meet customer needs at all times, particularly in the winter operating season when demand increases for natural gas supplies during cold weather occurring within and outside of California. The natural gas storage fields, therefore, play a critical role in providing natural gas throughout the year, especially during colder months.

As part of SoCalGas's integrated natural gas delivery system, all four underground storage fields support the natural gas demand throughout the entirety of SoCalGas's system. The natural gas supplied via the storage fields provides critical support by accommodating intraday changes in demand (i.e., changes within the operating day) by allowing for withdrawal of natural gas during times of high demand as well as for storage of excess supply when customer demand declines. The underground storage fields are typically operated in accordance with one of two seasons: 1) the summer operating season comprised of 214 days from April through October, when natural gas supplies are generally more abundant and less expensive, and the storage fields primarily receive natural gas for storage, but occasionally natural gas is needed to support electricity generation; and 2) the winter operating season comprised of 151 days from November through March, when natural gas demand is high and supplies are generally more expensive, and the storage fields are predominantly relied upon to provide natural gas to its customers, except occasionally when there is an excess in supply due to warmer weather resulting in lessened demand than originally forecasted for cold weather.

Figure 1-1 SoCalGas' Gas Transmission System

Honor Rancho is SoCalGas's second-largest underground natural gas storage field, spanning 693.4 acres and having a geologic setting which makes it uniquely suited for this purpose as it is situated on porous rock formations that have been natural reservoirs of oil and gas for millions of years. These subterranean rock formations are sealed by impermeable shale rock more than 2,000 feet thick and more than a mile beneath the Earth's surface. The pressure of the natural gas flowing within the transmission pipelines ranges from 250 to 1,000 pounds per square inch (psi). However, the pressure of the natural gas stored in the underground reservoir can be three to four times higher. In order for the natural gas to move a distance of one mile or more underground into the porous rock that comprises the reservoir, it first must be routed through large compressors to achieve a pressure of 1,500 psi or higher. After it is compressed, natural gas may then be withdrawn from the storage field to balance supply and demand across SoCalGas' natural gas energy delivery system.

1.2 Honor Rancho Compressor Modernization Project

Honor Rancho is located within the South Coast Air Basin, which is under the regulatory oversight of the South Coast AQMD, and operates as a facility under the market-based Regional Clean Air Incentives Market (RECLAIM) program for nitrogen oxides (NOx) emissions. In November 2019, South Coast AQMD amended Rule 1110.2 – Emissions from Gaseous- and Liquid-Fueled Engines, and Rule 1100 – Implementation Schedule for NOx Facilities, which required reductions of NOx emissions from the affected equipment. SoCalGas was identified as having engines that would be subject to the NOx emission reduction requirements in Rule 1110.2 and that the NOx emission reduction efforts would need to occur according to the implementation schedule set forth in Rule 1100. Rule 1100(d)(7) requires that a RECLAIM facility subject to Rule 1110.2 with a compressor gas lean-burn engine that elects to reduce NOx emissions to meet the emission limits specified in Rule 1110.2 through the replacement or removal of all existing compressor gas lean-burn engines subject to Rule 1110.2 shall submit a Facility-Wide Engine Modernization Compliance Plan (FWEMCP) which 1) lists each existing engine subject to Rule 1110.2 and provides a description of the control approach that will be used for each engine, and 2) provides a replacement or removal schedule for each engine that includes submittal of permit applications, other agency approvals, estimated delivery, and installation of equipment.

In December 2020, in accordance with Rule 1100(d)(7), SoCalGas submitted a FWEMCP, which described how SoCalGas intends to achieve the NOx emission limits set forth Rule 1110.2. Specifically, SoCalGas proposed to replace its five existing natural-gas-driven-compressor (GDC) lean-burn engines, with at least 20 percent using zero-emission (ZE) technology. The FWEMCP (SoCalGas 2020) was approved by South Coast AQMD in November 2021.

As a follow up to the FWEMCP, SoCalGas is now proposing the HRCM Project which will be implemented by SoCalGas and the local electric utility, Southern California Edison (SCE). For this reason, the HRCM Project is bifurcated into two components: the SoCalGas Component and the SCE Component, which are described in the following paragraphs.

SoCalGas Component: Compressor System Upgrades

The SoCalGas Component of the HRCM proposes to upgrade the existing compressor system. The existing infrastructure at Honor Rancho consists of five GDC lean-burn engines, three natural-gas-engine-driven electric generators, a dehydration system, pipelines, ancillary equipment, gas coolers, fin fan coolers, exhaust stacks, and several underground wells primarily for gas storage. In addition, Honor Rancho has multiple buildings.

The following changes to Honor Rancho are proposed:

Constructing one new compressor building (Compressor Plant No. 2) to house:

- Four new GDC lean-burn engines, each rated at 5,000 horsepower [HP] (South Coast AQMD Application Numbers 638015, 638018, 638020, and 638022);
- Four new post-combustion NOx emission control systems for the four GDC lean-burn engines, each consisting of a selective catalytic reduction (SCR) system and an oxidation catalyst (South Coast AQMD Application Numbers 638016, 638019, 638021, and 638023); and
- One new 8,000-gallon aqueous urea storage tank (South Coast AQMD Application Number 638024);
- Two new electric-motor-driven compressors (EDCs), each rated at 5,500 HP (no South Coast AQMD applications required); and
- Other ancillary improvements.

Once the new GDC engines become fully operational, the existing GDC engines (South Coast AQMD Application Numbers of 498839, 498840, 498841, 498842, and 498843) would be shut down and isolated from the plant by closing the fuel supply valves. The existing compressors—including, but not limited to, the compressors, engines, air coolers, air intake and exhaust systems, and electrical and control systems—would then be decommissioned and ultimately demolished. The construction and operation of these upgrades would be implemented by SoCalGas. The compressor system upgrades would be constructed on-site within the Main Campus and in immediately adjacent areas within Honor Rancho. The HRCM Project would be primarily located within the more developed portion of Honor Rancho, which includes graded areas, paved roads, storage tanks, wells, pipeline infrastructure, Compressor Plant No. 1, and temporary office structures, all of which are collectively referred to as the “Main Campus.” “Compressor Plant No. 1” refers to the existing compressor building and associated equipment located within and adjacent to the compressor building.

The South Coast AQMD Application Numbers for the proposed equipment that would be installed at Honor Rancho as part of the Compressor System Upgrade, as well as the required Title V permit revision, are provided in Table 1-1.

TABLE 1-1 South Coast AQMD Application Numbers

Application Numbers	Equipment Description
638015, 638018, 638020, 638022	Four Internal Combustion Engines, Natural Gas (each rated at 5,000 HP)
638016, 638019, 638021, 638023	Four SCR Systems with Oxidation Catalysts
638024	8,000-gallon Aqueous Urea Storage Tank
638025	Title V Permit: Significant Revision

Upon completion of new equipment testing, South Coast AQMD-permitted engines in Compressor Plant No. 1 would be shut down, isolated, decommissioned, then removed. The engines that would be decommissioned and removed from Compressor Plant No. 1 are listed in Table 1-2.

TABLE 1-2 Existing Equipment Proposed for Decommissioning and Demolition

Application (Permit) Numbers	Equipment Description
498839 (G20279)	Internal Combustion Engine (ICE), Natural Gas, Delaval Model HVA-16, Unit 1, 4-Stroke Lean Burn, Turbocharged, with Staged Combustion, 5500 HP (South Coast AQMD ID: D4) with Carbon Monoxide (CO) Oxidation Catalyst, Platinum Based (South Coast AQMD ID: C112)
498840 (G20280)	ICE, Natural Gas, Delaval Model HVA-16, Unit 2, 4-Stroke Lean Burn, Turbocharged, with Staged Combustion, 5500 HP (South Coast AQMD ID: D5) with CO Oxidation Catalyst, Platinum Based (South Coast AQMD ID: C113)
498841 (G20281)	ICE, Natural Gas, Delaval Model HVA-16, Unit 3, 4-Stroke Lean Burn, Turbocharged, with Staged Combustion, 5500 HP (South Coast AQMD ID: D6) with CO Oxidation Catalyst, Platinum Based (South Coast AQMD ID: C114)
498842 (G20282)	ICE, Natural Gas, Delaval Model HVA-16, Unit 4, 4-Stroke Lean Burn, Turbocharged, with Staged Combustion, 5500 HP (South Coast AQMD ID: D7) with CO Oxidation Catalyst, Platinum Based (South Coast AQMD ID: C115)
498843 (G20283)	ICE, Natural Gas, Delaval Model HVA-16, Unit 5, 4-Stroke Lean Burn, Turbocharged, with Staged Combustion, 5500 HP (South Coast AQMD ID: D8) with CO Oxidation Catalyst, Platinum Based (South Coast AQMD ID: C116)

The existing compressor building at Compressor Plant No. 1 and associated paved areas would remain in place and be repurposed for storage or other operational purposes.

SCE Component: SCE Substation and Upgrades

The SCE Component of the HRCM proposes to install a new SCE substation (Retention Substation) connecting to two new loop-in 66-kilovolt (kV) electrical lines, new and replacement electrical poles, and electrical interconnection to support the increased electric load associated with the new EDCs, as well as telecommunication interconnections. A circuit breaker would be replaced/upgraded at the Saugus Substation, and upgrades to protection settings would be required at the Haskell and Lockheed Substations. The majority of the SCE Component would also occur within Honor Rancho, although some of the SCE Component would require off-site staging and electric utility improvements.

1.3 Environmental Documentation Overview

As explained in the previous section, SoCalGas was identified by South Coast AQMD as having engines at the Honor Rancho facility that would be subject to the NOx emission reduction requirements in Rule 1110.2 and that the NOx emission reduction efforts would need to occur according to the implementation schedule in Rule 1100. As such, SoCalGas proposed the HRCM Project, which is a discretionary permitting action that requires South Coast AQMD review conducted pursuant to the California Environmental Quality Act (CEQA).

In November 2019, South Coast AQMD amended Rule 1110.2 – Emissions from Gaseous- and Liquid-Fueled Engines and Rule 1100 – Implementation Schedule for NOx Facilities to further reduce NOx emissions from stationary engines originally subject to Regulation XX – Regional Clean Air Incentives Market (RECLAIM) as part of implementing two control measures that were adopted as part of the 2016 Air Quality Management Plan (AQMP): Control Measure CMB-01 – Transition to Zero and Near-Zero Emission Technologies for Stationary Sources, and Control Measure CMB-05 – Further NOx Reductions from RECLAIM Assessment.

Rule 1110.2 applies to RECLAIM and non-RECLAIM stationary and portable engines rated greater than 50 brake horsepower (bhp). Amended Rule 1110.2: 1) requires Best Available Retrofit Control Technology (BARCT) for internal combustion engines that are operated at current and former RECLAIM facilities that were not previously subject to Rule 1110.2; 2) exempts non-emergency engines operated at remote two-way radio transmission towers; 3) contains an interim limit for electric generating units that do not have ammonia (NH₃) emissions from add-on control equipment; and 4) exempts Tier 4 – Final diesel engines powering cranes operated in the Southern California Coastal Waters or Outer Continental Shelf.

In addition, amendments to Rule 1100 were adopted that: 1) require two- and four-stroke lean-burn compressor gas engines to comply with the NOx emission limits in amended Rule 1110.2 within 24 months after a permit to construct is issued and require the permit application be submitted by July 1, 2021; 2) require all other qualifying engines to meet the NOx emission limits by December 31, 2023; 3) extend the compliance dates for achieving the emission limits specified in the rule and adding interim emission limits for compressor gas lean-burn engines if the owners or operators submit a request for a time extension; 4) add alternative emission limits for compressor gas lean-burn engines; 5) extend the compliance date for achieving the emission limits for compressor gas lean-burn engines undergoing a facility-wide engine modernization; 6) add a requirement for permit applications to be submitted by July 1, 2021; and 7) add low-use criteria for diesel engines operated at ski resorts.

At the time amendments to Rule 1110.2 and Rule 1100 were proposed, South Coast AQMD staff determined these rules contained new information of substantial importance that was not known and could not have been known at the time the March 2017 Final Program Environmental Impact Report (EIR) for

the 2016 AQMP (March 2017 Final Program EIR for the 2106 AQMP) was certified. Therefore, South Coast AQMD prepared a Subsequent Environmental Assessment (SEA) for Proposed Amended Rule 1110.2 – Emissions from Gaseous- and Liquid-Fueled Engines, and Proposed Amended Rule 1100 – Implementation Schedule for NOx Facilities, and the Governing Board certified the Final SEA for this project in November 2019 (November 2019 Final SEA for PAR 1110.2 and PAR 1100). The November 2019 Final SEA for PAR 1110.2 and PAR 1100 tiered off the March 2017 Final Program EIR for the 2016 AQMP to facilitate the transition of affected equipment subject to the NOx RECLAIM program to a command-and-control regulatory structure and to implement Control Measure CMB-05 (South Coast AQMD 2019).

In response to the amended rules, SoCalGas submitted applications to South Coast AQMD seeking to upgrade the compressor system by installing new equipment and modify existing equipment at its Honor Rancho facility. These applications comprise the SoCalGas Component of the HRCM Project. The purpose of the combustion engines and SCR systems with oxidation catalysts is to facilitate compression of natural gas while control emissions of NOx, CO, and volatile organic compounds (VOC).

The proposed HRCM Project also includes the SCE Component which seeks to install an electrical substation and 66-kV electrical lines. The SCE Component does not require air permits issued by South Coast AQMD.

The construction and operation activities associated with the SoCalGas Component of the HRCM Project were previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. However, the construction and operation activities associated with the SCE Component were not previously analyzed in these prior CEQA documents.

Therefore, the purpose of this Addendum is to analyze the potential impacts from the SCE Component of the HRCM Project relative to the overall project that was previously analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 and the March 2017 Final Program EIR for the 2016 AQMP, and determine whether implementation of the SCE Component would result in any new significant environmental impacts not identified or analyzed in either the previously certified November 2019 Final SEA for PAR 1110.2 and PAR 1100 or the March 2017 Final Program EIR for the 2016 AQMP. This Addendum also examines whether any previously identified significant effects would be substantially more severe with the SCE Component of the HRCM Project and whether implementation would require new or modified mitigation measures or alternatives to be studied that were not previously analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 and the March 2017 Final Program EIR for the 2016 AQMP.

This Addendum provides a comprehensive analysis of the SCE Component in relationship to these previous South Coast AQMD CEQA documents and assesses the potential for the SCE Component to result in new or substantially more severe significant environmental impacts than were previously analyzed. This Addendum concludes that the SCE Component would not result in new significant impacts not previously identified or make any previously identified significant impacts substantially more severe. This Addendum further concludes that implementation of the SCE Component would not require study of new or modified mitigation measures or alternatives that were not previously analyzed in November 2019 Final SEA for PAR 1110.2 and PAR 1100, and the March 2017 Final Program EIR for the 2016 AQMP. Thus, the SCE Component is consistent with, and would not alter the conclusions of, the previous CEQA reviews conducted and conclusions reached by South Coast AQMD, such that a supplemental or subsequent EIR is not required.

1.5 Addendum Organization

This Addendum is organized as follows:

- Chapter 1.0: Introduction. This chapter provides an overview of: the SoCalGas service territory and operations including Honor Rancho and the Main Campus, the HRCM Project including background on the proposed SoCalGas and SCE Components, previous CEQA documents relevant to the HRCM Project, and a discussion of the organization of this Addendum.
- Chapter 2.0: California Environmental Quality Act and Basis for Decision to Prepare an Addendum. This chapter describes the previous project approvals, the physical modifications required for control measures, the requirements according to CEQA for the preparation of an Addendum, and the applicable CEQA Guidelines requirements. The chapter also discusses recent updates to the CEQA Guidelines in the context of the SCE Component.
- Chapter 3.0: Previous CEQA Documents Applicable to the Proposed HRCM Project. This chapter provides a summary of the previous CEQA documents that are applicable to this Addendum, which include the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. This chapter also provides a summary discussion of how the Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 relied upon to support the evaluation of environmental impacts of the SCE Component.
- Chapter 4.0: Project Location. This chapter describes the locations of the on-site and off-site HRCM Project components including the SCE Component.
- Chapter 5.0: Background and Project Description. This chapter provides a detailed description of the HRCM Project and the SCE Component for the environmental impact analysis. The chapter includes an overview, purpose and need, and detailed description of both the SoCalGas Component and the SCE Component of the HRCM Project. Project activities outlined in this chapter include the pre-construction activities, construction schedule, and construction activities, commissioning activities, and decommissioning activities.
- Chapter 6.0: Project Setting. This chapter provides an overview of the environmental setting for Honor Rancho and the HRCM Project components, including the SCE Component. The chapter includes the HRCM Project location and Main Campus operations. It outlines the regulatory setting for the HRCM Project, the intended uses of the Addendum, and the agency approvals required for HRCM Project implementation, including discretionary actions, and ministerial permits.
- Chapter 7.0: Impact Analysis. Section 7.1 summarizes the environmental impacts that were found to be significant in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100, and provides a table that summarizes which parts of the SoCalGas Component and the SCE Component are covered under the Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. Section 7.2 presents the analysis of the issue areas that the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 evaluated and sets forth an assessment of the potential environmental impacts from the proposed SCE Component. This section also provides a discussion of the cumulative impacts in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 as well as a cumulative impact analysis for the proposed SCE Component.

- Chapter 8.0: Potential Environmental Impacts in the March 2017 Final Program EIR for the 2016 AQMP/2016 AQMP Initial Study and November 2019 Final SEA for PAR 1110.2 and PAR 1100 Found Not to Be Significant. Section 8.1 addresses the environmental topics that were concluded to not have significant environmental effects in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. Section 8.2 addresses the environmental topic of wildfire, which was not an environmental topic analyzed in the March 2017 Final Program EIR for the 2016 AQMP or the November 2019 Final SEA for PAR 1110.2 and PAR 1100.
- Chapter 9.0: Conclusions. This chapter concludes that the SCE Component would not result in new potentially significant impacts, nor would it substantially increase the severity of significant impacts identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. This chapter further concludes that the SCE Component would not require new mitigation measures or alternatives to be studied that were not already analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. This chapter therefore concludes that implementation of the SCE Component would not change the conclusions reached in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.
- Chapter 10: References. This chapter provides a list of references cited in the document.

2.0 CALIFORNIA ENVIRONMENTAL QUALITY ACT AND BASIS FOR DECISION TO PREPARE AN ADDENDUM

2.1 CEQA and Summary of Previous Approvals

South Coast AQMD review and approval of the HRCM project requires a discretionary permitting action subject to CEQA. When the HRCM Project was proposed, South Coast AQMD was identified as CEQA lead agency because it was the public agency with the principal responsibility for approving the amendments to Rules 1110.2 and Rule 1100, and the future anticipated equipment modifications that all facilities, including SoCalGas, would undergo in order to achieve the required NOx emission reductions and these would have the potential to result in a significant effect on the environment. [Public Resources Code Section 21067].

The potential environmental impacts associated with the construction and operation of the various components that would implement the November 2019 amendments to Rule 1110.2 and Rule 1100 were evaluated in November 2019 Final SEA for PAR 1110.2 and PAR 1100 which was certified by the South Coast AQMD Governing Board on November 1, 2019. The November 2019 Final SEA included feasible mitigation measures to address the potentially significant adverse impacts; these mitigation measures were also made a condition of approval. As such, a Mitigation Monitoring and Reporting Plan (MMRP) was adopted for the November 2019 Final SEA for PAR 1110.2 and PAR 1100. Findings were made and a Statement of Overriding Considerations was also adopted.

The November 2019 Final SEA for PAR 1110.2 and PAR 1100 tiered off of the Final Program EIR for the 2016 AQMP, because the amendments to Rule 1110.2 and Rule 1100 were implementing Control Measures CMB-01 and CMB-05 from the 2016 AQMP. The March 2017 Final Program EIR for the 2016 AQMP evaluated the potential environmental impacts associated with the construction and operation of the various components of implementing all of the control measures in the 2016 AQMP, including Control Measures CMB-01 and CMB-05. The March 2017 Final Program EIR for the 2016 AQMP identified potentially significant adverse impacts for the environmental topic areas of aesthetics, air quality, energy, greenhouse gas emissions, hazards and hazardous materials, hydrology and water quality, noise, solid/hazardous waste, and transportation and traffic. The March 2017 Final Program EIR for the 2016 AQMP, which was certified by the South Coast AQMD Governing Board on March 3, 2017, also included feasible mitigation measures to address these potentially significant adverse impacts. These mitigation measures were made a condition of approval and an MMRP was adopted for the 2016 AQMP. Findings were made and a Statement of Overriding Considerations was adopted by South Coast AQMD.

The November 2019 amendments to Rule 1110.2 and Rule 1000 and its corresponding Final SEA, MMRP, Findings and Statement of Overriding Considerations and the 2016 AQMP along with the March 2017 Final Program EIR for the 2016 AQMP (State Clearinghouse No. 2016071006) and its corresponding Findings, Statement of Overriding Considerations, and Mitigation, Monitoring, and Reporting Plan, upon which the analysis of the SCE Component of the HCRM Project relies, are incorporated by reference pursuant to CEQA Guidelines Section 15150 and are available from the South Coast AQMD's website at:

November 2019 Final SEA for PAR 1110.2 and PAR 1100 is accessible at:

https://www.aqmd.gov/docs/default-source/ceqa/documents/aqmd-projects/2019/par-1110-2_final-sea_with-appx.pdf, and

The MMRP, Findings and Statement of Overriding Considerations for the November 2019 Final SEA for PAR 1110.2 and PAR 1100, are identified as Attachment F to the Governing Board package is accessible at:

<https://www.aqmd.gov/docs/default-source/agendas/governing-board/2019/2019-nov1-028.pdf>

March 2017 Final Program EIR for the 2016 AQMP is accessible at:

<https://www.aqmd.gov/docs/default-source/agendas/governing-board/2017/2017-mar3-035.pdf>, and

The MMRP, Findings and Statement of Overriding Considerations for the March 2017 Final Program EIR for the 2016 AQMP is accessible at:

<https://www.aqmd.gov/docs/default-source/ceqa/documents/aqmd-projects/2017/att2toresolutionfor-2016aqmp.pdf>

Copies of these documents may also be obtained from:

Lisa Tanaka, Deputy Executive Officer/Public Advisor
South Coast AQMD 21865 Copley Drive
Diamond Bar, CA 91765
Phone: (909) 396-2432
Email: publicadvisor@aqmd.gov

2.2 Physical Modifications Required for Control Measures

The 2016 AQMP is implemented through a series of control measures and strategies that vary by source type (i.e., mobile or stationary) as well as by the pollutant that is being addressed. Control Measure CMB-01 prescribes NOx emission reductions from traditional combustion sources via replacement with zero and near-zero emission technologies, including low NOx-emitting equipment, electrification, alternative process changes, efficiency measures, or fuel cells for combined heating and power. Replacing older, higher-emitting equipment with newer, lower- or zero-emitting equipment could apply to a single source or an entire facility. These sources include engines, turbines, microturbines, and boilers that generate power for electricity for distributed generation, facility power, process heating, and/or steam production. Additionally, fuel cells may be implemented as an alternative to traditional combustion methods. This control measure seeks energy storage systems and smart grid control technologies that provide a flexible and dispatchable resource with zero emissions. CMB-05 prescribes an orderly sunset of the RECLAIM program and identifies a series of approaches, assessments, and analyses that would make the program more effective in ensuring equivalency with command-and-control regulations implementing BARCT (South Coast AQMD 2017b).

The March 2017 Final Program EIR for the 2016 AQMP assessed potential environmental impacts as a result of implementing the control measures due to short-term construction activities, such as from the installation of new equipment, disposal of old equipment, and additional vehicular/truck trips to transport materials. Environmental impacts were also concluded to occur from long-term operational activities, such as increased electrical demand and emissions from power plants that would need to expand to produce

additional electricity to operate zero and near-zero technologies, increased NH₃ use for reformulated products, and increased waste from spent catalysts.

Subsequently, the November 2019 amendments to Rule 1110.2 and Rule 1100 contemplated a more refined and defined project than what was previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP. Specifically, Rule 1110.2 was amended to facilitate the transition of affected equipment subject to the NO_x RECLAIM program to a command-and-control regulatory structure and to implement Control Measure CMB-05. The amendments to Rule 1110.2 required BARCT for internal combustion engines operating at current and former RECLAIM facilities, which were not previously subject to Rule 1110.2. Amendments to Rule 1100 were concluded to be administrative in nature and as such, were not expected to require any physical modifications. Implementation of the amended rules was estimated to reduce NO_x emissions by 0.29 ton per day by retrofitting existing internal combustion engines with air pollution control equipment (e.g., SCR technology/systems), or by repowering or replacing existing internal combustion engines. While impacts associated with hazards were determined to be significant and unavoidable, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that the air quality and greenhouse gas (GHG) emissions impacts would be less than significant. Even though implementation of the amended rules would cause a temporary, less than significant increase in air emissions during construction, the temporary net increase in construction emissions combined with the total permanent emission reductions projected overall during operation would not interfere with the expected overall NO_x emission reductions (South Coast AQMD 2019).

2.3 Basis for Decision to Prepare an Addendum

SoCalGas is proposing the HRCM Project, which includes the installation of new equipment as well as other modifications to implement the requirements in Rule 1110.2 and Rule 1100. Because the SCE Component, which is necessary for the SoCal Gas Component of the HRCM Project to comply with Rule 1110.2 and Rule 1100, was not specifically contemplated in the CEQA analyses for these rules, the Addendum evaluates the SCE Component as a modification to the HRCM Project.

The SCE Component is considered a modification to the HRCM Project, which was within the scope of: 1) the previously approved 2016 AQMP that was evaluated in the March 2017 Final Program EIR; and 2) the previously approved November 2019 amendments to Rule 1110.2 and Rule 1100 that were evaluated in the November 2019 Final SEA for PAR 1110.2 and PAR 1100, and is a “project” subject to CEQA. CEQA requires evaluation of the potential adverse environmental impacts of proposed projects and identification of feasible methods to reduce or avoid identified significant adverse environmental impacts of the project. However, CEQA Guidelines Section 15164(a) allows a lead agency to prepare an Addendum to a previously certified CEQA document if some changes or additions are necessary but none of the following conditions as described in CEQA Guidelines Section 15162 occur:

- Substantial changes which will require major revision of the previous CEQA document due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects;
- Substantial changes, with respect to the circumstances under which the project is undertaken, which will require major revisions of the previous CEQA document due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or

- New information of substantial importance which was not known and could not have been known with the exercise of reasonable diligence at the time the previous CEQA document was certified as complete, such as:
 - The project will have one or more significant effects not discussed in the previous CEQA document;
 - Significant effects previously examined will be substantially more severe than shown in the previous CEQA document;
 - Identification of mitigation measures or alternatives previously found not to be feasible, but would in fact be feasible, and would substantially reduce one or more significant effects, but the project proponent declines to adopt the mitigation measure or alternatives; or
 - Identification of mitigation measures or alternatives which are considerably different from those analyzed in the previous CEQA document would substantially reduce one or more significant effects on the environment, but the project proponent declines to adopt the mitigation measure or alternative.

Further, CEQA Guidelines Section 15168(c)(2) states that later activities that were addressed in a “program EIR,” such as the March 2017 Final Program EIR for the 2016 AQMP, can be approved as being within the scope of the project covered by the program EIR if the agency finds that no subsequent EIR is required. Factors that a lead agency may consider in making that determination include, but are not limited to, consistency of the later activity with the type of allowable land use, overall planned density and building intensity, geographic area analyzed for environmental impacts, and covered infrastructure, as described in the program EIR.

The HRCM Project includes the SoCalGas Component (compressor system upgrades) and the SCE Component (SCE substation and upgrades). The SoCalGas Component of the HRCM Project requires a PTC and Facility Title V permit significant revision to allow these proposed changes. The revisions to the project to include the SCE Component is a discretionary action which requires an update to the environmental impacts previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 to evaluate the SCE Component, which is analyzed in this Addendum.

To determine whether the conditions described in CEQA Guidelines Section 15162 have occurred, the effects of the SCE Component were compared to the baseline, or the existing setting, of the environmental impacts related to the adoption of Control Measures CMB-01 and CMB-05 as initially reviewed and approved in the March 2017 Final Program EIR for the 2016 AQMP and the implementation of these control measures through the November 2019 amendments to Rule 1110.2 and Rule 1100, as initially reviewed and approved in the November 2019 Final SEA for PAR 1110.2 and PAR 1100. After comparing the effects of the SCE Component to this baseline, the analysis in Section 7.2 and Chapter 8.0 of this Addendum indicates that the environmental topic areas of air quality and GHG emissions, energy, hazards and hazardous materials, hydrology and water quality, noise, and transportation and traffic would be potentially affected by the implementation of the SCE Component. For Control Measures CMB-01 and CMB-05, which are the basis for the requirements later incorporated into the November 2019 amendments to Rule 1110.2 and Rule 1100, the March 2017 Final Program EIR for the 2016 AQMP identified: 1) significant adverse impacts for the topics of aesthetics, air quality and GHG emissions, energy, hazards and hazardous materials, hydrology and water quality, noise, solid and hazardous waste, and transportation and traffic; and 2) less than significant impacts for the topics of agriculture and forestry resources, biological resources, cultural resources, geology and soils, land use and planning, mineral resources,

population and housing, public services, and recreation. In addition, the November 2019 Final SEA for Rule 1110.2 and Rule 1100 identified: 1) significant adverse impacts for the topic of hazards and hazardous materials; and 2) less than significant impacts for the topic of air quality. Impacts to the remainder of the topics (aesthetics, agriculture and forestry resources, biological resources, cultural resources, energy, geology and soils, hydrology and water quality, land use and planning, mineral resources, noise, population and housing, public services, recreation, solid and hazardous waste, and transportation and traffic) were found to have no significant or less than significant direct or indirect adverse effects and were not discussed in detail in the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

As concluded in Chapter 9.0 in this Addendum, the SCE Component would not result in new significant impacts or substantial increases in the severity of previously identified significant impacts, and would not require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. In addition, implementation of the SCE Component would not change the conclusions reached in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 for the aforementioned impact areas. Thus, there are no substantial changes to the HRCM Project that would require major revisions to the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects. Implementation of the SCE Component would not change the conclusions reached in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

The analysis in Section 7.2 and Chapter 8.0 of this Addendum confirms that the SCE Component is not expected to trigger any conditions identified in CEQA Guidelines Section 15162 that would require the preparation of a subsequent EIR because: 1) the proposed revisions do not create any new significant adverse environmental impacts; 2) the proposed revisions do not make substantially worse any existing significant adverse environmental impacts; and 3) the proposed revisions would require only minor additions or changes to make adequate the environmental analyses of the HRCM Project in the previous environmental documents (i.e., March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100). Therefore, when considering the effects of the HRCM Project, South Coast AQMD has determined that: 1) the SoCalGas Component of the HRCM Project is within the scope of what was previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100; and 2) an Addendum is the appropriate type of CEQA document to be prepared for evaluating the SCE Component's potential environmental impacts that were not previously analyzed.

The prior discussion provides the rationale to comply with CEQA Guidelines Section 15164(e), which requires a brief explanation supported by substantial evidence to be included in the Addendum about the reasoning behind the decision to not prepare a Subsequent EIR. Finally, as set forth in CEQA Guidelines Section 15164(c), this Addendum is not required to be circulated for public review but it will be included as an attachment to March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

2.4 CEQA Guidelines Revisions

Since certification of the March 2017 Final Program EIR for the 2016 AQMP, California adopted a series of updates to the CEQA Guidelines to add efficiency and clarity to aspects of the CEQA Guidelines and

to incorporate new case law and legislation. The updates included revisions to Appendix G of the CEQA Guidelines, which consists of environmental checklist questions that are used by many lead agencies as the framework for environmental documents prepared pursuant to CEQA. The most recent and comprehensive revisions to the CEQA Guidelines were adopted on December 28, 2018.¹

The South Coast AQMD's environmental checklist questions used in the Initial Study of the March 2017 Final Program EIR for the 2016 AQMP are based on previous iterations of Appendix G of the CEQA Guidelines. Section 15007(c) of the CEQA Guidelines states that "if a document meets the content requirements in effect when the document is sent out for public review, the document shall not need to be revised to conform to any new content requirements in Guideline amendments taking effect before the document is finally approved." Because the March 2017 Final Program EIR for the 2016 AQMP was released for public review and was also certified before adoption of the CEQA Guidelines amendments in 2018 and because the March 2017 Final Program EIR for the 2016 AQMP met the CEQA Guidelines' content requirements in effect at that time, the analysis for the proposed SCE Component does not need to be updated to conform with the revised CEQA Guidelines. As such, changes pertaining to the CEQA Guidelines updates do not need to be addressed in this Addendum. The adoption of these updates to the CEQA Guidelines do not constitute a substantial change with respect to the circumstances under which the whole of the HRCM Project would be undertaken, nor does it constitute new information of substantial importance that would change the impact conclusions in the certified March 2017 Final Program EIR for the 2016 AQMP.

Further, because the November 2019 Final SEA for PAR 1110.2 and PAR 1100 is a subsequent CEQA document to the March 2017 Final Program EIR for the 2016 AQMP, it relied on the conclusions reached in the March 2017 Final Program EIR for the 2016 AQMP as evidence for environmental areas where impacts were found not to be significant. Because the topics of air quality and hazards and hazardous materials were the only environmental topic areas that would be affected by the Amended Rule 1110.2 as assessed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100, no other environmental topic areas were evaluated.

This Addendum includes the South Coast AQMD's significance criteria (herein referred to as significance criteria or significance thresholds) as included in the March 2017 Final Program EIR for the 2016 AQMP. At the time the NOP/IS for the Draft Program EIR for the 2016 AQMP was circulated for public review and comment and following the certification of the Final Program EIR for the 2016 AQMP, the South Coast AQMD's environmental checklist did not include tribal cultural resources (TCRs) or wildfire as specific environmental topics. In the interest of providing the public and decision makers as much relevant information on the SCE Component's potential significant environmental impacts as possible, this document includes discussions, for informational purposes only, of the SCE Component's potential effects on TCRs, as discussed in Section 8.1.3, Cultural Resources, and the SCE Component's potential effects on wildfire, as discussed in Section 8.2.1 of this Addendum.

¹ The 2018 updates to Appendix G can be generally summarized as follows: narrowing the scope of aesthetic impacts; moving the topic of paleontology from the cultural resources section to the geology section; adding threshold questions to address the topic of energy; expanding wildfire issues; combining airport safety and noise into one threshold question; deleting the reference to private airstrips; incorporating vehicle miles traveled analysis into the transportation section; making the hydrology and utilities questions more concise and applicable to modern issues; clarifying that land use conflicts must relate to a physical impact; and adding "unplanned" to the population growth question, so that the question now focuses only on unplanned growth. In addition to these revisions, a prior revision was made that involved the addition of the topic of tribal cultural resources (TCRs) as a separate section in Appendix G. The TCRs section was added to Appendix G after passage of Assembly Bill 52, which required an update to the CEQA Guidelines to ensure that the topic of TCRs was addressed in CEQA documents.

3.0 PREVIOUS CEQA DOCUMENTS APPLICABLE TO THE PROPOSED HRCM PROJECT

As one of its obligations under the federal Clean Air Act, the South Coast AQMD prepares AQMPs that identify the emissions reductions and control measures needed to attain the health-based ambient air quality standards for which the region is not in attainment. The South Coast AQMD's 2016 AQMP (South Coast AQMD 2017a) includes strategy and control measures needed to attain the standards for which the South Coast Air Basin is not in attainment. The 2016 AQMP identified the amount of NOx emissions reductions that were needed to attain the ozone and fine particulate matter (PM2.5) ambient air quality standards. In the 2016 AQMP, CMB-05 – Further NOx Reductions from RECLAIM Assessment, committed to additional NOx emission reductions of 5 tons per day to occur by 2025 (South Coast AQMD 2017a). The South Coast AQMD Governing Board directed staff to implement the sunset of the RECLAIM program to achieve the additional 5 tons per day. Thus, CMB-05 committed to a process of transitioning NOx RECLAIM facilities to a command-and-control regulatory structure and ensuring that the applicable equipment will meet BARCT-level equivalency.²

As part of the approval process of the 2016 AQMP, South Coast AQMD prepared a programmatic EIR pursuant to CEQA that disclosed the potential for significant impacts that would occur as a result of implementing the 2016 AQMP (South Coast AQMD 2017b). South Coast AQMD released a Draft EIR that included an analysis of potential adverse environmental impacts, mitigation measures, project alternatives, and other topics required by CEQA. The Notice of Determination for the March 2017 Final Program EIR for the 2016 AQMP was filed on March 3, 2017. Subsequent to the certification of the March 2017 Final Program EIR for the 2016 AQMP, amendments to Rule 1110.2 and Rule 1100 were proposed which contained new information of substantial importance that was not known and could not have been known at the time the March 2017 Final Program EIR for the 2016 AQMP was certified. Therefore, South Coast AQMD's Governing Board certified the November 2019 Final SEA for PAR 1110.2 and PAR 1100 which tiered off of the March 2017 Final Program EIR for the 2016 AQMP to facilitate the transition of affected equipment subject to the NOx RECLAIM program to a command-and-control regulatory structure and to implement CMB-05 (South Coast AQMD 2019). The Draft SEA for PAR 1110.2 and PAR 1100 was circulated for a 46-day public review period from July 26, 2019, to September 10, 2019, and was certified on November 1, 2019.

Therefore, South Coast AQMD has already completed its CEQA review analyzing the potential environmental impacts associated with regulated entities complying with the 2016 AQMP, Rule 1110.2, and Rule 1100. Summaries of the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 are provided in this chapter. The March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 can be obtained by contacting South Coast AQMD's Public Information Center at 909.396.2039, or they can be downloaded from South Coast AQMD's CEQA webpages at the following sites:

- March 2017 Final Program EIR for the 2016 AQMP
<http://www.aqmd.gov/docs/default-source/ceqa/documents/aqmd-projects/2016/2016aqmpfpeir.pdf>

² RECLAIM was a market incentive program that is transitioning to a command-and-control regulatory structure requiring BARCT. The shift from this market-based air pollution reduction strategy is a result of the control measure that was included in the 2016 AQMP. The 2016 AQMP proposes the path to help attain federal public health standards for air quality (South Coast AQMD 2017a, 2018).

- November 2019 Final SEA for PAR 1110.2 and PAR 1100:
http://www.aqmd.gov/docs/default-source/ceqa/documents/aqmd-projects/2019/par-1110-2_final-sea_with-appx.pdf

3.1 South Coast AQMD March 2017 Final Program EIR for the 2016 AQMP

The 2016 AQMP identified 75 control measures and strategies to demonstrate how the region will attain various ambient air quality standards. Control Measures CMB-01 – Transition to Zero and Near-Zero Emission Technologies for Stationary Sources, and CMB-05 – Further NOx Reductions from RECLAIM Assessment, are especially relevant to the HRCM Project. The March 2017 Final Program EIR for the 2016 AQMP addressed the 2016 AQMP strategies and control measures needed to attain the standards for which the South Coast Air Basin is not in attainment (i.e., ozone and PM2.5 National Ambient Air Quality Standards and ozone, PM10, and PM2.5 California Ambient Air Quality Standards).

The 2016 AQMP identified the amount of NOx emission reductions needed to reduce the formation of ozone. One of the strategies to attain NOx emissions reductions is to implement BARCT on existing combustion equipment. Although BARCT rules are intended to reduce emissions and hence have a beneficial impact on air quality, the March 2017 Final Program EIR for the 2016 AQMP identified that some of the control measures could result in environmental impacts, including the following: the construction needed to implement the proposed control measures; operation of power plants that would need to expand to produce additional electricity to operate zero- and near-zero-emission technologies; the use, storage, and/or transportation of NH₃; additional toxic air contaminants (TACs) (e.g., increased NH₃ use for emissions control equipment); and additional vehicle trips to transport materials.

The March 2017 Final Program EIR for the 2016 AQMP identified stationary source control measures that would further reduce emissions from both point sources (permitted facilities) and area sources (generally small and nonpermitted sources). These measures target numerous source categories, including Energy and Climate Change Programs, Combustion Sources, Petroleum Operations and Fugitive VOC Emissions, Coatings and Solvents, Multiple Component Sources, Best Control Measures, and Compliance Flexibility Programs. Each control measure may rely on numerous control methods (South Coast AQMD 2017b). Table 2.8-1 in the March 2017 Final Program EIR for the 2016 AQMP provides a list of the proposed ozone measures for stationary sources along with the anticipated adoption date, implementation period, and emissions reductions. The following text summarizes applicable Control Measures CMB-01 and CMB-05 contained in the 2016 AQMP relevant to the HRCM Project (South Coast AQMD 2017b):

CMB-01 – Transition to Zero and Near-Zero Emission Technologies for Stationary Sources: This proposed control measure would seek NOx emission reductions through replacement of traditional combustion sources with zero- and near-zero-emission technologies, including low-NOx-emitting equipment, electrification, alternative process changes, efficiency measures, or fuel cells for combined heating and power. Replacing older, higher-emitting equipment with newer lower- or zero-emitting equipment can apply to a single source or an entire facility. These sources include engines, turbines, microturbines, and boilers that generate power for electricity for distributed generation, facility power, process heating, and/or steam production. New businesses can be required or incentivized to install and operate zero-emission equipment, technology, and processes beyond the current best available control technology (BACT) requirements. Fuel cells are also an alternative to traditional combustion methods, resulting in a reduction of NOx emissions with the co-benefit of reducing other criteria air pollutants and greenhouse gases

(GHGs). This control measure would also seek energy storage systems and smart grid control technologies that provide a flexible and dispatchable resource with zero emissions. Grid-based storage systems can replace the need for new peaking generation, can be coupled with renewable energy generation, and can reduce the need for additional energy infrastructure. Mechanisms will be explored to incentivize businesses to choose the cleanest technologies as they replace equipment and upgrade facilities and to provide incentives to encourage businesses to move into these zero- and near-zero-emission technologies sooner.

Additionally, CMB-01 would seek corresponding VOC reductions resulting from implementation of the NOx-reducing measures described above, as follows (South Coast AQMD 2017b):

CMB-05 – Further NOx Reductions from RECLAIM Assessment: The Health and Safety Code requires the South Coast AQMD to implement BARCT in the RECLAIM program as well as other stationary sources, and if BARCT advances, the South Coast AQMD is required to periodically re-assess the overall facility caps and reduce the RECLAIM Trading Credit (RTC) holdings to a level equivalent to command-and-control BARCT levels. The emission reductions resulting from the programmatic RTC reductions will help the South Coast Air Basin attain the National Ambient Air Quality Standards (NAAQS) for ozone and PM2.5 as expeditiously as practicable. When considering future emission reductions for AQMP purposes, the NOx RECLAIM program works differently than traditional command-and-control regulations. When projecting future emissions for State Implementation Plan (SIP) purposes, all RECLAIM holdings must be assumed to be emitted in the air. Under command-and-control regulations, future year emissions estimates for many sources are based on actual emissions in a base year which are then projected into the future using the best available estimates of economic growth for a particular industry. The RECLAIM program has traditionally, and perhaps necessarily, included more RTCs than actual emissions. This margin may be needed for market liquidity, but also precludes taking future year SIP credit for these unused credits. For attainment demonstration purposes, these emission reductions would then need to be achieved from non-RECLAIM sources. This control measure identifies a series of approaches, assessments, and analyses that can be explored to make the program more effective in ensuring equivalency with command-and-control regulations implementing BARCT, and to potentially generate further NOx emission reductions at RECLAIM facilities.

All control measures were analyzed to identify the potentially adverse impacts of implementing the March 2017 Final Program EIR for the 2016 AQMP. CMB-01 was determined to result in potential impacts related to air quality and GHG emissions, noise, solid and hazardous waste, and transportation and traffic. CMB-05 was determined to result in potential impacts related to air quality and GHG emissions, energy, hazards and hazardous materials, hydrology and water quality, noise, solid and hazardous waste, and transportation and traffic.

For the entire 2016 AQMP, the analysis in the March 2017 Final Program EIR for the 2016 AQMP concluded that significant and unavoidable adverse environmental impacts were expected to occur after implementing mitigation measures for the following environmental topic areas: aesthetics, construction-related air quality emissions, energy (due to increased energy use), hazards and hazardous materials, hydrology and water quality, construction noise and vibration, solid construction waste and waste from

vehicle and equipment scrapping, and transportation and traffic during construction and operation. The Final Program EIR for the 2016 AQMP concluded that the 2016 AQMP would have significant and unavoidable adverse environmental impacts even after mitigation measures were identified and applied. As such, mitigation measures were made a condition of project approval and an MMRP was adopted. Findings were made and a statement of overriding considerations was adopted (South Coast AQMD 2017b).

3.2 Final SEA for PAR 1110.2 and PAR 1100

As part of its implementation of CMB-05 in the 2016 AQMP, South Coast AQMD amended Rule 1110.2 and its companion rule, Rule 1100 in November 2019. Rule 1110.2 applies to stationary and portable gaseous- and liquid-fueled engines with a rating greater than 50 brake horsepower operated at RECLAIM and non-RECLAIM facilities. Amended Rule 1110.2 applies to internal combustion engines operated at current and former RECLAIM facilities that were not previously subject to Rule 1110.2 and requires them to comply with BARCT, and it exempts non-emergency engines operated at remote two-way radio transmission towers. Implementation of Rule 1110.2 was estimated to reduce NOx emissions by 0.29 ton per day and implementation was expected to be achieved by retrofitting existing internal combustion engines with air pollution control equipment.

In analyzing the potential environmental impacts of the proposal at that time to amend Rule 1110.2 and Rule 1100, South Coast AQMD staff determined that the proposal contained new information of substantial importance that was not known and could not have been known at the time the March 2017 Final Program EIR for the 2016 AQMP was certified. South Coast AQMD prepared a Final SEA for PAR 1110.2 and PAR 1100 which had tiered off the March 2017 Final Program EIR for the 2016 AQMP to facilitate the transition of affected equipment subject to the NOx RECLAIM program to a command-and-control regulatory structure and to implement CMB-05 (South Coast AQMD 2019). South Coast AQMD analyzed the environmental impacts of regulated entities implementing the requirements in the November 2019 amendments to Rules 1110.2 and 1100 and 21 facilities were identified, including Honor Rancho, as being subject to Rule 1110.2 and Rule 1100.

Hazards and hazardous materials was the only environmental topic area that the November 2019 Final SEA for PAR 1110.2 and PAR 1100 identified as having potentially significant adverse impacts. In addition, because physical modifications are expected to occur that may cause adverse, but less than significant, air quality and GHG emissions impacts as a result of implementing Rule 1110.2, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 also analyzed air quality with a discussion of GHG emission impacts. Aside from potentially significant adverse impacts to hazards and hazardous materials from the potential for catastrophic failure of an aqueous ammonia tank, no other potentially significant adverse impacts were identified in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 (South Coast AQMD 2019).

3.3 Relationship of the HRCM Project and the SCE Component to the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

As discussed in Section 3.1, as the CEQA lead agency, South Coast AQMD prepared the March 2017 Final Program EIR for the 2016 AQMP, which contemplated the impacts of CMB-05. After the 2016 AQMP was adopted, CMB-05 was implemented, amendments to Rule 1110.2 and Rule 1100 were proposed and adopted and the environmental impacts were analyzed in the November 2019 Final SEA for

PAR 1110.2 and PAR 1100. Seventy-six internal combustion engines at 21 RECLAIM facilities were expected to be affected by amendments adopted in Rule 1110.2. Of these engines, approximately 45 engines were identified as needing to be replaced, repowered, or retrofitted with air pollution control equipment in order to comply with the NOx limits in Rule 1110.2. Upon full implementation of BARCT, Rule 1110.2 was estimated to reduce NOx emissions by approximately 0.29 ton per day. (SEA p. 2-13.) Table A-1: RECLAIM Facilities Affected by PAR 1110.2, in Appendix A to the Final Staff Report for Rule 1110.2 and 1100, lists the Honor Rancho Facility as one of the 21 facilities subject to these rules. Table A-2: Equipment at RECLAIM Facilities Affected by PAR 1110.2, further identifies the five engines at the Honor Rancho Facility subject to the rule – Engines 41 through 45, which are lean-burn 4-stroke engines each rated at 5,500 brake horse-power that will need to be replaced.

As discussed further in Section 7.1.3, HRCM Components Considered Under the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100, the HRCM Project, with the inclusion of the SCE Component, differs from what was analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. As such, this document evaluates the proposed SCE Component, in relationship to environmental issue areas as required by CEQA to determine whether the SCE Component would result in any new or substantially more severe significant environmental impacts than those in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 analyzed, in accordance with CEQA Guidelines Section 15164.

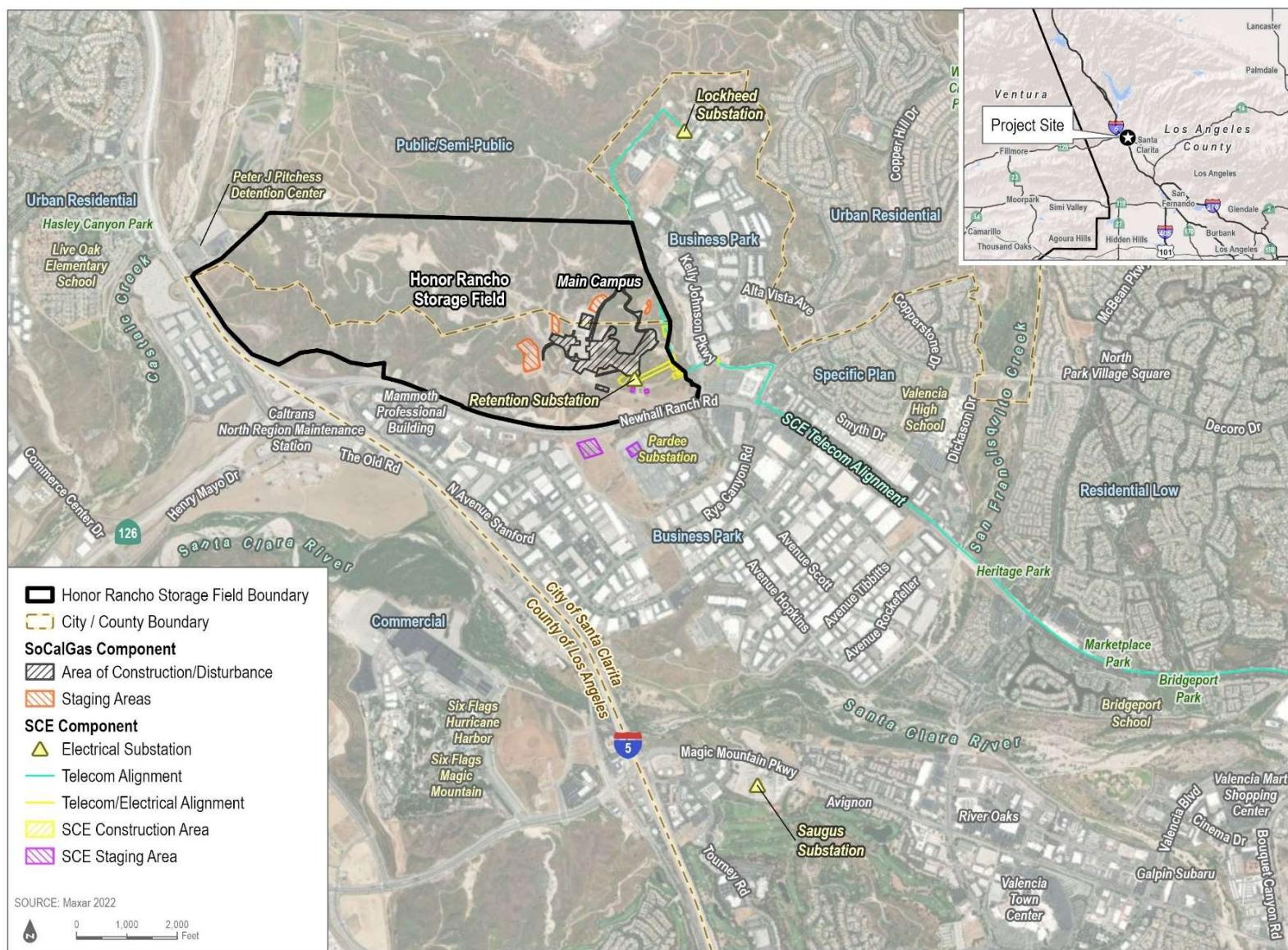
Consistent with CEQA Guidelines Section 15164, the South Coast AQMD has determined that it is required to prepare an addendum, rather than a subsequent EIR, because “some changes or additions are necessary but none of the conditions described in Section 15162 calling for preparation of a subsequent EIR have occurred.” Courts have reiterated this requirement, holding that “agencies are prohibited from requiring further environmental review unless the stated conditions [under CEQA Guidelines Section 15162] are met.” *See Friends of the College of San Mateo Gardens v. San Mateo Community College District* (2016) 1 Cal.5th 937, 949-950 (“The event of a change in a project is not an occasion to revisit environmental concerns laid to rest in the original analysis. Only changed circumstances ... are at issue.”).

4.0 HRCM PROJECT LOCATION

Honor Rancho is located at 25205 West Rye Canyon Road in the City of Santa Clarita and unincorporated Los Angeles County, California, as depicted on Figure 4-1, Regional and Local Vicinity Map. Honor Rancho consists of 13 Assessor's Parcel Numbers (APNs) (2866-004-802, 2866-004-803, 2866-004-804, 2866-004-907, 2866-004-908, 2866-004-913, 2866-005-031, 2866-005-801, 2866-005-805, 2866-005-808, 2866-005-809, 2866-006-801, and 2866-006-806)³ and affects both fee (surface and minerals) and leasehold lands (oil and gas leasehold and gas storage rights). Of the 13 parcels, only APNs 2866-005-805, 2866-005-808, 2866-005-809, 2866-006-801, 2866-006-806, and 2866-004-802 would be affected by the HRCM Project. Of the affected parcels, APNs 2866-006-806 and 2866-039-030 would include the Retention Substation and electrical interconnection facilities as part of the SCE Component. Figure 4-2, Honor Rancho Main Campus, provides an aerial overview of the buildings, structures, and roadways within the Main Campus, as well as the adjacent sediment fill site.

As shown on Figure 4-1, approximately half of Honor Rancho is in the City and the remainder is in the unincorporated County. Some activities for the SoCalGas Component are located in the County, including the decommissioning of the existing compressor equipment Compressor Plant No. 1, and ancillary improvements (i.e., subterranean pipeline construction within Getaway Road, which would involve trenching and then repaving an existing road), and two staging areas. Major transportation corridors in the vicinity of Honor Rancho include Interstate (I) 5 to the west and Newhall Ranch Road and Magic Mountain Parkway to the south. Primary access to Honor Rancho is from the entrance on Brady Parkway, which connects to West Rye Canyon Road.

The HRCM Project would require off-site improvements related to the SCE Component only. SCE off-site infrastructure improvements would occur at the Saugus Substation on Magic Mountain Parkway east of Tourney Road, approximately 1.6 miles south of the proposed on-site Retention Substation.


For the SCE Component, electrical computer system upgrades, but no construction activities, would occur at the Haskell Substation (located approximately 4 miles east of the proposed on-site Retention Substation [APN 2849-003-801]) and at the Lockheed Substation (located approximately 0.9 mile northeast of the proposed on-site Retention Substation [APN 2866-059-018]).

Trenching for telecommunication lines would occur at an off-site location near the intersection of West Rye Canyon Road and Kelly Johnson Parkway within a paved portion of the property (APN 2866-039-024) and within the sidewalk and roadway to the middle lane of Kelly Johnson Parkway.

Telecommunication lines from the Main Campus to the right-of-way associated with Kelly Johnson Parkway, Copper Hill Drive, Newhall Ranch Road, and Bouquet Canyon Road would be required.

³ APNs 2866-004-802, 2866-004-803, 2866-004-804, 2866-004-907, 2866-004-908, 2866-004-913, and 2866-005-801 are located in unincorporated Los Angeles County, and APNs 2866-005-031, 2866-005-805, 2866-005-808, 2866-005-809, 2866-006-801, and 2866-006-806 are located in the City of Santa Clarita.

Figure 4-1 Regional and Local Vicinity Map

Figure 4-2 Honor Rancho Main Campus

5.0 BACKGROUND AND PROJECT DESCRIPTION

5.1 Purpose, Need, and Objectives of Proposed HRCM Project

In addition to improving air quality by modernizing key facilities and reducing operational emissions, as part of its efforts to support California’s climate change goals, SoCalGas is focused on decarbonizing energy supplies. The purpose of the HRCM Project is to modernize the Main Campus through the installation of new equipment and innovative technology that would comply with South Coast AQMD regulations, achieve measurable reductions in NOx emissions, and help California meet its climate goals.

The need for the HRCM Project is driven by compliance with South Coast AQMD regulations to achieve measurable reductions in NOx emissions. The existing compressor equipment at Honor Rancho has been in place since its construction in 1975 and would not comply with newer South Coast AQMD emissions requirements.

The objectives of the HRCM Project are as follows:

- Achieve compliance with the South Coast AQMD emissions requirements of Rule 1110.2 and Rule 1100 (for stationary engines) and the approved FWEMCP
- Enhance reliability by modernizing aging equipment and ancillary systems
- Help California and SoCalGas meet their climate goals⁴

5.2 HRCM Project Components

As described further in Sections 5.2 and 5.3, the HRCM Project includes the SoCalGas Component (compressor system upgrades and other ancillary improvements) and the SCE Component (the SCE substation and upgrades). The purpose of the HRCM Project is to comply with South Coast AQMD’s NOx requirements, as well as to achieve measurable and significant air quality benefits for Southern California. Specifically, the HRCM Project is being conducted for compliance associated with South Coast AQMD’s Rule 1110.2 and Rule 1100, which facilitate the transition of RECLAIM facilities to a command-and-control regulatory structure. As previously described in Section 1.3 and Table 1-1 of this Addendum, the HRCM Project includes the following replacement equipment subject to South Coast AQMD permitting, as included in the compressor system upgrades component:

- Four GDC lean-burn engines, each rated at 5,000 HP
- Four post-combustion emission control systems for the GDC lean-burn engines, each consisting of an SCR system and an oxidation catalyst
- One aboveground 8,000-gallon aqueous urea storage tank

⁴ See Assembly Bill 32, Global Warming Solutions Act of 2006 (2006); Senate Bill 32, Global Warming Solutions Act of 2006: Emissions Limit (2016); Executive Order B-30-15 (2015); and Executive Order B-55-18, To Achieve Carbon Neutrality (2018) (SoCalGas 2021a).

The following equipment, which is not subject to permitting by the South Coast AQMD, would also be installed:

- Equipment included in compressor system upgrades component:
- Two EDCs, each approximately 5,500 HP
- Compression support equipment, including cooling towers; lube oil system; tanks; filters/ separators; and control, electrical, and instrumentation equipment
- Other ancillary improvements, including the brine line removal and rerouting, internal roadway/circulation improvements, and a well abandonment

The proposed HRCM Project components would be located in the southeast portion of Honor Rancho, which includes paved/developed areas (i.e., the Main Campus) and adjacent vegetated hillside areas that are routinely maintained as part of ongoing Honor Rancho operations, as well as off-site areas associated with the SCE Component.

Figure 5-1, HRCM Project Components, depicts the locations of the SoCalGas Component and the SCE Component of the proposed HRCM Project. As shown on Figure 5-1, the areas of Honor Rancho that would be subject to earthwork/grading and/or construction of structures associated with the SoCalGas Component is identified with black hatching, and areas designated for temporary staging or laydown of materials for construction activities are identified with orange hatching. The areas of Honor Rancho that would be subject to earthwork/grading and/or construction of structures associated with the SCE Component are identified with yellow hatching, and areas designated for temporary staging or laydown of materials for construction activities are identified with purple hatching. Figure 5-2, Main Campus Areas of Impact, shows a closer view of the areas of earthwork/grading and/or construction of structures and staging areas that would occur near the Main Campus.

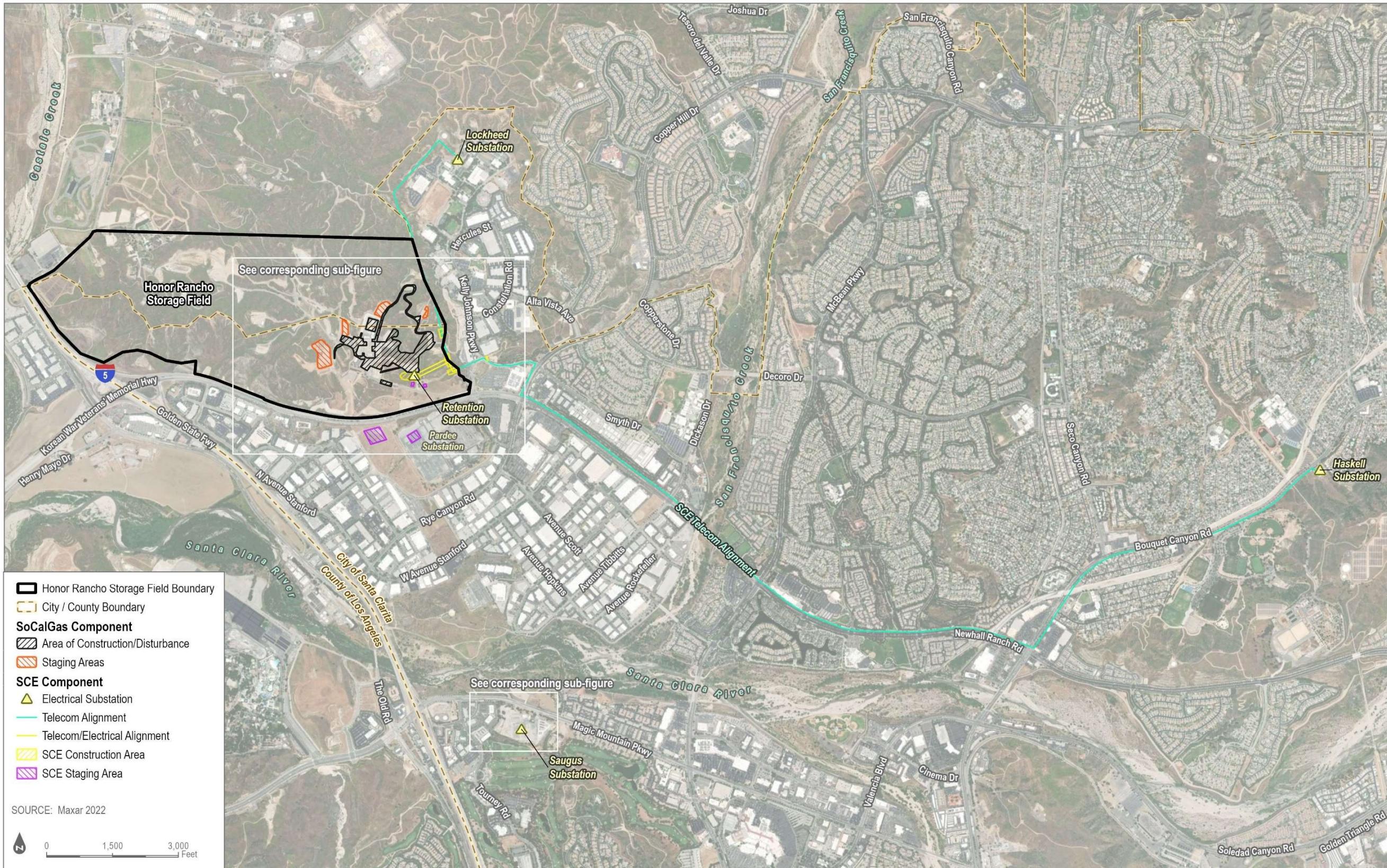
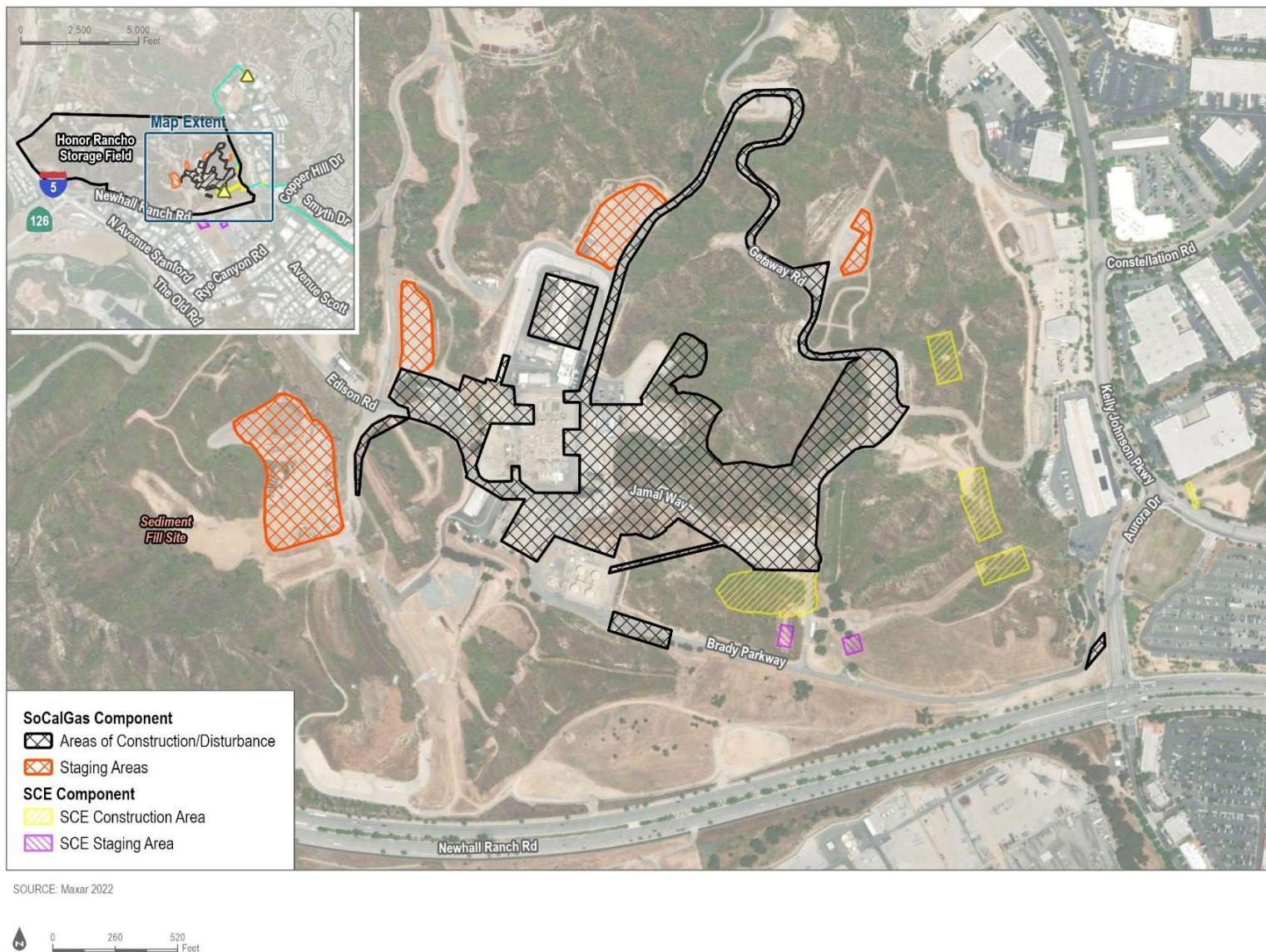
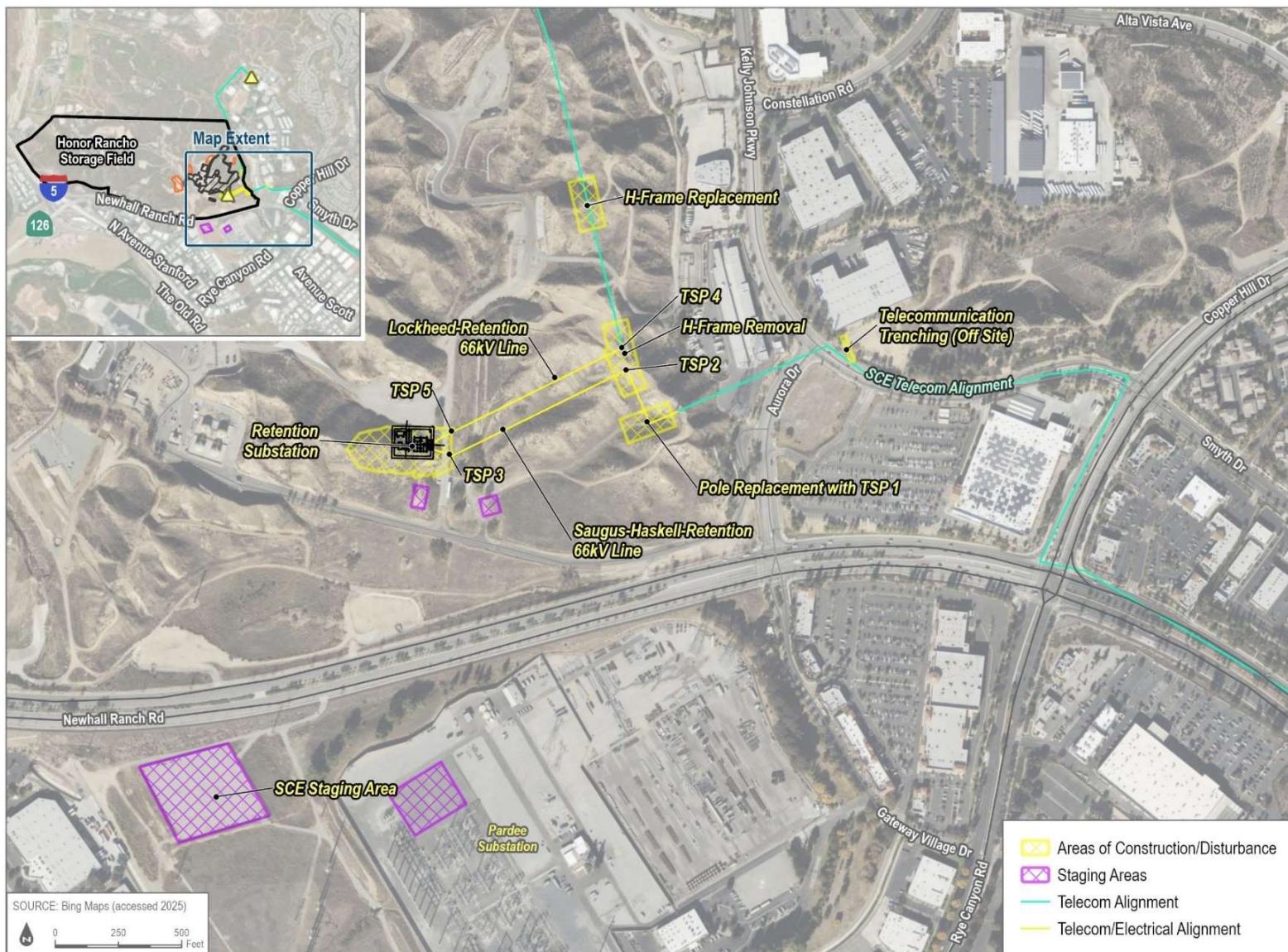



Figure 5-1 HRCM Project Components

[This page intentionally left blank]

Figure 5-2 Main Campus Areas of Impact


The proposed SCE Component, including on-site and off-site components, of the HRCM Project are shown on Figure 5-4, Proposed SCE Component (Figures 5-3A, 5-3B, and 5-3C).

5.2.1 HRCM Project Design Features Specific to the SCE Component

Specific design features and activities have been incorporated into the proposed SCE Component of the HRCM Project to avoid or minimize potential environmental effects. Table 5-1 provides these project design features (PDFs).

TABLE 5-1 Project Design Features

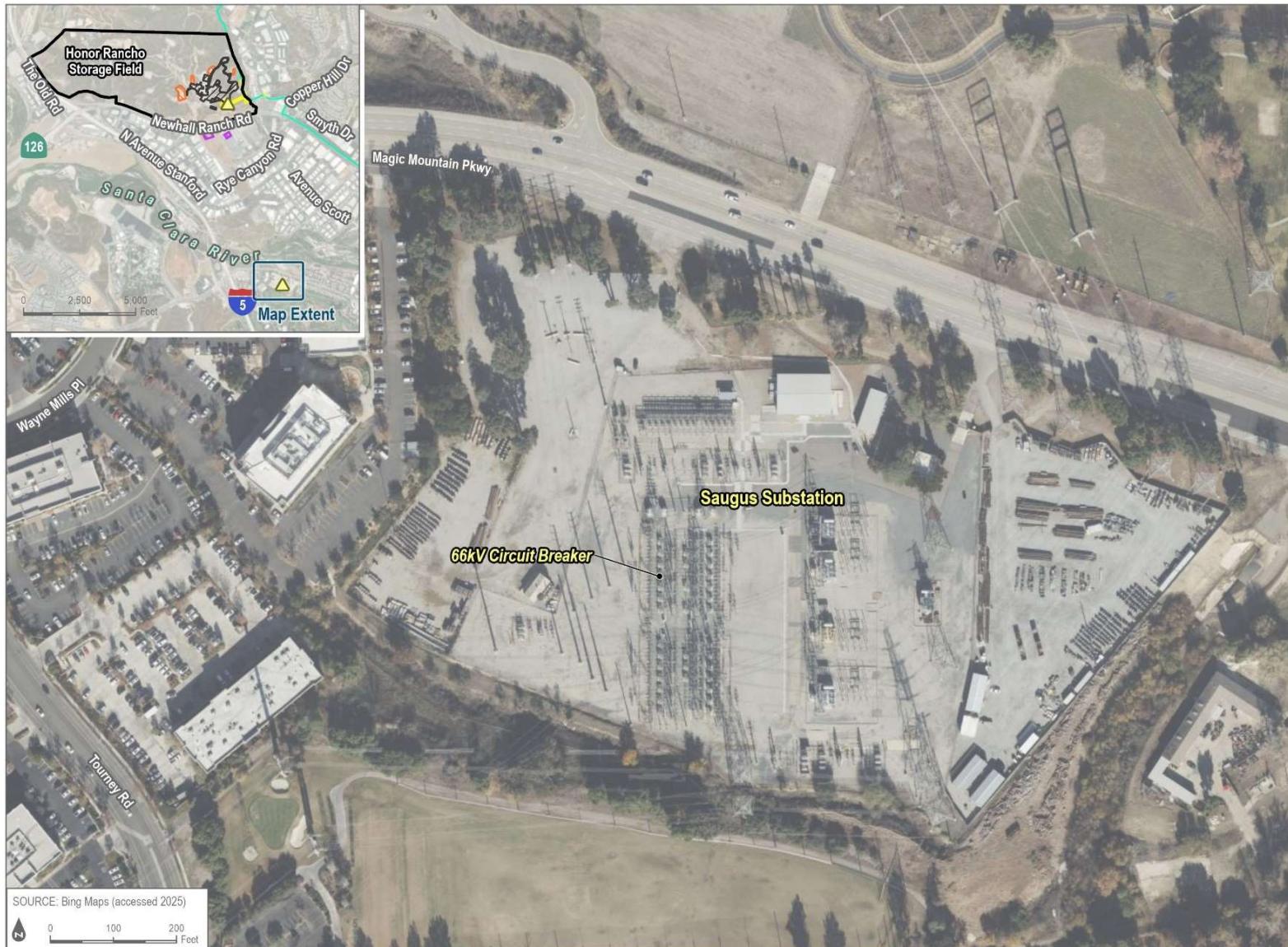

No.	Project Design Feature Name	Description
PDF-1	Use of Tier 4 Engines on Construction Equipment	Construction contractors will be required by contract to use Tier 4 engines for off-road diesel-powered construction equipment with engines greater than 50 HP.
PDF-2	Workers Environmental Awareness Program (WEAP)	All construction workers would undergo a WEAP to train them on the specific environmental sensitivities pertinent to the areas of construction activity.
PDF-3	Pre-Construction Clearance Survey and Monitoring	Biological surveys would be conducted according to species-required protocols prior to clearances for construction. Pre-construction surveys would be conducted for Crotch's bumble bee to determine presence/absence and avoidance measures would be implemented, if necessary. Qualified biologist(s) would monitor activities in areas of, or close to, biological sensitivity, if determined necessary after completion of pre-construction surveys. If occupied nests are identified through pre-construction surveys, appropriate avoidance and minimization measures established by a qualified biologist would be implemented.
PDF-4	Inadvertent Discovery of Archaeological Resources	If archaeological resources are exposed during construction, construction work in the vicinity of the find shall stop until a qualified archaeologist, meeting the Secretary of the Interior's Professional Qualification Standards, can evaluate the significance of the find and determine whether additional study is warranted.
PDF-5	Paleontological Monitoring	Prior to commencement of any grading activity on site, a qualified paleontologist would be retained per the Society of Vertebrate Paleontology (SVP 2010) guidelines. A qualified paleontological monitor shall be on site during initial rough grading and other significant ground-disturbing activities in previously undisturbed, early Pleistocene Saugus Formation and below a depth of 5 feet below the ground surface in areas underlain by Holocene alluvium. In accordance with Society of Vertebrate Paleontology guidelines, paleontological monitoring can be reduced or terminated at the discretion of the qualified paleontologist.

Figure 5-3A Proposed SCE Component

Figure 5-3B Proposed SCE Component

Figure 5-3C Proposed SCE Component

5.2.2 SCE Substation and Upgrades

The HRCM Project would expand the Main Campus to include the proposed SCE substation and upgrades. Operation of the new EDCs would require an increase in electrical power demand anticipated to necessitate 19.5 megavolt-amperes of service. As such, SCE would serve the HRCM Project with a new connection from an existing 66 kV subtransmission circuit to the proposed Retention Substation. The Retention Substation Project Description, as prepared by SCE, is included as Appendix A of this Addendum. As shown on Figures 5-3A through 5-3C, Proposed SCE Component, the required SCE facilities include the following:

- New 66/12 kV customer-dedicated, SCE-owned Retention Substation facility
- Tap/cut into the existing Lockheed leg of the Saugus–Haskell–Lockheed 66 kV subtransmission line with overhead 954 spaced aerial cable conductor, to create the two new loop-in lines
 - New Lockheed–Retention 66 kV line
 - New Saugus–Haskell–Retention 66 kV line
- At the off-site Saugus Substation, remove the existing 66 kV circuit breaker 111T and install an upgraded 66 kV circuit breaker
- Install two new fiber-optic cable routes
- Install a remote terminal unit, communication equipment, and meter

5.2.2.1 Retention Substation

The Retention Substation, as identified on Figure 5-3A, would include a 66 kV switchrack, transformer banks, a 12 kV switchrack, a mechanical electrical equipment room, a revenue metering facility, and IT telecommunications, including power system controls. The Retention Substation would include various belowground facilities, including a ground grid, underground conduits, vaults, and foundations that are installed belowground and extend aboveground. The Retention Substation would have aboveground equipment surrounded by chain-link fencing, including the distribution transformers, switch gear, steel structures, and associated equipment. The equipment would be stationed outdoors. The highest point of the Retention Substation would be the 66 kV switchrack, at an approximate height of 28 feet.

The Retention Substation would be located approximately 350 feet southeast of the proposed Compressor Plant No. 2 in an undeveloped area of Honor Rancho adjacent to the paved brine injection well area and Getaway Road, just north of Brady Parkway. The Retention Substation would have a footprint of approximately 20,660 square feet, requiring earthwork on approximately 1.45 acres to accommodate the developed pad as part of the SCE Component. Grading quantities are discussed in additional detail in Section 5.3.3, Construction Activities.

5.2.2.2 Saugus Substation

At the existing off-site Saugus Substation, located approximately 1.6 miles south of the proposed on-site Retention Substation (see Figure 5-3B), the HRCM Project would necessitate the removal of one 66 kV, 1,200-amp, 40-kiloampere vacuum circuit breaker and the installation of one new 66 kV, 2,000-amp, 53-kiloampere circuit breaker. The location of this 66 kV circuit breaker within the Saugus Substation is identified on Figure 5-3C. The upgrade to the existing circuit breaker would occur within about 2,500 square feet of workspace, would reuse the existing foundation, and would not require any ground disturbance.

5.2.2.3 Haskell and Lockheed Substations

At the existing Haskell Substation (located off site approximately 4 miles east of the proposed on-site Retention Substation) and at the existing Lockheed Substation (located off site approximately 0.9 miles northeast of the proposed on-site Retention Substation), as identified on Figure 5-3B, the SCE Component would require upgrades to the protection settings. The protection settings would be upgraded through the installation of computer software on existing equipment. All work would be conducted by a single technician and would occur within the existing equipment rooms at each substation, with no large equipment or ground-disturbing activity required.

5.2.2.4 66 kV Subtransmission Lines

SCE would loop the new Retention Substation into the electric grid by installing two new subtransmission lines: the Saugus–Haskell–Retention 66 kV line and Lockheed–Retention 66 kV line, as identified on Figure 5-3A. Currently, there is an existing Saugus–Lockheed transmission line that runs generally north–south along the eastern side of the Honor Rancho property to the Lockheed Substation. The new 66 kV subtransmission lines would tap/cut into these lines using four new tubular steel poles (TSPs).

The Saugus–Haskell–Retention 66 kV subtransmission line activities would involve the following:

- Replace the 61-foot-tall Structure 2115908E with a new 60-foot-tall TSP, which would become Structure 4964223E (TSP 1)
- Install a new 80-foot-tall TSP Structure 4964224E (TSP 2)
- Install a new 90-foot-tall TSP Structure 4964225E (TSP 3)
- Install new spaced aerial cable for approximately 4,060 feet of the Saugus–Haskell–Retention 66 kV line

The Lockheed–Retention 66 kV subtransmission line activities would involve the following:

- Install a new 90-foot-tall TSP Structure 4964226E (TSP 4)
- Install a new 90-foot-tall TSP Structure 4964227E (TSP 5)
- Install new spaced aerial cable for approximately 3,300 feet of the Lockheed–Retention 66 kV line

Two existing H-frame structures on the existing transmission line would be replaced/removed after the completion of construction activities. The H-frame consisting of Structures 1308953E and 2115907E located between the proposed TSP 2 and TSP 4 would be removed at the end of construction. The existing H-frame consisting of Structures 1308954E and 1308955E, which consist of 52-foot-tall lightweight steel poles located approximately 1,075 feet northeast of the Retention Substation, would also be replaced with a new structure in the same location.

5.2.2.5 Transmission Telecommunication

As shown on Figure 5-3A, two discrete fiber-optic cable routes would be installed from the Retention Substation into SCE's Haskell Substation and Lockheed Substation. The transmission telecommunication scope would utilize 17,800 feet of existing underground cable and 2,176 feet of new underground cable, as well as 8,386 feet of existing overhead and 6,443 feet of new overhead telecom cable. There is one off-site location where ground disturbance would be required to install conduit for telecommunications, located at Structure No. 4437121E. The installation of the conduit would require a trench that is 90 feet long, 24 inches wide, and 36 inches deep to allow connection to the existing wooden pole.

Additionally, within Honor Rancho, new conduit for the transmission/telecommunication underground dip (TTC UG Dip) No. 1 and TTC UG Dip No. 2 (i.e., points of transition from overhead to underground lines) to Retention Substation would be installed. TTC UG Dip No. 1 would travel from a new manhole and then rise up onto TSP 5 on the Lockheed–Retention 66 kV line. TTC UG Dip No. 2 would travel from a new manhole and then rise up onto TSP 3 on the Saugus–Haskell–Retention 66 kV line.

5.2.2.6 Information Technology (IT)/Telecommunication

The IT/telecommunication scope is to install telecommunication equipment consisting of a channel bank (which converts analog and digital signals to be carried over high-speed lines), direct current (DC)–DC converters, fuse box, and remote terminal unit on the telecom rack provided within the Retention Substation.

5.3 HRCM Project Activities Specific to the SCE Component

This section describes pre-construction and construction elements of the SCE Component.

5.3.1 Pre-Construction Activities

Prior to undertaking construction activities for the SCE Component, construction-related ministerial permits required by local agencies would be obtained, as required. Emergency response providers near Honor Rancho would be notified in advance of construction locations, road closure schedules, if required, and potential alternate routes. The selected contractor would work with local police and traffic engineers to plan appropriate access alternatives for temporary lane closures and traffic disruptions, if required. Underground Service Alert of Southern California (DigAlert) would be notified prior to ground-disturbing activity that could impact subsurface utilities. Pre-construction meetings with the affected agencies and inspection personnel would be scheduled and completed.

5.3.2 Construction Schedule

Construction activities associated with the SCE Component would require several phases. SCE construction equipment staging areas for the Retention Substation and associated infrastructure improvements would be located near the Retention Substation site, as well as on a helipad site located west of the Pardee Substation and a gravel laydown yard within the Pardee Substation. These two off-site staging areas would be located across Newhall Ranch Road from Honor Rancho, as shown on Figure 5.1.

The estimated timeline of construction activities associated with the SCE Component of the HRCM Project is shown in Table 5-2, which shows construction activities beginning in June 2025 and ending in December 2025⁵.

⁵ The Estimated Construction Schedule assumes a construction start date for the SCE Component of June 2025, which represented the earliest date construction would initiate. While this date has since passed, assuming the earliest start date for construction represents the worst-case scenario for criteria air pollutant and GHG emissions because equipment and vehicle emission factors for later years would be slightly less due to more stringent standards for in-use off-road equipment and heavy-duty trucks, as well as fleet turnover replacing older equipment and vehicles in later years.

TABLE 5-2 Estimated Construction Schedule
HRCM SCE Component Preliminary Schedule from ROM Estimate

Phase	Duration (Work Days per Phase)	Months						
		Jun-25	Jul-25	Aug-25	Sep-25	Oct-25	Nov-25	Dec-25
SCE Retention Substation	140							
SCE Saugus Substation	20							
SCE 66 Kv Subtransmission Work	80							
SCE Telecom	20							

5.3.3 Construction Activities

The anticipated off-road equipment and on-road vehicle requirements for construction of the SCE component of the HRCM Project are provided in Appendix B, Air Quality and Greenhouse Gas Technical Summary Memorandum; these numbers were input into the California Emissions Estimator Model (CalEEMod, version 2022.1.1.24) for Phases 1 through 18. Table 5-3 itemizes all of the offroad construction equipment required for the construction of the HRCM Project (Phases 2, 15, 16 and 17 would not require any offroad construction equipment). All construction equipment greater than 50 HP were assumed to use Tier 4 engines. Construction equipment would be fitted with appropriate mufflers, and engines would be maintained regularly. Welding machines would use diesel or unleaded fuel. Equipment would be mounted on 18-wheel trucks for delivery to the Main Campus. The equipment would be deployed and set up for work approximately 1 week later, once civil work (i.e., access road and grading activities, if required) has been completed. The on-road vehicle requirements consist of light-duty construction worker vehicles for commuting to the Main Campus, medium- and heavy-duty trucks such as water trucks for dust control, and other trucks such as cement trucks, pump trucks, and flatbed trucks. (see Appendix B).

The proposed list of offroad equipment for each construction phase is shown in Table 5-3.

TABLE 5-3 Proposed SCE Component Construction Equipment

Phase Name ^(a)	Equipment Type	Fuel Type	Engine Tier ^(b)	Number per Day	Hours Per Day	HP ^(c) (d)
Retention Substation	Cranes	Diesel	Tier 4 Final	1	8	350
	Generator Sets	Gasoline	Average	1	8	49
	Tractors/Loaders/Backhoes	Diesel	Tier 4 Final	3	8	69
	Forklifts	Diesel	Tier 4 Final	2	4	180
	Cranes	Diesel	Tier 4 Final	1	4	180
	Generator Sets	Gasoline	Average	1	6	49
	Plate Compactors	Gasoline	Average	1	2	20
	Excavators	Diesel	Tier 4 Final	1	8	180
	Off-Highway Tractors	Diesel	Average	1	4	49
	Skid Steer Loaders	Diesel	Tier 4 Final	1	8	180
	Forklifts	Diesel	Tier 4 Final	4	4	75
	Tractors/Loaders/Backhoes	Diesel	Tier 4 Final	1	6	84
	Tractors/Loaders/Backhoes	Diesel	Tier 4 Final	2	8	84
	Other General Industrial Equipment	Electric	Average	6	2	35
SCE Saugus Substation	Forklifts	Diesel	Tier 4 Final	1	8	75
	Forklifts	Diesel	Tier 4 Final	1	4	75
	Forklifts	Diesel	Tier 4 Final	1	8	180

Phase Name ^(a)	Equipment Type	Fuel Type	Engine Tier ^(b)	Number per Day	Hours Per Day	HP ^(c) (d)
SCE 66 kV Subtransmission Work	Bore/Drill Rigs	Diesel	Tier 4 Final	1	8	200
	Cranes	Diesel	Tier 4 Final	1	5	300
	Cranes	Diesel	Tier 4 Final	1	8	300
	Crawler Tractors	Diesel	Tier 4 Final	1	8	300
	Excavators	Diesel	Tier 4 Final	1	8	160
	Other Construction Equipment	Diesel	Tier 4 Final	1	8	180
	Rollers	Diesel	Tier 4 Final	1	8	60
	Skid Steer Loaders	Diesel	Average	1	8	46
	Tractors/Loaders/Backhoes	Diesel	Tier 4 Final	1	3	200
	Other Construction Equipment	Diesel	Tier 4 Final	2	8	75
SCE Telecom	Generator Sets	Gasoline	Average	1	8	45
	Other Construction Equipment	Gasoline	Tier 4 Final	1	8	5
	Tractors/Loaders/Backhoes	Diesel	Tier 4 Final	1	10	73

^(a) All diesel engines greater than 50 HP are assumed to be U.S. Environmental Protection Agency Tier 4 Final.

^(b) Engine HP ratings are CalEEMod default values except those in brackets.

^(c) Engine load factors are CalEEMod default values (version 2022.1.1.24).

Source: Appendix B.

5.3.3.1 Retention Substation and Electrical Interconnection Component

The Retention Substation would be constructed by SCE and its contractors beginning June 2025 and would be completed in December 2025⁶. Construction vehicles would access the Retention Substation from the newly installed gate on the southeast side of the Retention Substation via Getaway Road. SCE would coordinate with SoCalGas to secure temporary staging areas adjacent to the Retention Substation (see Figure 5-3A) and would also utilize a helipad site located west of the Pardee Substation and a gravel laydown yard within the Pardee Substation. The staging areas would house all construction materials and equipment during the construction period.

The estimated earthwork for the Retention Substation was established using cut and fill slopes of 2:1 and it is estimated that the raw cut volume for the Retention Substation and surrounding areas would require 44,203 CY of cut and 663 CY of fill and gravel, resulting in 43,885 CY of material to be moved to the existing sediment fill site adjacent to the west side of the Main Campus, as shown on Figure 4-2.⁷ Grading and earthwork would be performed under the direction of a licensed civil engineer and licensed geotechnical engineer and would conform to applicable California Building Code (CBC) requirements. All clean fill material from the grading activities would be deposited at the on-site sediment fill site. Any other demolition debris, such as asphalt or decommissioned equipment, would be disposed at an appropriate off-site landfill waste facility. No grading or cut/fill is required for the construction of the new TSPs, 66 kV subtransmission lines, or other off-site connections or components. However, two trenches for the conduit for telecommunications infrastructure (each approximately 85 feet long) would be required, extending from the Retention Substation, beneath Getaway Road, and connecting to TSP 3 and TSP 5.

Ground disturbance would be required to install conduit for telecommunications at one off-site location, located at Structure 4437121E. The telecommunications connection would require a trench 90 feet long to connect the pole to the existing infrastructure beneath Kelly Johnson Parkway (near the intersection of West Rye Canyon Road). This trench would be approximately 24 inches wide and 36 inches deep and would be located beneath roadway/driveway pavement and asphalt and disturbed graded land within a vacant lot.

For construction details for each phase of construction for the SCE component (i.e., Retention Substation, Saugus Substation, Haskell and Lockheed Substations, 66 kV subtransmission lines, transmission telecommunications, and IT/telecommunications), including estimates for the equipment type, HP, fuel type, quantity, workdays, and daily duration of work, refer to Appendix A of this Addendum.

5.3.3.2 Construction Ingress/Egress and Staging Areas

Construction vehicles would enter Honor Rancho through the entrance at the connection with Brady Parkway and West Rye Canyon Road. If necessary for larger vehicles that cannot navigate the curve on

⁶ The Estimated Construction Schedule assumes a construction start date of June 2025, which represented the earliest date construction would initiate. While this date has since passed, assuming the earliest start date for construction represents the worst-case scenario for criteria air pollutant and GHG emissions because equipment and vehicle emission factors for later years would be slightly less due to more stringent standards for in-use off-road equipment and heavy-duty trucks, as well as fleet turnover replacing older equipment and vehicles in later years.

⁷ SoCalGas will conduct the grading activities for the Retention Substation. Grading activities within the Honor Rancho Main Campus are within the scope of activities evaluated in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. Potential impacts of earthwork activities for other parts of the SCE Component, including for trenches for the conduit for telecommunications infrastructure extending from the Retention Substation, are evaluated in this Addendum.

Brady Parkway, SoCalGas maintains an easement over a portion of the undeveloped land between Brady Parkway and West Rye Canyon Road (near the intersection with Newhall Ranch Road), which would allow direct access to Brady Parkway. Larger trucks would potentially cross over approximately 80 feet of undeveloped/disturbed land in this median area, as needed. Throughout Honor Rancho, there are several gravel/disturbed and/or paved areas that would be used for staging equipment adjacent to the Main Campus, as identified on Figure 5-1. In addition to on-site staging areas, as mentioned in Section 5.3.3.1, SCE would also utilize a helipad site located west of the Pardee Substation and a gravel laydown yard within the Pardee Substation.

5.3.3.3 Water Use

Construction of the Retention Substation and miscellaneous water use for dust control and other construction activities is estimated to be approximately 360,000 gallons over the construction period associated with the SCE Component and would not exceed 6,000 gallons per day. The HRCM Project would be covered by the Statewide General National Pollutant Discharge Elimination System (NPDES) Order for Discharges from Natural Gas Utility Construction, Operations, and Maintenance Activities Order WQ 2017-0029-DWQ.

6.0 HRCM PROJECT SETTING

6.1 Environmental Setting

6.1.1 Setting for On-Site HRCM Project Components

On-site HRCM Project components include those that would be constructed within the Honor Rancho property boundary, located at 25205 West Rye Canyon Road in the City of Santa Clarita and unincorporated Los Angeles County, California, as depicted on Figure 4-1.

As shown on Figure 4-1, approximately half of Honor Rancho is in the City and the remainder is in the unincorporated County. The property within the City is designated by the General Plan as Business Park (BP) and is zoned Business Park (BP). The property within the unincorporated County is designated and zoned Heavy Agriculture (A-2-5). Major transportation corridors in the vicinity of Honor Rancho include I-5 to the west and Newhall Ranch Road and Magic Mountain Parkway to the south. Primary access to Honor Rancho is from the entrance on Brady Parkway, which connects to West Rye Canyon Road.

As shown on Figure 4-1, the land uses in the area surrounding Honor Rancho include the Peter J. Pitchess Detention Center correctional facility and undeveloped land to the north; business park uses to the east; business park uses and the SCE Pardee Substation to the south; and Castaic Creek, I-5, and residential uses to the west. The nearest sensitive receptor to Compressor Plant No. 1 is the Oakmont of Santa Clarita, a senior living facility, which is located approximately 2,200 feet to the southwest, across Newhall Ranch Road.

6.1.2 Setting for Off-Site HRCM Project Components

Off-site HRCM Project components include those that would be constructed outside the Honor Rancho property boundary. The HRCM Project would require off-site improvements related to the SCE Component only. SCE off-site infrastructure improvements would occur at the Saugus Substation. This substation is fully paved and developed with electrical infrastructure and includes a helipad. The Saugus Substation is surrounded by open space and Magic Mountain Parkway to the north, residential and golf course to the east, golf course to the south, and office park to the west. The nearest sensitive receptor to the proposed construction activity at the Saugus Substation is a residential community located approximately 1,200 feet to the northeast across Magic Mountain Parkway.

Electrical computer system upgrades, but no construction activities, would occur at the Haskell Substation and at the Lockheed Substation. These substations are fully paved and developed with electrical infrastructure.

Trenching for telecommunication lines would occur at an off-site location near the intersection of West Rye Canyon Road and Kelly Johnson Parkway within a paved portion of the property and within the sidewalk and roadway to the middle lane of Kelly Johnson Parkway. The nearest sensitive receptor to this area of construction would be Libertas Preparatory School/Trinity Classical Academy, located at 28310 Kelly Johnson Parkway, approximately 1,500 feet to the northeast.

Electrical transmission lines and telecommunication lines currently run north–south along the eastern side of Honor Rancho and run east–west through the southern portion of Honor Rancho. As part of the HRCM Project, telecommunication lines from the Main Campus to the right-of-way associated with Kelly Johnson Parkway, Copper Hill Drive, Newhall Ranch Road, and Bouquet Canyon Road would be required. These roads are main thoroughfares and include a bridge over the Santa Clara River, which are

all fully paved, and none of the telecommunication lines are directly crossing areas of natural open space. The telecommunication lines run within the public right-of-way adjacent to various residential land uses, which would be the nearest sensitive receptors (within 40 feet).

Some of the construction activities required for the installation of TSP 2 and TSP 4 may require access and minor earthwork in off-site property located just east of the Honor Rancho property boundary within APNs 2866-048-031 and 2866-039-030. This area is unpaved hillside area, consistent with the terrain of the larger Honor Rancho property. The nearest sensitive receptor to this area of construction would be Libertas Preparatory School/Trinity Classical Academy, located approximately 1,800 feet to the north.

6.2 Honor Rancho Operations

6.2.1 Main Campus Overview

Figure 4-2 provides an aerial overview of the Main Campus, including buildings, structures, roadways, and the adjacent sediment fill site. Currently, Compressor Plant No. 1 includes a total of 27,500 HP of compression from GDC lean-burn engines, which are used to compress gas for injection through wells into the subterranean natural gas storage field. The injection capacity is provided by five Enterprise Delaval HVA16C reciprocating units (5,500 HP each). The Delaval Company went out of business in 1989, which has resulted in parts becoming difficult to find. Five rich-burn engines provide additional compression capacity (two units) and electrical generation (three units).

6.2.2 Safety Features of the HRCM Project

Honor Rancho is designed and operated in compliance with applicable federal, state, and local regulations, codes, and standards. These regulations address criteria such as seismic safety, emergency access, hazardous materials, emissions, and fire safety. Corrosion-control features like protective coatings and cathodic protection are also employed to minimize potential corrosion damage. Compression equipment is continuously monitored by facility personnel through a SCADA system that conveys information to operations personnel in the on-site operations office. The system monitors parameters such as vibration, pressure, and temperature in real time and triggers alarm notifications in the event equipment is operating outside acceptable parameters. Additionally, there are on-site methane (CH_4) monitors inside Compressor Plant No. 1 and ambient monitors placed around Honor Rancho. The safety system is designed to automatically shut down equipment if needed. Operators can also manually initiate system safety features if needed. Staff routinely and frequently perform on-site inspections and patrols of equipment, pipelines, and vessels. Routine inspections at Honor Rancho are conducted by the CPUC, South Coast AQMD, CalGEM, Los Angeles County Fire Department and Fire Marshal, RWQCB, and California Environmental Protection Agency. Staff at Honor Rancho also perform preventive maintenance in accordance with the preventive maintenance program. Annual first responder training is provided to educate fire and law enforcement agencies and facilitate familiarity with Honor Rancho.

Honor Rancho is fenced and has a guard station that is staffed 24 hours per day, 7 days per week. Security cameras enable monitoring both at the Main Campus and by SoCalGas's Corporate Security Department. Fencing is an approximately 8-foot-high chain-link fence topped with an additional two feet of razor wire. Security lighting is provided throughout the Main Campus, mounted either on rooftops or on TSPs approximately 20 feet in height, to maintain safe operating conditions.

6.3 Regulatory Setting

6.3.1 South Coast Air Quality Management District

Pursuant to Public Resources Code Section 21067 and CEQA Guidelines Section 15367, South Coast AQMD is the lead agency for the HRCM Project. A lead agency is a public agency that has the principal responsibility for approving a project that has the potential to have significant impacts on the environment.

South Coast AQMD's permitting program has been established to implement the requirements of the federal and state Clean Air Acts, the AQMP, and air quality rules and regulations by specifying operating and compliance requirements for stationary sources that emit air contaminants. Before installing new or relocated equipment, or before modifying existing equipment that emits or controls air contaminants, SoCalGas is required to obtain a permit from South Coast AQMD unless it is specifically exempted from the permit requirements.

The scope of work to be conducted in association with the HRCM Project was determined by South Coast AQMD to satisfy Rule 1100(d)(7), and SoCalGas received approval of its FWEMCP in November 2021. The FWEMCP requires that at least 20 percent of the total replaced HP use a zero-emission technology and specifies replacement of the five existing GDC lean-burn engines with four new GDC lean-burn engines and two new EDCs. To implement the FWEMCP, SoCalGas submitted a PTC application package to South Coast AQMD in June 2022 with specific information about the equipment (SoCalGas 2022a, 2022b). A draft PTC was issued by South Coast AQMD in response to the application in October 2024.

6.3.2 California Public Utilities Commission

The overarching authority for natural gas utility regulation is held by the CPUC. Article XII, Section 8 of the California Constitution establishes the CPUC's preemptive authority over matters for which the legislature has granted the CPUC regulatory powers. Local jurisdictions acting pursuant to local authority are preempted from regulating gas utility facilities constructed by public utilities subject to the Commission's jurisdiction. Local land use controls shall not conflict with "the paramount authority of the State" (California Public Utilities Code Section 6294) (CPUC 2022). The California Public Utilities Code authorizes the CPUC to "do all things, whether specifically designated in this act or in addition thereto, which are necessary and convenient in the exercise of such power and jurisdiction" (California Public Utilities Code Section 701). Other California Public Utilities Code provisions generally authorize the CPUC to modify facilities, secure adequate service or facilities, and operate so as to promote health and safety. The CPUC's authority, as summarized above, does not preempt South Coast AQMD's regulatory or permit authority for stationary sources of emissions (CPUC 2010).

6.3.2.1 General Order 131-E

The SCE Component of the HRCM Project is regulated by the CPUC pursuant to General Order (GO) 131-E (CPUC 2025), which relates to the construction of electric generating plants; transmission, power, and distribution line facilities; and substations and switchyards. Pursuant to Section III.B.1 of GO 131-E, the SCE Component of the HRCM Project would be subject to issuance of a PTC by the CPUC because it includes the construction of power line and substation facilities designed to operate over 50 kV. However, Section III.B.2.e of GO 131-E exempts "[p]ower lines, substations, or switchyards to be relocated or constructed which have undergone environmental review pursuant to CEQA as part of a larger project." The SCE Component is part of the larger HRCM Project and has undergone environmental

review by South Coast AQMD pursuant to CEQA. The SCE Component thus meets the requirements for an exemption pursuant to Section III.B.2.e and would not be subject to issuance of a PTC by the CPUC.

6.3.2.2 General Order 177

GO 177 relates to the planning and construction of gas infrastructure. Section IV(A) of GO 177 requires a Certificate of Public Convenience and Necessity (CPCN) by the CPUC for projects by gas corporations whose project cost exceeds \$75 million, or that are located within 1,000 feet of a sensitive receptor and require a permit from an air district for specified emission increases. The HRCM Project would exceed \$75 million and therefore would trigger the CPCN requirement. However, in lieu of complying with GO 177 Section IV(A)'s requirement to obtain a CPCN, a gas corporation is authorized to claim an exemption under Section IV(B) if the specified requirements are met. The proposed HRCM Project meets the requirements for an exemption pursuant to Section IV(B)(b), which states that compliance with Section IV(A) (requiring a CPCN) is not required for "projects that have a scheduled in-service date occurring before January 1, 2024 and projects for which an application for approval has been submitted to an air quality management district for compliance with an environmental rule prior to the effective date of this General Order" (CPUC 2022). The permit application for the HRCM Project was submitted to South Coast AQMD for compliance with Rules 1110.2 and 1100 prior to December 1, 2022, which was the effective date of GO 177. Therefore, the HRCM Project is exempt from the requirement to obtain a CPCN.

6.3.3 California Department of Conservation, Geologic Energy Management Division

CalGEM has regulatory jurisdiction over subsurface wells and certain associated valves. In compliance with Section 3229, Division 3 of the California Public Resources Code, before commencing work to abandon any well, SoCalGas must submit a written notice of intention to CalGEM. All wells are abandoned in accordance with current standards, under CalGEM oversight. Upon completion of the well subsurface abandonment and site restoration per CalGEM guidelines, a Final Abandonment Letter is issued by the agency to SoCalGas,

6.4 Intended Uses of This Addendum

This Addendum is the environmental documentation that evaluates the SCE Component of the HRCM Project in accordance with CEQA Guidelines Section 15164. In particular, CEQA Guidelines Section 15164(a) allows a lead agency to prepare an Addendum to a previously certified CEQA document if some changes or additions are necessary but none of the conditions described in CEQA Guidelines Section 15162 regarding the need to prepare a Subsequent EIR have occurred. South Coast AQMD has determined that: 1) the SoCalGas Component of the HRCM Project is within the scope of what was previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100; and 2) an Addendum is the appropriate type of CEQA document to be prepared for evaluating the SCE Component's potential environmental impacts that were not previously analyzed. Therefore, this Addendum will serve as the environmental documentation for discretionary approvals and/or permits required by Responsible Agencies for the SCE Component of the HRCM Project, as described in Section 6.4.2.

6.4.1 Lead Agency Approval

The engines proposed under the SoCalGas Component of the HRCM Project require a PTC to be issued by South Coast AQMD, as lead agency pursuant to Public Resources Code Section 21067. The PTC

application was submitted to South Coast AQMD in June 2022 and the application is consistent with SoCalGas's approved FWEMCP. A draft PTC was issued by the South Coast AQMD in October 2024, and provided a public comment period seeking review by the U.S. EPA, stakeholders and interested parties. No air permits are required from South Coast AQMD for the SCE Component of the HRCM Project.

6.4.2 Responsible and Trustee Agencies

CEQA Guidelines Section 15381 defines a “responsible agency” as “a public agency which proposes to carry out or approve a project, for which a Lead Agency is preparing or has prepared an EIR or Negative Declaration. For the purposes of CEQA, the term “Responsible Agency” includes all public agencies other than the Lead Agency which have discretionary approval power over the project.” As described in Section 6.3.2 of this Addendum, the HRCM Project qualifies for an exemption from the requirement to obtain a CPCN from the CPUC under Section IV(B) of GO 177 and the SCE Component qualifies for an exemption from the requirement to obtain a PTC from the CPUC under Section III.B.2.e of GO 131-E. No responsible agencies have been identified with respect to the HRCM Project.

Trustee agencies as defined by CEQA Guidelines Section 15386 are public agencies having jurisdiction by law over natural resources affected by a project which are held in trust for the people of the State of California. No trustee agencies have been identified with respect to the proposed Project.

6.4.2.1 Discretionary Approvals

- No other discretionary approvals are required.

6.4.2.2 Ministerial Approvals

Ministerial approvals and/or permits for the HRCM Project are required from the following agencies:

- Coverage under the General NPDES Permit for Discharges of Storm Water Associated with Construction Activity (Order No. 2022-0057-DWQ, NPDES No. CAS000002), also known as the Construction General Permit (CGP), in accordance with the requirements of the State Water Resources Control Board
- Fire suppression classification and issuance of an occupancy permit for the Compressor Building No. 2 by the County of Los Angeles.
- Issuance of a grading permit from the City of Santa Clarita

6.4.2.3 Other Agency Approvals

- Well Abandonment Permit. CalGEM is the agency responsible for oversight of the abandonment of the Wayside Equivalent Zone Unit (WEZU) C2B well.

7.0 IMPACT ANALYSIS

Section 7.1 of this Addendum presents a summary of the impact analyses contained in the March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100, including for the HRCM Project, and summarizes whether the SCE Component of the HRCM Project would result in new significant impacts or impacts that are substantially more severe than those identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. Section 7.2 of this Addendum provides a summary of the impacts analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 to provide the relationship or nexus between the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 impact conclusions and the impact conclusions for the SCE Component. The analysis in these two CEQA documents includes an evaluation of the SCE Component's impacts and a determination of whether the SCE Component would result in substantially worsened or more severe impacts that would necessitate new or modified mitigation measures or alternatives per CEQA Guidelines Section 15162.

This Addendum concludes that the SCE Component would not result in new significant effects or a substantial increase in the severity of significant effects identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. Furthermore, there is no new information of substantial importance that would affect the analysis contained in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100, including that pertaining to mitigation measures and alternatives.

7.1 Summary of Environmental Impacts Identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

7.1.1 March 2017 Final Program EIR for the 2016 AQMP

In accordance with CEQA, the 2016 AQMP Initial Study for the March 2017 Final Program EIR for the 2016 AQMP evaluated 17 environmental topic areas and determined that implementation of the 2016 AQMP control measures would result in less than significant impacts for 9 of the 17 environmental topic areas (agriculture and forestry resources; biological resources; cultural resources; geology and soils; land use and planning; mineral resources; population and housing; public services; and recreation). Thus, the less than significant environmental topic areas were not required to be further analyzed in the March 2017 Final Program EIR for the 2016 AQMP but a summary of the analysis from the 2016 AQMP Initial Study was included in Section 4.9 of the March 2017 Final Program EIR for the 2016 AQMP.

The March 2017 Final Program EIR for the 2016 AQMP identified potentially significant environmental impacts that may result from implementing the 2016 AQMP, including control measures and strategies. The 2016 AQMP includes 75 control strategies, most of which are not relevant to the HRCM Project (e.g., use of bonnet technology for ships). Therefore, many of the environmental impacts identified in the Final Program EIR for the 2016 AQMP are not relevant to the impacts analysis presented in this Addendum. The analysis concluded that significant and unavoidable adverse environmental impacts from the 2016 AQMP may occur even after implementing mitigation measures for the following environmental issue areas:

1. Aesthetics—from increased glare and from the construction and operation of catenary lines and use of bonnet technology for ships

2. Air Quality and GHG Emissions—during construction
3. Energy—due to increased electricity demand
4. Hazards and Hazardous Materials—due to the following:
 - a. Increased flammability of solvents, reformulated coatings, adhesives, and sealants
 - b. Storage, accidental release, and transportation of ammonia
 - c. Storage and transportation of liquefied natural gas
 - d. Projects within 0.25 miles of schools
5. Hydrology—due to water demand
6. Noise and Vibration—during construction
7. Solid and Hazardous Waste—construction waste and operational waste from vehicle and equipment scrapping
8. Transportation and Traffic—during construction and during operation on roadways with catenary lines and at the harbors

Additionally, the March 2017 Final Program EIR for the 2016 AQMP identified cumulatively considerable impacts for the following environmental issue areas: aesthetics, air quality and GHG emissions, energy, hazards and hazardous materials, hydrology and water quality, noise, solid and hazardous waste, and transportation and traffic.

The March 2017 Final Program EIR for the 2016 AQMP concluded that the 2016 AQMP would have significant and unavoidable adverse environmental impacts even after mitigation measures were identified and applied. As such, mitigation measures were a condition of approval of the 2016 AQMP, and an MMRP was adopted. Findings were and a Statement of Overriding Considerations was adopted. The South Coast AQMD Governing Board certified the March 2017 Final Program EIR for the 2016 AQMP and approved the 2016 AQMP on March 3, 2017.

The MMRP for the March 2017 Final Program EIR for the 2016 AQMP, which lists all mitigation measures, is included as Appendix C-1 to this Addendum. The HRCM Project, including the SCE Component, would comply with the applicable mitigation measures, which are included in Appendix C-2.

7.1.2 November 2019 Final SEA for PAR 1110.2 and PAR 1100

The November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that implementation of amended Rule 1110.2 and Rule 1100 would have no impact or less than significant direct or indirect adverse effects on the following environmental topic areas: aesthetics, agriculture and forestry resources, biological resources, cultural resources, energy, geology and soils, hydrology and water quality, land use and planning, mineral resources, noise, population and housing, public services, recreation, solid and hazardous waste, and transportation and traffic. As such, these topics were not discussed further in the November 2019 Final SEA for PAR 1110.2 and PAR 1100. The environmental topics of air quality and hazards and hazardous materials were the only environmental topics identified in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 that would be affected by implementation of the amended rules and, therefore, evaluated these topics in greater detail.

The November 2019 Final SEA for PAR 1110.2 and PAR 1100 evaluated impacts from the implementation of Rule 1110.2, which will transition affected stationary and portable internal combustion engines at NOx

RECLAIM facilities to a command-and-control regulatory structure. NOx RECLAIM facilities with equipment subject to Rule 1110.2 will be required to meet the NOx emission limits as specified in Rule 1110.2. The decision to transition from NOx RECLAIM into a source-specific command-and-control regulatory structure was approved by the South Coast AQMD Governing Board as Control Measure CMB-05 in the 2016 AQMP, and the potential environmental impacts associated with the 2016 AQMP, including CMB-05, were analyzed in the March 2017 Final Program EIR for the 2016 AQMP which was certified in March 2017.

According to the November 2019 Final SEA for PAR 1110.2 and PAR 1100, it is estimated that Rule 1110.2 will reduce NOx emissions by 0.29 ton per day throughout the South Coast Air Basin after implementation of BARCT limits and will provide an overall environmental benefit to air quality. Amended Rule 1110.2 found that although reducing emissions of NOx will create an environmental benefit, activities that facility operators may undertake to comply with Rule 1110.2 may also create secondary adverse environmental impacts in the topic area of hazards and hazardous materials (South Coast AQMD 2019). In addition, amendments to Rule 1100 established a compliance schedule for specified stationary engines.

South Coast AQMD staff determined that Amended Rule 1110.2 contained new information of substantial importance that was not known and could not have been known at the time the March 2017 Final Program EIR for the 2016 AQMP was certified. Specifically, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 identified new potentially significant adverse effects to hazards and hazardous materials that may result from implementing Rule 1110.2; these potentially significant impacts were not analyzed in the Final Program EIR for the 2016 AQMP. Therefore, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 identified new mitigation measures for hazards and hazardous materials. The analysis concluded that significant and unavoidable adverse environmental impacts from implementing the amendment to Rule 1110.2 would occur even after implementing mitigation measures for the following environmental issue area:

- Hazards and hazardous materials—from exposure to the Emergency Response Planning Guideline (ERPG) 2 level of 0.14 milligrams per liter (mg/L) of aqueous ammonia due to tank rupture

In addition, because physical modifications to facilities required to implement Rule 1110.2 might cause adverse air quality impacts, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 analyzed air quality as a potentially significant environmental impact but concluded that potential construction and operational air quality impacts would be less than significant.

Therefore, with the exception of hazards and hazardous materials, the conclusions reached in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 were consistent with the conclusions reached in the previously certified March 2017 Final Program EIR for the 2016 AQMP.

7.1.3 HRCM Components Considered Under the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

As previously discussed, the March 2017 Final Program EIR for the 2016 AQMP identified 75 control measures and strategies to demonstrate how the region will attain various ambient air quality standards; of these, two (CMB-01 and CMB-05) apply to the HRCM Project. The March 2017 Final Program EIR for the 2016 AQMP did not address specific facilities affected by the control measures and provided broader impact analysis regarding replacing, retrofitting, or constructing equipment to comply with the control measures and strategies outlined in the 2016 AQMP.

After the 2016 AQMP was adopted, CMB-05 was implemented, resulting in amendments to Rule 1110.2 and Rule 1100, which South Coast AQMD analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100. The Honor Rancho facility was specifically identified and analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 (see Appendix D) as one of the 21 “Affected Facilities” to be analyzed, listed as “So Cal Gas Co.” (Facility ID 5973).

As analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100, a RECLAIM or former RECLAIM facility operating compressor gas engines may consider undergoing a facility-wide engine modernization. A scenario of a facility-wide modernization of five engines at one facility was one of the scenarios analyzed for construction impacts, including installing new engines on a new footprint followed by the decommissioning of the existing engines once the new engines become operational. The HRCM Project’s circumstances would fall under this scenario analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

Section 1.3 provides an overview of the HRCM Project. Table 7-1 provides a summary of the HRCM Project components, including the SCE component evaluated in this Addendum, and identifies if and how they were considered in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

TABLE 7-1 Summary of Proposed HRCM Project Components
Included in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

Project Component	Proposed Main Campus Improvements	Final SEA for Rule 1110.2 and Rule 1100		Final Program EIR for the 2016 AQMP	
		Addressed?	Applicable SEA Text	Addressed?	Applicable EIR Text
(1) SoCalGas Component: Including one new compressor building (Compressor Plant No. 2) to house four new GDC lean-burn engines (each rated at 5,000 horsepower [HP]) (South Coast AQMD Permit Application Numbers: 638015, 638018, 638020, and 638022), and two new EDCs (each rated at 5,500 HP), complete with post-combustion emission control systems for the GDC lean-burn engines, each consisting of a SCR system and an oxidation catalyst for NOx control purposes (South Coast AQMD Permit Application Numbers: 638016, 638019, 638021, and 638023), and an aqueous urea storage tank (South Coast AQMD Permit Application Number: 638024) as well as other ancillary improvements.	Installation of a Compressor Plant No. 2 that would house 4 replacement GDC lean-burn engines and 2 new EDCs	Yes	Installation and operation of additional control equipment (up to 4 per facility) or selective noncatalytic reduction equipment, repowering, replacement, or retrofitting existing stationary engines (installed sequentially [one at a time]) and demolition and disposal of old equipment.	Yes	Implementation of strategies and control measures, specifically CMB-05 - Further NOx Reductions from RECLAIM Assessment.
	Decommissioning and demolition of existing compressor assets in Compressor Plant No. 1	Yes	Installation and operation of additional control equipment (up to 4 per facility) or selective noncatalytic reduction equipment, repowering, replacement, or retrofitting existing stationary engines (installed sequentially [one at a time]) and demolition and disposal of old equipment.	Yes	Implementation of strategies and control measures, specifically CMB-05 - Further NOx Reductions from RECLAIM Assessment.
	Aqueous urea storage tank	Yes	RECLAIM facilities with lean burn engines which are not equipped with SCR are expected to need to retrofit the existing engines with new SCR system and would also include installation of an aqueous ammonia or urea tank.	No	Not specified. ^(a)
(2) SCE Substation and Upgrades: A new SCE substation connecting to two new loop-in 66 kV electrical lines, new and replacement electrical poles, and electrical interconnection to support the increased electric load associated with the new EDCs, as well as telecommunication interconnections. A circuit breaker would be replaced/upgraded at the Saugus Substation, and upgrades to protection settings would be required at the Haskell and Lockheed Substations.	Distribution Electrical Interconnection (powerline)	No	Increased electrical demand identified.	Yes	New and existing buildings shall incorporate building commissioning to facilitate improved and efficient building operation.

Key: SEA = Subsequent Environmental Assessment; AQMP = Air Quality Management Plan; EIR = Environmental Impact Report; GDC = gas-driven compressor; EDC = electric-driven compressor; SF = square feet; NOx = nitrogen oxides; RECLAIM = Regional Clean Air Incentives Market; SCE = Southern California Edison.

^(a) *Not specified* means there is mention or text that refers to the listed component(s) but with no specifics (e.g., dimensions, numbers, limits).

This page intentionally left blank.

7.2 Analysis of Impacts from the SCE Component of the HRCM Project

This Addendum includes an evaluation of the same 17 environmental topic areas identified in the South Coast AQMD's environmental checklist and evaluated in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. This section of the Addendum presents the environmental review and conclusions of significance for the SCE Component. To determine the significance of the SCE Component's impacts, the Significance Criteria were used. The analysis in the March 2017 Final Program EIR for the 2016 AQMP concluded that eight environmental topic areas would have potentially significant impacts (i.e., aesthetics, air quality and GHG emissions, energy, hazards and hazardous materials, hydrology and water quality, noise, solid and hazardous waste, and transportation and traffic) and summaries of these analyses are provided in Subsections 7.2.1 through 7.2.8. The topics of air quality and hazards and hazardous materials are the only two environmental topics that were determined to have a potentially significant impact in the Final SEA for Rule 1110.2 and Rule 1100. The remaining nine environmental topic areas that were found to have less than significant impacts in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 are examined in Chapter 8.0 of this Addendum. As discussed in Section 2.1, CEQA and Summary of Previous Approvals, of this Addendum, the topic of wildfire has been evaluated in Section 8.2.1 of this Addendum.

The March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 identify several potentially significant impacts that cannot be mitigated below a level of significance and that therefore are considered significant and unavoidable. However, as discussed in detail in Sections 7.2.1 through 7.2.8, the SCE component of the HRCM Project would not result in any new significant impacts, nor would it substantially increase the severity of any significant impacts identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. Furthermore, the analysis in these sections concludes that the SCE Component would not result in any significant impacts that cannot be mitigated to a less than significant level with adherence to applicable mitigation measures included in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. Therefore, the SCE Component of the HRCM Project would not result in or substantially contribute to any significant and unavoidable effects identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

7.2.1 Aesthetics

The March 2017 Final Program EIR for the 2016 AQMP determined that the implementation of the control measures in the 2016 AQMP could result in significant adverse aesthetic impacts. The November 2019 Final SEA for PAR 1110.2 and PAR 1100 determined aesthetic impacts to be less than significant.

Impacts associated with aesthetics would be considered significant if any of the following criteria apply:

- Substantial adverse effect on scenic vistas
- Substantial damage to scenic resources, including but not limited to trees, rock outcroppings, and historic buildings within a state scenic highway
- Creation of a new source of substantial light or glare which would adversely affect day or nighttime views in the area

7.2.1.1 March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100

The March 2017 Final Program EIR for the 2016 AQMP determined that implementation of the 2016 AQMP could substantially degrade the existing visual character or quality of a site and its surroundings from the installation of catenary lines and use of bonnet technology on vessels at the ports. Although mitigation measures AE-1 through AE-5 (refer to Appendix C-1 of this document) are incorporated, the Final Program EIR for the 2016 AQMP concludes that impacts would be significant and unavoidable. The Final Program EIR for the 2016 AQMP determined that there are no officially designated scenic highways or highways eligible for state scenic highway designation in areas affected by construction of zero or near-zero emission equipment associated with the 2016 AQMP. The March 2017 Final Program EIR for the 2016 AQMP determined that the installation of solar panels and cool-roof technology could significantly increase the amount of glare generated and that impacts from glare would be significant and unavoidable. No feasible mitigation measures were identified for this impact (South Coast AQMD 2017b).

The November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that less than significant impacts would occur related to aesthetics. Table 4-22 - Applicability of Significant Impacts in March 2017 Final Program EIR to Proposed Project, from the November 2019 Final SEA for PAR 1110.2 and PAR 1100, explained that significant aesthetic impacts from the construction and operation of catenary lines and use of bonnet technology for ships found in the March 2017 Final Program EIR for the 2016 AQMP would not be applicable because neither catenary lines nor the use of bonnet technology for ships are applicable to stationary engines and the corresponding NOx emission controls (e.g., SCR technology) analysis in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 (South Coast AQMD 2019).

The SoCalGas Component's scope of the HRCM Project fell within the scenario analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100; the SCE Component's scope did not. As a result, a determination of whether or not the SCE Component would involve new or more significant aesthetic impacts than those analyzed in the March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100 is addressed herein.

7.2.1.2 SCE Component

Scenic Vistas

The City of Santa Clarita's General Plan Conservation and Open Space Element does not specifically list any local scenic vistas; however, because the City is aesthetically characterized by expansive views of the surrounding hillsides and mountains, these landforms would be considered important components of the City's scenic vistas. The closest scenic resource identified in the City's General Plan to Honor Rancho is San Francisquito Canyon, which is located approximately 1.5 miles southeast (City of Santa Clarita 2011a).

Within Honor Rancho, the majority of the land includes vegetated hillsides with numerous areas of disturbance, including Compressor Plant No. 1, paved roadways, and graded/gravel and paved areas that house temporary office buildings and other facilities. Public views of the Main Campus are very limited under the existing conditions, restricted to a relatively small extent of Newhall Ranch Road where the topography is more level with the roadway, generally across from the commercial center to the south of the Main Campus near the Pardee Substation and helipad. The majority of views into the Main Campus are obscured by hillsides and vegetation.

As described above, the Retention Substation, electrical interconnection, and TSPs that are part of the SCE Component would result in new graded areas on site. The Retention Substation would be located

approximately 680 feet north of Newhall Ranch Road, with the graded pad at an elevation of 1,130 feet above mean sea level (amsl). The hillsides that intervene between the Retention Substation site and Newhall Ranch Road range from approximately 1,170 feet to 1,140 feet amsl. Therefore, although distance and intervening topography and vegetation would obscure views of the proposed Retention Substation, aboveground facilities at the substation may be visible through the lower-elevation areas in the vicinity of the intersection of Jamal Way and Getaway Road (within Honor Rancho).

Views of the Retention Substation would be shielded by landscaping and fencing. The entire Retention Substation would be surrounded by security fencing, and at a minimum, the southern-facing portion of the Retention Substation would be fenced using LouverMesh (or similar) high-security fencing, which allows for airflow but also provides a high degree of visual screening. Native and drought-tolerant landscaping such as trees and/or shrubs would be planted around the Retention Substation to further reduce the visibility from Newhall Ranch Road.

The SCE Component would also include construction of two new TSPs adjacent to the Retention Substation and two new TSPs and replacement of existing H-frame structures on the hillsides within the existing Lockheed leg of the Saugus–Haskell–Lockheed 66 kV subtransmission line. The new TSPs would range in height from 60 to 90 feet tall. The proposed on-site SCE Component facilities, including the Retention Substation and TSPs, would be similar to existing views of electrical infrastructure in the area, including the numerous utility poles and towers in the area, as well as the Pardee Substation to the south of Honor Rancho. As such, the Retention Substation and associated electrical infrastructure would be publicly visible but would not impact a scenic vista, eliminate prominent ridgelines, or be out of character with the surrounding views. Such improvements would remain within Honor Rancho and would be consistent with existing electrical facilities in the general area, which include the adjacent Pardee Substation and associated transmission lines and lattice tower and pole structures.

Off-site improvements under the SCE Component would consist of SCE modifications to its Saugus Substation and installation of new telecommunications lines, including trenching required to connect the telecommunications lines to the existing lines near Kelly Johnson Parkway and West Rye Canyon Road. All off-site facilities would be located within urban and developed areas that are adjacent to existing electrical and telecom infrastructure, and the proposed off-site improvements would not be a substantial change in comparison to the existing conditions or adversely impact a scenic vista.

As described in Section 6.3.2, California Public Utilities Commission, of this Addendum, Article XII, Section 8 of the California Constitution establishes the CPUC's preemptive authority over matters for which the legislature has granted the CPUC regulatory powers, stating: "A city, county, or other public body may not regulate matters over which the Legislature grants regulatory power to the Commission." The California Public Utilities Code authorizes the CPUC to "do all things, whether specifically designated in this act or in addition thereto, which, are necessary and convenient in the exercise of such power and jurisdiction" (California Public Utilities Code Section 701). Utilities are thus exempt from local land use controls that are in conflict with "the paramount authority of the State" (California Public Utilities Code Section 6294). A conflict exists if local legislation duplicates, contradicts, or enters an area fully occupied by general law, either expressly or by legislative implication. Preemption of local legislation also occurs where the local legislation threatens statewide uniformity or legislates in an area of statewide concern. Due to the CPUC's preemptive authority, the HRCM Project, including the SCE Component, is not subject to local zoning requirements. Nevertheless, the SCE Component would be located at Honor Rancho and would be consistent with the current uses of the site, which are allowable under the site's existing general plan land use designation and zoning. Similarly, off-site portions of the SCE component would constitute minor changes to existing utility infrastructure and temporary staging areas and would

not conflict with any land use regulations related to scenic quality. In addition, the SCE Component involves no activities within the County.

With respect to the City General Plan Policies LU 6.1.1 and LU 6.1.3 regarding hillsides and ridgelines, no grading or cut/fill is required for the construction of the new TSPs, 66 kV subtransmission lines, or other off-site connections or components of the SCE Component. Two trenches for conduit for telecommunications infrastructure (each approximately 85 feet long) would be required, extending from the Retention Substation. For that earthwork, disturbance along ridgelines will be limited and development in hillside areas will be designed to protect the scenic backdrop of foothills and canyons through compatible hillside management techniques. As such, the SCE Component would not impact a scenic vista, eliminate prominent ridgelines, or be out of character with the surrounding views. As demonstrated through consistency with General Plan policies governing scenic quality and location of the SCE Component site, impacts would be less than significant.⁸

Scenic Highway

The HRCM Project, including the SCE Component, would be situated away from state scenic highways. The closest officially designated state scenic highway is State Route (SR)-2, located approximately 26 miles southeast of Honor Rancho (Caltrans 2022). Due to distance and intervening topography, Honor Rancho is not visible from the designated state scenic highway SR-2. Two eligible state scenic highways, SR-126 and I-5, are located approximately 1 mile west of the Main Campus; however, the existing facilities and the proposed SCE Component alignment are not visible due to distance, existing buildings, and topography. No mature trees, rock outcroppings, or historic buildings would be impacted by the SCE Component of the HRCM Project. No impact would occur.

Light and Glare

Honor Rancho currently has security lighting throughout the Main Campus, either mounted on buildings or on TSPs approximately 20 feet tall, to maintain safe operating conditions. All new lighting proposed would be consistent with City General Plan Policies, including Policies CO 3.6.1 and CO 6.6.1, because new sources of on-site lighting would be installed to provide supplemental indoor task lighting and downward-facing security and safety lighting around the building and other structures to facilitate nighttime use of areas by staff.

Although additional lighting is proposed at the new facilities within Honor Rancho, it would be consistent with the type and scale of current lighting at the Main Campus and would not result in a substantial new source of light in the area. Proposed TSPs and telecommunications infrastructure would not require lighting, and the Retention Substation would include emergency lighting consistent with other nearby electrical facilities. In addition, the proposed improvements, specifically the Retention Substation, would be constructed of materials similar to those used in the existing facilities (principally metals) and would be enclosed by a fence and screened by landscaping, as appropriate. As designed, the SCE Component would not create a new source of substantial light or glare that would adversely affect day or nighttime views in the area, and potential impacts would be less than significant.

⁸ Mitigation measures AE-1, AE-2, AE-3, AE-4, and AE-5 are not applicable because the HRCM Project would not involve catenary lines or the use of bonnet technology for ships.

7.2.1.3 Cumulative Aesthetic Impacts

March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100

Section 5.2 of the March 2017 Final Program EIR for the 2016 AQMP found that implementation of the control measures in the 2016 AQMP would result in significant impacts to visual character due to installation of catenary lines, glare from solar panels, and bonnet technology from oceangoing vessels. The 2016 AQMP control measures would result in significant adverse aesthetics impacts, and when combined with past, present, and reasonably foreseeable activities would result in a significant cumulative impact.

The November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that potential aesthetic impacts would be less than significant; therefore, cumulative aesthetic impacts were not analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

SCE Component

As detailed above, the SCE Component would not change the potential impact findings related to aesthetics as evaluated in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. The SCE Component would result in less than significant impacts at the project level related to aesthetics. The SCE Component of the HRCM Project would not require a land use designation or zoning change. The SCE Component would be consistent with the current utility-related uses of the site and surrounding areas. Although the March 2017 Final Program EIR for the 2016 AQMP determined that there would be a cumulatively significant impact related to aesthetic resources, this impact was primarily associated with catenary lines, solar panels, and bonnet technologies, which are not components of the SCE Component. The surrounding areas within the viewshed of the HRCM Project site are largely developed with urban uses and the nearby Los Angeles County Pitchess Detention Center property. There are no other known infrastructure projects within the viewshed of the HRCM Project site that could combine to result in a cumulatively considerable impact for aesthetic resources. Cumulative development projects in the surrounding viewshed area would also be required to comply with existing standards to regulate development set forth in the Los Angeles County Code or Santa Clarita Municipal Code.

As such, the proposed SCE Component of the HRCM Project would not result in any new significant cumulative impacts, consistent with the analysis in the March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100 which analyzed the SoCalGas Component's scope of the HRCM Project. Additionally, the SCE Component would not substantially increase the severity of the significant cumulative impacts identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

7.2.1.4 Aesthetics Conclusion

As demonstrated by the analysis above, the SCE Component of the HRCM Project, would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to aesthetics, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. The SCE Component would, therefore, not alter the conclusions of the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

7.2.2 Air Quality and Greenhouse Gases

The March 2017 Final Program EIR for the 2016 AQMP determined that the implementation of the control measures in the 2016 AQMP could result in significant adverse air quality and GHG impacts. Air quality impacts associated with increased emissions of criteria air pollutants, TACs, and GHGs due to construction and operation related to control measures CMB-01 and CMB-05, are discussed in Section 4.1, and cumulative air quality impacts are discussed in Section 5.4, of the March 2017 Final Program EIR for the 2016 AQMP. The March 2017 Final Program EIR for the 2016 AQMP indicated that the 2016 AQMP would result in a reduction of criteria pollutants in the South Coast Air Basin in order to attain the air quality standards. However, significant air quality impacts could be caused by modifications to facilities needed to implement the emission control rules if construction at four or more facilities were to occur on the same day. Mitigation measures AQ-1 to AQ-23 would reduce construction emissions, but the overall construction air quality and GHG impacts after mitigation would remain significant. The November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that no exceedances of the air quality significance thresholds would be expected to occur for any pollutant for all project scenarios that were analyzed either during construction or during operation after all construction is completed. Upon completion of construction at all affected facilities, an overall benefit to operational air quality would occur due to the projects' overall NOx emission reductions.

The analysis herein evaluates potential impacts to air quality and GHG emissions using the significance thresholds shown in Table 7-2. The SCE Component is considered to have significant adverse impacts if any of the significance thresholds in Table 7-2 are equaled or exceeded. The significance thresholds shown in Table 7-2 are the same as those used for the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 except for the addition of a significance threshold related to the federal 1-hour nitrogen dioxide (NO₂) ambient air quality standard in 2023 (see Table 7-2 footnote [e]).

The SoCalGas Component's scope of the HRCM Project was fully analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100; the SCE Component's scope did not. As a result, a determination of whether or not the SCE Component would involve new or more significant air quality or GHG impacts than those analyzed in the March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100 is addressed herein.

7.2.2.1 Construction Emissions and Impacts

Construction Emissions for the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

The March 2017 Final Program EIR for the 2016 AQMP determined that the construction phases associated with implementation of the 2016 AQMP would exceed the regional significance thresholds and that after implementation of mitigation measures AQ-1 through AQ-23 (refer to Appendix C-1 of this document), impacts would remain significant and unavoidable (South Coast AQMD 2017b).

The air quality analysis in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 identified Honor Rancho as one of the 21 “Affected Facilities” specifically considered in the impact analyses. The November 2019 Final SEA for PAR 1110.2 and PAR 1100 described a scenario of a facility-wide modernization of five engines at one facility (South Coast AQMD 2019).

TABLE 7-2 South Coast AQMD Air Quality Significance Thresholds

Mass Daily Thresholds^(a)		
Pollutant	Construction^(b)	Operation^(c)
NOx	100 lb/day	55 lb/day
VOC	75 lb/day	55 lb/day
PM10	150 lb/day	150 lb/day
PM2.5	55 lb/day	55 lb/day
SOx	150 lb/day	150 lb/day
CO	550 lb/day	550 lb/day
Lead	3 lb/day	3 lb/day
Toxic Air Contaminants, Odor, and Greenhouse Gas Thresholds		
TACs (including carcinogens and non-carcinogens)	Maximum Incremental Cancer Risk ≥ 10 in 1 million Cancer Burden > 0.5 excess cancer cases (in areas ≥ 1 in 1 million) Chronic and Acute Hazard Index ≥ 1.0 (project increment)	
Odor	Project creates an odor nuisance pursuant to South Coast AQMD Rule 402	
GHG	10,000 MT/yr CO ₂ e for industrial facilities	
Ambient Air Quality Standards for Criteria Pollutants^(d)		
NO ₂ 1-hour average annual average	South Coast AQMD is in attainment; project is significant if it causes or contributes to an exceedance of any standard: 0.18 ppm (state) and 0.100 ppm (federal) ^(e) 0.03 ppm (state) and 0.0534 ppm (federal)	
PM10 24-hour average annual average	10.4 $\mu\text{g}/\text{m}^3$ (construction) ^(c) and 2.5 $\mu\text{g}/\text{m}^3$ (operation) 1.0 $\mu\text{g}/\text{m}^3$	
PM2.5 24-hour average	10.4 $\mu\text{g}/\text{m}^3$ (construction) ^(f) and 2.5 $\mu\text{g}/\text{m}^3$ (operation)	
SO ₂ 1-hour average 24-hour average	0.25 ppm (state) and 0.075 ppm (federal – 99 th percentile) 0.04 ppm (state)	
Sulfates 24-hour average	25 $\mu\text{g}/\text{m}^3$ (state)	
CO 1-hour average 8-hour average	South Coast AQMD is in attainment; project is significant if it causes or contributes to an exceedance of any standard: 20 ppm (state) and 35 ppm (federal) 9.0 ppm (state/federal)	
Lead 30-day average Rolling 3-month average	1.5 $\mu\text{g}/\text{m}^3$ (state) 0.15 $\mu\text{g}/\text{m}^3$ (federal)	

Key: NOx = nitrogen oxides; VOC = volatile organic compounds; PM2.5 = fine particulate matter with an aerodynamic diameter of 2.5 microns or less; PM10 = respirable particulate matter with an aerodynamic diameter of 10 microns or less; SOx = sulfur oxides; CO = carbon monoxide; NO₂ = nitrogen dioxide; SO₂ = sulfur dioxide; lb/day = pounds per day; MT/yr CO₂e = metric tons per year carbon dioxide equivalent; ppm = parts per million; $\mu\text{g}/\text{m}^3$ = micrograms per cubic meter; \geq = greater than or equal to.

^(a) Source: South Coast AQMD CEQA Handbook (South Coast AQMD 1993; Revised March 2023 (South Coast AQMD 2023).

- (b) Construction thresholds apply to both the South Coast Air Basin and Coachella Valley (Salton Sea and Mojave Desert Air Basin).
- (c) For Coachella Valley, the mass daily thresholds for operation are the same as the construction thresholds.
- (d) Ambient air quality thresholds for criteria pollutants based on South Coast AQMD Rule 1303, Table A-2 unless otherwise stated.
- (e) The federal 1-hour NO₂ threshold has not been adopted for general use yet by South Coast AQMD, but it is a federal requirement for permits being issued for this project.
- (f) Ambient air quality threshold based on South Coast AQMD Rule 403.

Construction Emissions from SCE Component

The proposed SCE Component of the HRCM Project is expected to require up to approximately seven months of planned work activities composed of the following construction phases:

- Retention Substation
- SCE Saugus Substation
- SCE 66 kV Subtransmission Work
- SCE Telecom

A preliminary construction schedule is provided in Table 5-2 of this Addendum. The type and quantity of construction equipment and vehicles anticipated to be used were provided by SCE, and are also provided in Table 5-3 of this Addendum.

The use of diesel-powered construction equipment emits ozone precursors (NOx and VOC) and particulate matter, including diesel particulate matter (DPM). Large construction projects using multiple pieces of large earthmoving equipment are typically evaluated to determine whether construction activities may exceed South Coast AQMD's daily criterion for NOx emissions and could temporarily expose area residents to high levels of DPM. PM10 and PM2.5 in diesel engine exhaust and fugitive dust are also generally pollutants of concern. Use of architectural coatings and other materials associated with finishing buildings may also emit VOC and TACs. The significance thresholds address the impacts of construction activity emissions on local and regional air quality.

The construction emission calculations were performed using CalEEMod version 2022.1.1.24 (the current version available at the time when the analysis was performed in June 2024), the official statewide land use computer model designed to provide a uniform platform for estimating potential criteria pollutant emissions associated with both construction and operations of projects under CEQA. CalEEMod was developed by the California Air Pollution Control Officers Association in collaboration with the South Coast AQMD, the Bay Area Air District, the San Joaquin Valley Air Pollution Control District, and other California air districts. Default land use data (e.g., emission factors, trip lengths, meteorology, source inventory) were provided by the various California air districts to account for local requirements and conditions.

PM10 and PM2.5 emitted during construction can vary greatly depending on the level of activity, the specific operations taking place, the equipment being operated, local soils, weather conditions, and other factors, making quantification difficult. Despite this variability in emissions, experience has shown that there are several feasible measures that can be reasonably implemented to significantly reduce fugitive dust emissions from construction. South Coast AQMD Rule 403 – Fugitive Dust, requires that activities such as construction that generate fugitive dust must implement the Rule 403-listed Best Available Control Measures (BACMs) to minimize these emissions. Consistent with South Coast AQMD Rule 403, Fugitive Dust, the BACMs for the SCE Component of the HRCM Project would include frequent water application to effectively control fugitive dust emissions from forming at greater than 20 percent opacity or crossing any property line. Based on the draft PTC issued by the South Coast AQMD (2024a), the HRCM Project,

including the SCE Component would also be required to implement speed reduction on dirt roads and other fugitive dust controls.

As noted in Chapter 3.0 - Previous CEQA Documents Applicable to the Proposed HRCM Project, of this Addendum, the air quality analysis in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that potential construction and operational air quality impacts would be less than significant and mitigation would not be required for project-level or cumulative impacts. Although the November 2019 Final SEA for PAR 1110.2 and PAR 1100 did not require mitigation, as also noted in Chapter 3.0 and earlier in Section 7.2.2, the March 2017 Final Program EIR for the 2016 AQMP determined that significant and unavoidable adverse environmental impacts to air quality associated with construction emissions would occur after implementing mitigation measures AQ-1 through AQ-23 (refer to Appendix C-1 of this document).

The criteria pollutant emissions from construction of the SCE Component are shown in Table 7-3 and are compared to applicable significance thresholds for construction. As described in Section 5.2.1, PDF-1 (Use of Tier 4 Engines on Construction Equipment) requires the HRCM Project's construction contractors to use Tier 4 engines for off-road diesel-powered construction equipment with engines greater than 50 HP. BACM will be implemented to control fugitive dust as required by required by South Coast AQMD Rule 403 and the PTC for the HRCM Project.

TABLE 7-3 Construction Peak Daily Emissions Summary and Significance Evaluation

Construction Emissions	VOC (lb/day)	NOx (lb/day)	CO (lb/day)	SOx (lb/day)	Total PM10 ^(a) (lb/day)	Total PM2.5 ^(a) (lb/day)
SCE Component Construction Construction	9.0	23.6	189.8	0.2	2.1	0.9
Significance Threshold for Construction (Table 7-2)	75	100	550	150	150	55
Significant?	No	No	No	No	No	No

Key: lb/day = pounds per day; VOC = volatile organic compounds; NOx = nitrogen oxides; CO = carbon monoxide; SOx = sulfur oxides; PM10 = respirable particulate matter; PM2.5 = fine particulate matter.

^(a) Total PM10 and PM2.5 include both engine exhaust and fugitive dust.

Source: CalEEMod version 2022.1.1.24 (see Appendix B, Air Quality and Greenhouse Gas Technical Summary Memorandum).

As shown in Table 7-3, peak daily NOx emissions during construction of the proposed SCE Component would be below applicable peak daily significance thresholds with implementation of PDF-1. The HRCM Project construction activities would comply with South Coast AQMD Rule 403 – Fugitive Dust and the final PTC once issued by South Coast AQMD.

The peak daily emissions of each criteria pollutant for each phase of construction based on the CalEEMod outputs are provided in Appendix B. The construction schedule indicates that some of the phases could overlap, so the analyses in Appendix B also provide the sum of the phases that could overlap. Even with the conservative assumption that the peak daily emissions for multiple phases could occur on the same day, the peak daily emissions remain below the significance thresholds during construction of the proposed SCE Component of the HRCM Project with the incorporation of PDF-1. The peak daily emissions for all criteria pollutants occur during the overlap of the SCE Retention Substation; SCE 66 kV Subtransmission Work; and SCE Telecom phases.

For CalEEMod inputs related to vehicles and mileage, on-road vehicle requirements for the SCE Component would consist of light-duty construction worker vehicles for commuting to the Main Campus, medium- and heavy-duty trucks such as water trucks for dust control, and other trucks such as cement trucks, pump trucks, and flatbed trucks. The number of workers and the number and type of trucks that would be used on the peak day for each phase were provided by SCE through the development of the CalEEMod inputs (see Appendix B). The trips per day (see Appendix B) are based on the number of worker and truck trips doubled to reflect two one-way trips as round trips. CalEEMod provides default trip length estimates for workers and vendors based on the 2015 California Statewide Travel Demand Model and regional travel demand models from local metropolitan planning organizations or Regional Transportation Planning Agencies, where available.

For all construction phases, the CalEEMod default trip length of 12.62 miles one way was used for worker trips and 7.75 miles one way was used for various vendor trips. The CalEEMod default trip length for haul trucks is 20 miles, although CalEEMod does not provide a default trip length for trucks used entirely on site. For the SCE Retention Substation and SCE 66 kV Subtransmission Line Work phases, it is uncertain what portion of the haul trips will be on site to the sediment fill site, or how far trucks would travel to arrive at the Main Campus or to a regional landfill, so for these phases, a one-way default haul trip distance of 20 miles was assumed. Most of the haul trips during these phases will be expected to occur on-site to and from the sediment fill site, with relatively few trips to a regional landfill; therefore, the estimate based on this default travel distance is representative of the anticipated hauling activities.

A comparison of the peak daily construction emissions from the November 2019 Final SEA for PAR 1110.2 and PAR 1100 facility-wide engine modernization scenario (based on SEA Table 4-12) to the peak daily construction emissions from the SCE Component is provided in Table 7-4. With the PDF-1, the peak daily construction emissions for the SCE Component would remain below the South Coast AQMD construction emissions criteria and hence would be less than significant.

TABLE 7-4 Comparison of Peak Daily Construction Emissions from the November 2019 Final SEA for PAR 1110.2 and PAR 1100 Facility-wide Engine Modernization Scenario to the Peak Daily Construction Emissions for the SCE Component of the HRCM Project

Construction Emissions	VOC (lb/day)	NOx (lb/day)	CO (lb/day)	SOx (lb/day)	PM10 (lb/day)	PM2.5 (lb/day)
Facility-wide Engine Modernization of Five Engines at One Facility	4.51	35.74	32.54	0.10	12.16	6.98

(Table 4-12 from the Final SEA for Rule 1110.2 and Rule 1100)						
SCE Component of HRCM Project Construction (Table 7-3)	9.0	23.6	189.8	0.2	2.1	0.9
Significance Thresholds for Construction (Table 7-2)	75	100	550	150	150	55
Exceed Significance?	No	No	No	No	No	No

Key: HRCM = Honor Rancho Compressor Modification; VOC = volatile organic compounds; lb/day = pounds per day; NOx = nitrogen oxides; CO = carbon monoxide; SOx = sulfur oxides; PM10 = respirable particulate matter; PM2.5 = fine particulate matter.

For the SCE Component of the HRCM Project, potential impacts to air quality during construction would not result in a new impact, because the March 2017 Final Program EIR for the 2016 AQMP identified such impacts as significant and unavoidable after mitigation. Further, the impacts for the SCE Component of the HRCM Project would be less severe than those identified in the March 2017 Final Program EIR for the 2016 AQMP because the impacts would be less than significant. The analysis presented herein concludes that construction-related air quality impacts would be less than significant which is the same conclusion as the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

Compliance with regulatory requirements, such as the implementation of South Coast AQMD Rule 403 – Fugitive Dust, for the control of fugitive dust, and compliance with requirements related to the control of fugitive dust in the PTC when issued by the South Coast AQMD would ensure that the construction of the SCE Component of the HRCM Project would not result in peak daily criteria pollutant emissions exceeding South Coast AQMD thresholds. Therefore, construction of the proposed SCE Component would not result in any new significant impacts, nor would it substantially increase the severity of significant impacts identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

Localized Construction Air Quality Impacts from the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

The March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 did not include an analysis of localized ambient air quality impacts during construction.

Localized Construction Air Quality Impacts for SCE Component of the HRCM Project

In addition to a comparison of the peak daily emissions to the significance thresholds, an ambient air quality impact analysis was performed to confirm that there would not be cumulatively significant localized impacts. For the SCE Component of the HRCM Project, the South Coast AQMD localized significance thresholds (LSTs) were used for the air quality impact analysis for construction. South Coast AQMD has established LSTs that are only applicable to NOx, CO, PM10, and PM2.5 (South Coast AQMD 2008).

LSTs represent the maximum emissions from a project that are not expected to cause or contribute to an exceedance of the most stringent applicable federal or state ambient air quality standard and are developed based on the ambient concentrations of that pollutant for each source receptor area (SRA) and distance to the nearest sensitive receptor. For PM10, LSTs are derived based on requirements in South Coast AQMD Rule 403, Fugitive Dust. The HRCM Project is within SRA 13 – Santa Clarita Valley.

The LST screening tables provide emissions thresholds for 1-, 2-, and 5-acre project sites with distances ranging from 25 meters (82 feet) to 500 meters (1,640 feet) to the nearest receptor location. According to the LST Guidance document, for the purposes of a CEQA analysis, South Coast AQMD considers a sensitive receptor to be to be a receptor such as a residence, hospital, or convalescent facility where it is possible that an individual could remain for 24 hours. In addition to sensitive receptors, locations where workers may be present for 8 hours are also included in the LST analysis.

The construction activities for the SCE Component of the HRCM Project would occur primarily in the Retention Substation area. The 1-acre LST values were used for the active construction site based on the size of area requiring earthwork for the SCE Retention Substation (approximately 1.45 acres). Figure 7-1 shows the locations of HRCM Project areas, including the Retention Substation site, in relation to the closest residential, school, and worker receptors for construction. The closest receptors to the construction areas are a worker receptor approximately 900 feet (274 meters) south of the Retention Substation site. For this analysis, the 200-meter LST values for a 1-acre site were selected as the closest distance between the site and receptors.

Although the November 2019 Final SEA for PAR 1110.2 and PAR 1100 did not include an LST analysis, the construction emissions from Table 4-12 in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 (provided in Table 7-4 of this Addendum) are included in Table 7-5 for comparison purposes. The LST results provided in Table 7-5 show that criteria pollutant emissions from construction of the SCE Component of the HRCM Project would be less than the LST values at the nearest off-site receptor.

Figure 7-1 Locations of Construction Emission Source Areas and Specific Receptors Identified for the LST and Tier 2 HRA Analyses

TABLE 7-5 Peak Daily Construction Emissions and LST Evaluation

Construction Scenario	Peak Daily Construction Emissions^(a) and Thresholds^(b) (lb/day)			
	NOx	CO	PM10	PM2.5
Facility-wide Engine Modernization of Five Engines at One Facility (Table 4-12 from the Final SEA for Rule 1110.2 and Rule 1100)	35.74	32.54	12.16	6.98
SCE Component Peak Daily Construction (from Table 7-3)	23.6	189.8	2.1	0.9
Threshold (1-acre, 200 meters)	173	2,500	51	18
Significant?	No	No	No	No

Key: lb/day = pounds per day; NOx = nitrogen oxides; CO = carbon monoxide; PM10 = respirable particulate matter; PM2.5 = fine particulate matter.

(a) CalEEMod version 2022.1.1.24 (see Appendix B, Air Quality and Greenhouse Gas Technical Summary Memorandum).
 (b) Thresholds from South Coast AQMD 2008 for SRA 13 – Santa Clarita Valley. As described in Section 5.2.6.1, the Retention Substation would involve earthwork on approximately 1.45 acres. The nearest receptor to the Retention Substation is a worker receptor approximately 900 feet (274 meters) to the south. Therefore, LSTs for a 1-acre site approximately 200 meters from the nearest sensitive receptor are presented.

Compliance with regulatory requirements, such as the California Air Resources Board (CARB) and U.S. Environmental Protection Agency (EPA) off-road vehicle standards and South Coast AQMD Rule 403, Fugitive Dust, including watering for fugitive dust control, as well as implementation of PDF-1 would ensure that the construction of the SCE Component of the HRCM Project would not result in criteria pollutant emissions exceeding South Coast AQMD LSTs. Therefore, the proposed SCE Component would not result in any new significant impacts, nor would it substantially increase the severity of significant impacts identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

Construction TAC Impacts from the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

The March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 did not include an analysis of health risk impacts from TAC emissions during construction.

Construction TAC Impacts for the SCE Component

A substance is considered toxic if it has the potential to cause adverse health effects in humans, including increasing the risk of cancer upon exposure, or acute (immediate) and/or chronic (cumulative) noncancer health effects. A toxic substance released into the air is considered a TAC. Adverse health effects associated with exposure to TACs may include carcinogenic (i.e., cancer-causing) and noncarcinogenic effects. Noncarcinogenic effects typically affect one or more target organ systems and may be experienced on either short-term (acute) or long-term (chronic) exposure to a given TAC.

For construction, a screening Health Risk Assessment (HRA) was performed using South Coast AQMD's Tier 2 HRA Tool (2024b) to evaluate the potential health risk from exposure to DPM emissions during

construction of the SCE Component. The Tier 2 HRA Tool requires the selection of the source type and characteristics (e.g., horsepower), project location, and duration from a limited number of options. The TAC emission rates and distance to the nearest residence, school, and worker locations are inputs for the tool. The Tier 2 HRA Tool calculates the maximum cancer risk, hazard indices, and cancer burden, using the three input receptor distances (for residents, schools, and workers). The project-specific entries are discussed below and included in Appendix B - Air Quality and Greenhouse Gas Technical Summary Memorandum, of this Addendum.

Construction of the SCE Component of the HRCM Project would result in emissions of DPM from heavy construction equipment and trucks. DPM is characterized as a TAC by the State of California and was the only TAC analyzed for construction, as it has been shown to be by far the predominant TAC related to health risks during construction. The total DPM during construction was assumed to be equal to the PM10 exhaust emissions calculated using CalEEMod (see Appendix B). The Office of Environmental Health Hazard Assessment has identified carcinogenic and chronic noncarcinogenic effects from long-term exposure to diesel exhaust but has not identified health effects due to short-term acute exposure.

As described in the LST analysis, construction activities for the SCE Component will occur primarily at the Retention Substation area. The DPM emissions and distance to the closest residential, school, and worker location and selected durations are shown in Table 7-6. As with the LST analysis, the closest residence is the Oakmont of Santa Clarita, a senior living facility. The closest school is the Libertas Preparatory School/Trinity Classical Academy. The closest worker location is an existing SCE facility, Pardee Substation, to the south. Figure 7-1 shows the location of each receptor type relative to the HRCM Project, including the SCE Component.

TABLE 7-6 Project Construction Tier 2 HRA Tool Model Inputs

Construction Location	Average Annual DPM Emissions (lb/yr) ^(a)	Modeled Duration (Years) ^(b)	Closest Receptor Distance (Feet)		
			Residential	School	Worker
Retention Substation Area (New)	30.1	2	2,600	2,600	900

The DPM emissions are based on the on-site PM10 exhaust emissions for the Retention Substation, SCE 66 kV Subtransmission Work, and SCE Telecom phases, divided over a 2-year modeled duration. Emissions associated with the SCE Saugus Substation phase were excluded, as this work would occur off-site and would not substantially affect construction-related health risk at receptors near the Retention Substation site.

Key: HRA = Health Risk Assessment; DPM = diesel particulate matter; lb/yr = pounds per year.

(a) Total DPM for the area averaged over the modeled duration.

(b) Tier 2 HRA Tool only offers a 2 and 5-year option. Actual durations are approximately 7 months for the SCE Component.

The results of the Tier 2 HRA Tool are shown in Table 7-6 and the Tier 2 HRA Tool outputs are provided in the technical report in Appendix B. Table 7-2 includes the significance thresholds for health risks as a maximum incremental cancer risk (MICR) of greater than or equal to 10 in one million, chronic and acute hazard indices (HIC and HIA) greater than or equal to 1.0 (project increment), and a cancer burden greater than or equal to 0.5. The Tier 2 HRA Tool output labels the highest of the cancer risks at the three distances as being the MICR, which in this case is the receptor at the Oakmont of Santa Clarita facility due to its proximity the construction area. As shown in Table 7-7, the Tier 2 HRA results are below these criteria. Furthermore, the DPM emissions have been concentrated, when some of the construction emissions will occur in other areas, such as off-site travel. Therefore, these results are conservative.

TABLE 7-7 Project Construction Tier 2 Health Risk Assessment Results

Construction Location	Residence		School		Worker		Cancer Burden
	Cancer (in a million)	HIC^(a)	Cancer (in a million)	HIC^(a)	Cancer (in a million)	HIC^(a)	
Retention Substation Area	0.53	0.0003	0.53	0.0003	0.11	0.001	— ^(b)
Significance Threshold	10	1.0	10	1.0	10	1.0	0.5
Significant ?	No	No	No	No	No	No	No

Key: HIC = chronic hazard index.

(a) An acute hazard index is not calculated for DPM, so only the chronic hazard index (HIC) is provided.

(b) Cancer burden is not calculated for the Retention Substation Area because maximum cancer risk is under 1 in a million.

7.2.2.2 SCE Component Operation Emissions and Impacts

Operation Emissions for the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

The March 2017 Final Program EIR for the 2016 AQMP indicated that the 2016 AQMP would result in a reduction of criteria pollutants in the South Coast Air Basin, which was modeled to show attainment of the air quality standards. Hence, implementation of the Rule 1110.2 was anticipated to have a beneficial impact on air quality during operations.

Likewise, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that implementation of Rule 1110.2 and Rule 1100 was expected to result in direct air quality benefits from the reduction of NOx emissions. For facilities such as Honor Rancho, where SCR systems would be implemented, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 indicated that secondary criteria pollutant emissions may be generated as part of operation activities necessary for operating and maintaining the SCR systems and internal combustion engines. In particular, the following activities may be sources of secondary criteria pollutant emissions during operation: 1) new vehicle trips via heavy-duty trucks for periodic aqueous ammonia deliveries for each SCR system installed; 2) new vehicle trips via heavy-duty trucks for periodic deliveries of fresh catalyst and for hauling away spent catalyst once the new SCR systems are installed; and 3) increased vehicle trips via heavy-duty trucks for periodic aqueous ammonia deliveries for the facility's increasing ammonia usage on existing SCR systems with replaced catalyst modules. Peak daily emissions from these trips are provided in Table 4-14 of the November 2019 Final SEA for PAR 1110.2 and PAR 1100, which is replicated in this Addendum as Table 7-8. As shown in Table 7-8, operational emissions from one facility as a result of an increase in delivery trucks are less than the air quality significance threshold for operation.

TABLE 7-8 Peak Daily Operational Emissions at One Facility

Operational Activity	VOC (lb/day)	NOx (lb/day)	CO (lb/day)	SOx (lb/day)	PM10 (lb/day)	PM2.5 (lb/day)
Increased Ammonia Delivery Trucks for 1 Facility	0.08	0.52	0.34	0.0	0.03	0.02

New Catalyst Delivery and Spent Catalyst Haul Trip at 1 Facility	0.15	1.04	0.68	0.0	0.07	0.04
Total	0.23	1.56	1.01	0.01	0.1	0.06
Significance Threshold for Operation	55	55	550	150	150	55
Exceed Significance?	No	No	No	No	No	No

Key: VOC = volatile organic compounds; lb/day = pounds per day; NOx = nitrogen oxides; CO = carbon monoxide; SOx = sulfur oxides; PM10 = respirable particulate matter; PM2.5 = fine particulate matter.

Source: Table 4-14 of the Final SEA for Rule 1110.2 and Rule 1100.

The SoCalGas Component of the HRCM Project is within the scope of the scenario analyzed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100. However, because the SCE Component was not previously analyzed this CEQA document, the questions as to whether the SCE Component would involve new or more significant operational air quality impacts than those analyzed in the March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100 is addressed in the following discussion

Operation Emissions from SCE Component

There would only be minor vehicle emissions related to maintenance of the substations and subtransmission line during operation of the Retention Substation and other upgrades necessary for the SCE Component. Hence, separate emissions were not calculated for the operations phase. Because of the minimal emissions associated with these activities, operation of the SCE Component would not result in significant peak daily criteria pollutants emission impacts, and impacts would be less than significant. Therefore, the SCE Component would not result in any new significant impacts, nor would it substantially increase the severity of significant impacts identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

Analysis of Localized Operation Air Quality Impacts in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

The March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 did not include an analysis of localized ambient air quality impacts during operation.

Analysis of Localized Operation Air Quality Impacts for SCE Component

As described in Section 7.2.2.1, South Coast AQMD has established LSTs that are applicable only to NOx, CO, PM10, and PM2.5 (South Coast AQMD 2008).

No regular operational workers will be needed for the Retention Substation or distribution lines, and emissions associated with occasional maintenance work trips would be minimal. Furthermore, such operations and maintenance activities would be consistent with those currently undertaken by SCE to support existing electrical infrastructure in the area. Consequently, operation of the SCE Component would not result in localized air quality impacts.

Therefore, the proposed SCE Component would not result in any new significant impacts, nor would it substantially increase the severity of significant impacts identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

Operational TAC Impacts in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

The March 2017 Final Program EIR for the 2016 AQMP identified locations throughout the South Coast Air Basin where sensitive receptors are located within the vicinity of industrial facilities and discussed the health impacts related to TAC emissions. For operational impacts from TAC emissions, the March 2017 Final Program EIR for the 2016 AQMP stated that implementing the 2016 AQMP is expected to contribute to an overall reduction in TAC emissions.

The November 2019 Final SEA for PAR 1110.2 and PAR 1100 assessed the impacts of ammonia slip as a TAC for facilities that would use SCR systems for NOx emissions control. Table 4-18 in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 indicated that ammonia slip emissions from a facility would have impacts that are less than the reference exposure level for ammonia, but did not assess impacts at sensitive receptors. Because the SCE Component was not previously analyzed, the questions as to whether the SCE Component would involve new or more significant operational TAC impacts than those analyzed in the March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100 is addressed in the following discussion.

Operational TAC Impacts for SCE Component

The operation of the SCE substation and upgrades would generate negligible TAC emissions and would not otherwise expose sensitive receptors to substantial pollutant concentrations. The SCE Component includes operation of an unmanned substation and electrical infrastructure improvements. Minor emissions associated with occasional vehicle trips to the substation and operations and maintenance activities, such as infrastructure washing and coating application, would be negligible. Such activities would occur infrequently and generally be consistent with ongoing operations and maintenance activities SCE currently undertakes in the area to support existing electrical infrastructure. Therefore, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to operational TAC impacts, nor would it require new or modified mitigation measures or alternatives to be studied, that were not previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. The SCE Component would therefore not alter the conclusions reached in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

7.2.2.3 Cumulative Air Quality and GHG Impacts

Cumulative Construction and Operation Air Quality Impacts in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

Section 5.4 of the March 2017 Final Program EIR for the 2016 AQMP addressed cumulative impacts. That section indicates that implementation of the 2016 AQMP is expected to result in significant adverse construction air quality impacts because emissions from construction for implementing the control measures from the 2016 AQMP have the potential to exceed the significance thresholds. Mitigation measures were identified, but air quality impacts from construction would remain potentially significant.

Cumulative impacts are addressed in the November 2019 Final SEA for PAR 1110.2 and PAR 1100, which concluded that the air quality impacts from construction and operational activities would be less than significant. Thus, the air quality impacts due to construction and operation would not be cumulatively

considerable pursuant to CEQA Guidelines Section 15064(h)(1). Therefore, no significant adverse cumulative air quality impacts would be expected.

The November 2019 Final SEA for PAR 1110.2 and PAR 1100 also noted that the NOx emissions from construction activities are temporary when compared to the permanent long-term emission reductions of NOx. According to the Final SEA, implementation of amended Rule 1110.2 and Rule 1100 was estimated to result in NOx emission reductions of 0.29 ton per day (580 pounds per day) after implementation of BARCT limits. The incremental NOx emission reductions that are expected to occur would offset the temporary NOx emissions generated during construction. The air quality benefits of existing and proposed South Coast AQMD rules are anticipated to bring South Coast AQMD into attainment with all national and most state ambient air quality standards. Therefore, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that cumulative operational air quality impacts were concluded to be less than significant because implementation of Rule 1110.2 and Rule 1100 was expected to result in net emission reductions and overall air quality improvement. Therefore, there would be no significant cumulative adverse operational air quality impacts from implementing the amended rules.

Cumulative Construction and Operation Air Quality Impacts for SCE Component

The construction activities needed for the SCE Component are less than significant and will include implementation of PDF-1 to use Tier 4 engines on construction equipment 50 HP and greater. Similarly, operation of the SCE Component has negligible air quality impacts. As noted earlier, when project impacts are less than significant, the air quality impacts due to construction and operation are considered to not be cumulatively considerable pursuant to CEQA Guidelines Section 15064(h)(1) and therefore, there would be no significant adverse cumulative air quality impacts.

Cumulative Construction and Operation TAC Impacts

The March 2017 Final Program EIR for the 2016 AQMP stated that implementing the 2016 AQMP is expected to contribute to an overall reduction in TAC emissions during long-term operations. The November 2019 Final SEA for PAR 1110.2 and PAR 1100 assessed the impacts of ammonia slip as a TAC for facilities, which would use SCR systems for NOx emissions control. The March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that cumulative impacts related to TAC emissions would be less than significant.

As described in Section 7.2.2.1 and Appendix B, a screening health risk assessment of potential construction-related health risks associated with the SCE Component of the HRCM Project indicated such risks would remain less than the applicable South Coast AQMD health risk criteria. As described in Section 7.2.2.2, operation of the SCE Component would result in negligible TAC emissions associated with infrequent operations and maintenance activities, which would be similar in nature to ongoing maintenance activities undertaken to support existing electrical infrastructure in the area. Consequently, the analyses concluded that the SCE Component's TAC impacts would be less than significant, consistent with the air quality impact conclusions related to TACs in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. Therefore, the SCE Component would not alter the conclusion of less than significant impacts for TACs in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

Cumulative GHG Impacts for Construction and Operation in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100

Impacts related to GHG emissions are cumulative in nature. The 2016 AQMP Initial Study in Appendix A of the March 2017 Final Program EIR for the 2016 AQMP indicated that the implementation of rules developed from the control measures could have a potentially significant impact. The 2016 AQMP contains incentive and educational control measures that target GHG emissions and includes other control measures not targeted at GHGs that provided GHG co-benefits. The 2016 AQMP also includes control measures that specifically address GHG emissions (ECC-01, ECC-04, EGM-01, and ORHD-03). The Initial Study in Appendix A of the March 2017 Final Program EIR for the 2016 AQMP indicates that “Although some of the 2016 control measures are designed to take advantage of existing programs to reduce GHG impacts, other measures may have the potential to generate combustion emissions that could increase GHG emissions. For example, implementation of control measures that accelerate zero-emission technologies rely on electricity; an increase in electrical demand may result in increased electricity generation and subsequently increased GHG emissions associated with fossil fuel combustion and power plants.” Upon further analysis in the March 2017 Final Program EIR for the 2016 AQMP, GHG impacts were determined to be less than significant. The March 2017 Final Program EIR for the 2016 AQMP concluded that “Electricity is expected to be the predominant alternative fuel because it is more available, affordable, and can be used to power zero emissions vehicles. Existing power generating facilities are subject to Assembly Bill (AB) 32 and will be required to reduce GHG emissions by 2020 and any future power generating stations would be subject to stringent emission control requirements, including GHG emissions. As a result, GHG emissions associated with the use of alternative fuels are expected to be less than GHG emissions associated with the use of petroleum-based fuels. Therefore, no increase in GHG emissions is expected from the increased production and use of alternative fuels and GHG emission impacts are expected to be less than significant.” (South Coast AQMD 2017b, p. 1-25) The March 2017 Final Program EIR for the 2016 AQMP goes on to say that implementation of the 2016 AQMP would not result in a cumulatively considerable impact requiring mitigation.

The November 2019 Final SEA for PAR 1110.2 and PAR 1100 indicated that the GHG analyses mainly focused on directly emitted carbon dioxide (CO₂) because it is the primary GHG pollutant emitted during the combustion process. Modification of existing air pollution control systems and the installation of new air pollution control systems do not affect the combustion process of the existing engine. In addition, engines that will be replaced or repowered are expected to be replaced with equipment having an identical or similar rating. Therefore, an increase in GHG emissions from combustion of fuel is not expected from affected engines that are retrofitted, replaced, or repowered. Although the direct GHG emissions are not expected to increase, the November 2019 Final SEA for PAR 1110.2 and PAR 1100 indicated that CO₂ emissions from the operation of the NO_x control equipment are likely to increase from baseline levels due to the use of electricity, fuel, and water and the generation of more wastewater. The November 2019 Final SEA for PAR 1110.2 and PAR 1100 also determined that implementation of Rule 1110.2 would result in an increase of GHG operational emissions produced from additional truck hauling and deliveries necessary to accommodate the additional solid waste generation and increased use of chemicals and supplies (e.g., spent catalyst and reagent deliveries; i.e., aqueous ammonia in the SEA and aqueous urea for the HRCM Project). The November 2019 Final SEA for PAR 1110.2 and PAR 1100 concluded that the GHG impacts from implementation of the rule would be less than significant during construction and during operation (South Coast AQMD 2019).

Cumulative GHG Emissions Impacts from Construction of and Operation of the SCE Component

Using CalEEMod, direct on-site and off-site GHG emissions were estimated for construction of the SCE Component. Typically, GHGs from short-term construction activities are amortized over 30 years. To amortize GHGs from temporary construction activities over a 30-year period (the estimated life of the HRCM Project/equipment), the total amount of CO₂e emissions during construction (approximately seven months for the SCE Component) are calculated and then divided by 30. The amortized construction emissions are then added to the projected annual operational emissions, which are negligible for the SCE Component, to determine the significance of the GHG emissions.

Table 7-9 presents the construction GHG emissions from the SCE Component over the approximately seven-month construction period for the Retention Substation and subtransmission line extension.

TABLE 7-9 SCE Component Estimated Construction GHG Emissions (MT)

Construction Phase	CO ₂	CH ₄	N ₂ O	R	CO ₂ e
Retention Substation	387	0.02	0.03	0.08	391
SCE Saugus Substation	8	<0.01	<0.01	<0.01	8
SCE 66 kV Subtransmission Work	362	0.02	0.02	0.12	368
SCE Telecom	15	<0.01	<0.01	0.01	15
Total	772	0.6	0.7	0.22	782
Total 30-Year Amortized GHGs				26.1	
South Coast AQMD GHG Significance Threshold					10,000
Project's GHG Projected Emissions Increase is Significant?					No

Key: HRCM = Honor Rancho Compressor Modernization; GHG = greenhouse gas; MT = metric ton; CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; R = common refrigerant GHGs; CO₂e = carbon dioxide equivalent.

Source: CalEEMod version 2022.1.1.24 (see Appendix B).

The HRCM Project involves the operation of four replacement GDC lean-burn engines and two EDCs. Incorporation of two EDCs is consistent with the goals of the 2016 AQMP to use zero emission equipment where feasible. However, the EDCs require upgrades to the electrical distribution system. Direct GHG emissions would not be expected from a modern substation that limits leakage of sulfur hexafluoride (SF₆) from transformers.

Future projected GHG emissions of the SCE Component are calculated as follows:

- As shown in Table 7-9, the SCE Component's GHG emissions from construction activities have been estimated to total approximately 782 MT CO₂e, or about 26.1 MT per year, when amortized over 30 years.
 - The projected operational GHG emissions from the SCE Component are negligible. Operational GHG emissions would not be expected from a modern substation that limits leakage of SF₆ from transformers. Therefore, the projected increase in GHG emissions for SCE Component would be less than the significance threshold of 10,000 MT CO₂e per year and, thus, would be less than significant.

The South Coast AQMD adopted a GHG significance threshold of 10,000 MT per year of CO₂e for projects within South Coast AQMD jurisdiction. Projects with incremental increases less than this

threshold would not be cumulatively considerable. Projects with incremental increases above this threshold should be mitigated. As shown in the analysis above, the projected increase in GHG emissions due to the HRCM Project's SCE Component would be less than the GHG significance threshold of 10,000 MT CO₂e per year and thus, would be less than significant.

The operation of the SCE Component would not result in any new significant impacts due to generation of GHG emissions, and impacts would be less than significant. Therefore, construction and operation of the SCE Component would not result in any new significant impacts, nor would it substantially increase the severity of significant impacts identified in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

7.2.2.4 Mitigation Measures

As indicated in Section 7.2.2.1, the March 2017 Final Program EIR for the 2016 AQMP determined that the construction phases associated with implementation of the 2016 AQMP would exceed the regional significance threshold and after implementation of all feasible mitigation measures, AQ-1 though AQ-23 (refer to Appendix C-1 of this document), impacts would remain significant and unavoidable.

The air quality impact analyses in the November 2019 Final SEA for PAR 1110.2 and PAR 1100 specifically considered Honor Rancho as one of the 21 “Affected Facilities.”. The November 2019 Final SEA for PAR 1110.2 and PAR 1100 described a scenario of a facility-wide engine modernization and concludes that construction emissions for the SoCalGas Component of the HRCM Project on a peak day would be less than significant.

PDF-1 includes the use of Tier 4 engines on construction equipment of 50 HP or greater. With the inclusion of PDF-1, Section 7.2.2.1 identified that none of the 23 air quality mitigation measures from the Final Program EIR for the 2016 AQMP would be necessary for the HRCM Project's air quality impacts to be less than significant. Also, like the November 2019 Final SEA for PAR 1110.2 and PAR 1100, the HRCM Project's impacts, including the SCE Component, would be less than significant without air quality mitigation measures..

7.2.2.5 Air Quality and GHG Conclusion

As demonstrated in the aforementioned analysis, the SCE Component would result in less than significant impacts related to air quality and GHG emissions during construction with implementation of PDF-1. During operation, the SCE Component will have negligible emissions..

Also as demonstrated in the aforementioned analysis, the SCE Component would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts, nor would it require new or modified mitigation measures or alternatives to be studied, that were not previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100. The SCE Component would therefore not alter the conclusions reached in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for PAR 1110.2 and PAR 1100.

7.2.3 Energy

The March 2017 Final Program EIR for the 2016 AQMP determined that the implementation of the control measures in the 2016 AQMP could result in significant adverse energy impacts. The November 2019 Final SEA for PAR 1110.2 and PAR 1100 determined energy impacts to be less than significant.

Impacts to energy resources would be considered significant if any of the following criteria are met:

- The project results in substantial depletion of existing energy resource supplies.
- An increase in demand for utilities impacts the current capacities of the electric and natural gas utilities.

7.2.3.1 March 2017 Final Program EIR for the 2016 AQMP and November 2019 Final SEA for PAR 1110.2 and PAR 1100

The March 2017 Final Program EIR for the 2016 AQMP, as well as the 2016 AQMP Initial Study in Appendix A, focused on the operational energy impacts related to implementation of the control measures and did not assess the energy use related to construction of control technologies or other modifications at facilities needed to meet 2016 AQMP requirements. The March 2017 Final Program EIR for the 2016 AQMP did not discuss impacts related to compliance with existing energy standards or a state or local plan for renewable energy or energy efficiency in detail. Impacts related to compliance with existing energy standards and an adopted energy conservation plan were discussed in the 2016 AQMP Initial Study, included in Appendix A to the March 2017 Final Program EIR for the 2016 AQMP. The Initial Study concluded that implementation of the 2016 AQMP would provide potential energy conservation benefits, promote energy efficiency and conservation, and not conflict with existing energy plans, goals, or standards, and that no impacts associated with these criteria would occur.

The Final Program EIR for the 2016 AQMP determined that implementation of the 2016 AQMP would result in significant adverse electricity consumption impacts because the potential electricity usage increase would exceed baseline electricity consumption by 7.8 to 12.7 percent. The Final Program EIR for the 2016 AQMP indicated that the electricity consumption impacts would be significant and unavoidable, even after the incorporation of mitigation measures E-1 through E-7 (refer to Appendix C-1 of this Addendum). The implementation of the 2016 AQMP would result in less than significant impacts relating to increased demand for alternative fuels, alternative energy, renewable energy, petroleum fuels, and natural gas. The Final Program EIR for the 2016 AQMP determined that implementation of the 2016 AQMP would increase the amount of renewable energy supplies and would support the efficient use of energy by decreasing the use of fossil fuels and increasing the reliance on renewable energy sources. However, neither the Final Program EIR for the 2016 AQMP nor the 2016 AQMP Initial Study specifically discussed impacts regarding the relocation or construction of new or expanded electric power, natural gas, or telecommunication facilities (South Coast AQMD 2017b).

The November 2019 Final SEA for Rule 1110.2 and Rule 1100 provided a summary table (Final SEA Table 4-22) for topics where the potential environmental impacts were found to be less than significant, including energy. The table indicated that the amount of electricity that would be needed to install SCR technology for implementation of Proposed Amended Rule 1110.2 would not be substantial, and impacts related to energy due to increased electricity demand would be less than significant (South Coast AQMD 2019).

The SoCalGas Component's scope of the HRCM Project fell within the scenario analyzed in the Final SEA for Rule 1110.2 and Rule 1000; the SCE Component's scope did not. As a result, a determination of whether or not the SCE Component would involve new or more significant energy impacts than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100 is addressed herein.

7.2.3.2 SCE Component

Construction

Honor Rancho is a crucial facility in SoCalGas's system, needed to provide natural gas to its customers. Modernization of the facility will have a beneficial impact on energy by reducing the amount of natural gas fuel needed to power new, more efficient engines. The HRCM Project would also replace some of the existing compression engine capacity with EDCs, which require electricity rather than natural gas.

The SCE Component of the HRCM Project would require the construction of new power systems, and SoCalGas has closely coordinated with SCE to ensure that the electrical infrastructure in the area is improved sufficiently to minimize impacts related to electrical demand. The SCE Component, as described in Section 5.3 of this Addendum, is a part of the HRCM Project and would provide adequate electrical infrastructure to serve the EDCs.

Honor Rancho is a critical facility needed to meet SoCalGas's statutory obligation to provide reliable natural gas service to its customers. Construction of the SCE Component is necessary to meet the requirements of South Coast AQMD Rule 1110.2. For the HRCM Project, including the SCE Component, energy calculations related to construction were included in the calculated mass emissions of CO₂ from CalEEMod results of off-road and on-road mobile sources associated with HRCM Project construction.

For construction, CalEEMod aggregates mobile source CO₂ emissions into four broad categories (typical fuel types assumed):

- Off-road equipment fleet composite (diesel Tiers 1–4)
- Hauling (heavy-heavy-duty diesel trucks)
- Vendor trips (medium-heavy- and heavy-heavy-duty diesel trucks)
- Worker trips (light-duty gasoline automobiles and trucks)

For each category, diesel and gasoline fuel consumption can be estimated using 2020 Climate Registry (40 CFR, Part 98[C]) emission factors for those fuels:

- Diesel Fuel Oil No. 2: 10.21 kilograms CO₂ per gallon [22.51 pounds CO₂ per gallon]
- Motor Gasoline: 8.78 kilograms CO₂ per gallon [19.36 pounds CO₂ per gallon]

Table 7-10 shows the results of the above calculation methodology attributable solely to construction of the SCE Component, where total fuel consumption for the construction period is estimated at 2,210 gallons of gasoline and 73,770 gallons of diesel. The use of fuels (diesel and gasoline) during construction and demolition is temporary and, based on the anticipated construction equipment and vehicles for the SCE Component, is within the capacity of the current diesel and gasoline fuel delivery systems (e.g., the diesel consumption is only 0.01 percent of the 3.6 billion gallons of diesel sold in California in 2022).

Construction of the SCE Component would not result in significant impacts to energy resources or substantially deplete existing energy resources supplies during construction activities. Further, no new electrical infrastructure would be required for short-term construction activities for the SCE Component so the temporary increase in electricity demands would not impact the current capacities of the electric and natural gas utilities. Although the use of fuels during construction was not specifically addressed in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100, a determination of a less than significant impact to energy resources is consistent with the energy impact findings in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

TABLE 7-10 Estimated Construction Fuel Consumption Based on CalEEMod

Mobile Source User	Types	Fuel	CO ₂ (MT)	CO ₂ Emission Factor (kg/gal)	Fuel Consumption (gallons)
Worker Vehicles	LDA, LDT1, LDT2	Gasoline	19	8.78	2,210
Vendor & Hauling	MHDT, HHDT	Diesel	161	10.21	15,790
Off-road Equipment	Tier 4 for >50 HP	Diesel	592	10.21	57,980
Totals¹			772	—	75,980

¹ Totals may not sum precisely due to rounding.

Key: CalEEMod = California Emissions Estimator Model; MT = metric tons; CO₂ = carbon dioxide; kg/gal = kilograms per gallon; > = greater than; HP = horsepower. 1 MT = 1,000 kg.

Vehicle Types/Weight Classes: LDA = passenger cars/minivans/small sports utility vehicles (SUVs); LDT1 = 1/2- and 3/4-ton pickups/vans/large SUVs; LDT2 = 1 ton pickups/work trucks; MHDT = 3 axles (water, cement, pump, flatbed, vendor); HHDT = 4+ axles (water, cement, pump, flatbed, vendor); on-site and off-site hauling.

Operation

During operation, the primary increase in electricity use would be attributable to the new EDCs under the SoCalGas Component, not to the SCE Component. By supporting the SoCalGas Component, the SCE Component would help reduce overall HRCM Project-related emissions and natural gas usage.

The SCE Component would not conflict with or obstruct any adopted energy conservation plans or state or local plans for renewable energy or energy efficiency. Regardless of whether the SCE Component is implemented, Honor Rancho would continue to implement its current energy conservation plans that are in place. Thus, the SCE Component would not have an impact on Honor Rancho's compliance with adopted plans or building codes.

7.2.3.3 Cumulative Energy Impacts

Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

Section 5.7 of the Final Program EIR for the 2016 AQMP includes a discussion of operational cumulative impacts related to energy, but energy use during construction was not discussed. The Final Program EIR for the 2016 AQMP evaluated cumulative energy impacts that could result in significant adverse electricity consumption impacts, because the potential electricity usage increase would exceed baseline electricity consumption by 7.8 to 12.7 percent. No significant impacts on natural gas supplies and petroleum fuels associated with the 2016 AQMP were identified because of the anticipated reduction in future demand and the wide availability of natural gas. Although alternative energy demand impacts were expected to be less than significant because adequate supplies are available, the 2016 AQMP control measures would result in significant adverse energy demand impacts and when combined with past, present, and reasonably foreseeable activities, would result in a significant cumulative demand impact. No additional mitigation measures were identified related to the cumulative energy impacts.

The Final SEA for Rule 1110.2 and Rule 1100 concluded that potential energy impacts would be less than significant; therefore, cumulative energy impacts were not analyzed in the Final SEA for Rule 1110.2 and Rule 1100.

SCE Component

As detailed above, the SCE Component would not change the potential impact findings related to energy as evaluated in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would have less than significant project-level impacts related to construction-related energy/fuel use for construction equipment and vehicle trips. For operations, the SCE Component would also have less than significant project-level impacts.

The Final Program EIR for the 2016 AQMP included seven mitigation measures (see Section 7.2.3.4 below and Appendix C-1) to encourage project sponsors to work with the local energy provider and consider energy conservation measures in the planning stage for projects. It is expected that projects implemented pursuant to the 2016 AQMP will apply those mitigation measures to the extent applicable, further reducing potential cumulative impacts related to energy.

In sum, the proposed SCE Component of the HRCM Project would not result in any new significant cumulative impacts, consistent with the analysis in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100 that analyzed the SoCalGas Component's scope of the HRCM. Additionally, the SCE Component would not substantially increase the severity of the significant cumulative impacts identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

7.2.3.4 Mitigation Measures

As described in Section 7.2.3.1 in the summary of the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100, the Final Program EIR for the 2016 AQMP recognized that the amended rules could lead to a potential increase in electricity demand due to increased penetration of near-zero- and zero-emission technologies (e.g., EDCs) and potential increase in electricity demand associated with operating new control equipment (e.g., SCR system). The Final Program EIR for the 2016 AQMP concluded that implementation of the 2016 AQMP would result in significant impacts because the potential electricity usage increase would exceed baseline electricity consumption. Certain mitigation measures related to energy from the MMRP from the Final Program EIR for the 2016 AQMP have been identified as applicable to the HRCM Project. SCE will implement those mitigation measures applicable to the SCE Component of the HRCM Project. The mitigation measures related to energy identified as applicable to the HRCM Project include:

- E-1: A project applicant, project sponsor, or public agency shall provide to the lead agency documentation for approval of incentives to encourage the use of energy efficient equipment and vehicles and promote energy conservation prior to the beginning of project operation.
- E-2: To the extent allowed by state and federal law, electricity generating utilities within the District can and should increase capacity of existing transmission lines to meet forecast electricity demand that supports sustainable growth, where feasible and appropriate in coordination with local planning agencies.
- E-3: The project applicant, project sponsor, or public agency shall submit projected electricity calculations to the local electricity provider for any project anticipated to require substantial electricity consumption. Such electricity calculations can and should be used by the local electricity provider when forecasting future electricity demand. Any infrastructure improvements necessary should be completed according to the specifications of the electricity provider.

- E-4: The project applicant, project sponsor, or public agency shall include energy analyses in environmental documentation with the goal of conserving energy through the wise and efficient use of energy.

Due to the increase in electricity needed for EDCs for the SoCalGas Component, the SCE Component includes installation of a new Retention Substation and 66 kV subtransmission line and telecommunications infrastructure to provide the needed power to the SoCalGas Component. Compliance with regulatory requirements, such as the applicable building codes and standards for engineering design, would ensure that the impacts are less than significant.

Although the construction of new electrical infrastructure was not anticipated in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100, the analysis in this Addendum determines that the SCE Component, would not result in new significant impacts or increase in severity of a significant impact from construction of that infrastructure. given the incorporation of applicable energy mitigation measures included in the Final Program EIR for the 2016 AQMP. Therefore, the SCE Component would not cause any significant effects due to construction of new or expanded electrical power or telecommunications infrastructure.

7.2.3.5 Energy Conclusions

As demonstrated by the analysis above, the SCE Component would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to energy, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would therefore not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

7.2.4 Hazards and Hazardous Materials

The Final Program EIR for the 2016 AQMP determined that the implementation of the control measures in the 2016 AQMP could result in significant adverse hazards and hazardous materials impacts. The Final SEA for Rule 1110.2 and Rule 1100 determined hazards and hazardous materials impacts to be significant.

Impacts associated with hazards would be considered significant if any of the following occur:

- Non-compliance with any applicable design code or regulation
- Non-conformance to National Fire Protection Association (NFPA) standards
- Non-conformance to regulations or generally accepted industry practices related to operating policy and procedures concerning the design, construction, security, leak detection, spill containment, or fire protection⁹
- Exposure to hazardous chemicals in concentrations equal to or greater than the U.S. EPA's Emergency ERPG 2 levels

⁹ These regulations and generally accepted industry practices include Institute of Electrical and Electronics Engineers (IEEE) 1547, IEEE 2030.5, Underwriters Laboratories (UL) 1741 Supplement A, UL 1973, UL 9540, and California Fire and NFPA Codes.

7.2.4.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule

The Final Program EIR for the 2016 AQMP determined that implementation of the 2016 AQMP control measures would result in less than significant impacts related to the routine use of alternative fuels, caustic, catalysts, acidifiers, and sodium bisulfate; hazardous spills; and the storage and accidental release of ammonia in the refinery sector (South Coast AQMD 2017b). However, the Final Program EIR for the 2016 AQMP determined that implementation of the 2016 AQMP would result in significant and unavoidable impacts related to storage and transportation of liquid natural gas (LNG) (even after implementation of mitigation measures HZ-3 through HZ-6 [refer to Appendix C-1 of this document for all mitigation measures]); the accidental release of ammonia in the nonrefinery sector; impacts to schools located within 0.25 miles of facilities (even after implementation of mitigation measures HZ-16 through HZ-18); and fire hazard impacts associated with reformulated coatings, solvents, and consumer products in the 2016 AQMP (even after implementation of mitigation measures HZ-1 and HZ-2) (South Coast AQMD 2017b). The Final Program EIR for the 2016 AQMP determined that with implementation of mitigation measures HZ-7 through HZ-14, impacts from facilities and sites that might be identified on lists pursuant to Government Code Section 65962.5 would be less than significant (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 determined that significant and unavoidable impacts would result from the release of ammonia (implementation of mitigation measures HZ-1 through HZ-6 would be expected to prevent a catastrophic release of ammonia from leaving a facility; however, without detailed information specific to each facility, this impact would remain significant and unavoidable after mitigation measures are applied). The Final SEA for Rule 1110.2 and Rule 1100 further determined that some of the affected facilities would be located near schools and would therefore result in a significant impact (South Coast AQMD 2019). The Final SEA for Rule 1110.2 and Rule 1100 determined that there would be less than significant impacts for the transport of ammonia (South Coast AQMD 2019). The Final SEA for Rule 1110.2 and Rule 1100 determined that no significant impacts related to hazards associated with flammable materials are expected because operators of affected facilities are required to comply with all applicable design codes and regulations, conform to NFPA standards, and conform to policies and procedures concerning leak detection containment and fire protection (South Coast AQMD 2019).

The proposed engines replacement under SoCalGas Component of the HRCM Project were analyzed in the Final SEA for Rule 1110.2 and Rule 1100. The SCE Component scope did not. As a result, a determination of whether or not the SCE Component would involve new or more significant impacts related to hazards and hazardous materials impacts than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100 is addressed herein.

7.2.4.2 SCE Component

Construction

Hazardous Materials

The SCE Component construction activities would require the use and disposal of hazardous materials associated with the use of heavy equipment and machinery. It is not anticipated that substantial amounts of hazardous materials would be necessary for construction because equipment would be limited to typical construction equipment such as loaders, backhoes, graders, and trucks. However, inadvertent releases of hazardous materials could occur during construction activities, within temporary storage/staging areas, and/or while transporting hazardous materials. Hazardous materials that may be used during construction

activities include, but are not limited to, gasoline, diesel fuel, lubricants, grease, adhesives, welding gases, solvents, paints, and vehicle- and equipment-maintenance-related materials. None of these materials would pose significant potential for off-site impacts as a result of their quantities on site, their relative toxicity, and/or their environmental mobility. These materials would be stored in designated construction staging areas within the boundaries of or adjacent to Honor Rancho.

The construction contractor would be required to ensure that the transport, handling, use, storage, and disposal of any hazardous materials occurs in accordance with the manufacturer's specifications and all applicable federal, state, and local laws and regulations, including but not limited to the hazardous materials safety regulations in Title 13 of the California Code of Regulations (CCR), Division 2, Chapter 6. Additionally, general requirements regarding the transportation of hazardous materials are governed by Sections 31301–34510 of the California Vehicle Code. Many of the anticipated hazardous construction materials may be recycled, and those that cannot be recycled would be transported by a licensed hazardous waste hauler and disposed of at an appropriately permitted off-site facility in accordance with 22 CCR, Division 4.5, Environmental Health Standards for the Management of Hazardous Waste. In addition, SCE would maintain a Hazardous Materials Business Plan (HMBP) and Integrated Storm Water/Oil Spill Prevention, Control, and Countermeasure Plan (SPCCP), where applicable, at its substations and other facilities, including the Saugus Substation where the 66 kV circuit breaker would be replaced. These plans would be updated to ensure ongoing compliance with all applicable federal, state, and local requirements related to hazardous materials. The HMBP and SPCCP would identify secondary containment and countermeasures to be in place throughout construction so that if any leaks or spills occur, responses would be made immediately. Emergency spill supplies and equipment would be clearly marked and located adjacent to areas of work and in temporary construction staging areas. Further, site-specific construction management requirements set out in the SPCCP and the site-specific SWPPP, as applicable, and associated BMPs would be implemented during construction activities, as applicable.

Compliance with regulatory requirements adherence to all manufacturer's specifications for use and disposal of hazardous materials, and implementation of SCE's HMBP and SPCCP, as applicable, would ensure that the construction of the SCE Component would not create a significant hazard to the public or the environment during construction activities and would comply with all applicable design codes, regulations, and industry practices, and impacts would be less than significant.

Fire Hazards

The SCE Component would not impact fire protection or associated emergency access. The majority of the SCE Component would be constructed within the Honor Rancho property limits; however, some of the SCE component would require off-site construction activities. Throughout Honor Rancho, there are several gravel/disturbed and/or paved areas that would be used for staging equipment, as identified on Figure 5-1. In addition to on-site staging areas, as mentioned in Section 5.3.3.1, SCE is also planning to utilize a helipad site located west of the Pardee Substation and a gravel laydown yard within the Pardee Substation. The temporary staging areas would not impede any rights-of-way. Off-site portions of the SCE component would involve upgrades to the existing substations, including Saugus Substation, located off site approximately 1.6 miles south of the proposed on-site Retention Substation; Haskell Substation, located off site approximately 4 miles east of the proposed Retention Substation; and Lockheed Substation, located off site approximately 0.9 miles northeast of the proposed Retention Substation. All work would be within the existing equipment rooms at each substation, with no large equipment or ground-disturbing activity required. There is one location off Honor Rancho in which trenching would be required to install

conduit for telecommunications lines. Trenching would be required to connect the telecommunication lines to the existing lines near Kelly Johnson Parkway and West Rye Canyon Road. Although it is not anticipated, it is possible that there would be temporary lane closures for the trenching. Additionally, oversized vehicles that bring equipment to Honor Rancho may need to occupy more than one lane. A California Department of Transportation (Caltrans) oversized load permit would be obtained, if necessary. Emergency response providers near Honor Rancho would be notified in advance of construction locations, road closure schedules (if required), and potential alternate routes. The selected contractor would work with local police and traffic engineers to plan appropriate access alternatives for temporary lane closures and traffic disruptions, if required. Additionally, California Vehicle Code Section 21806 allows drivers of emergency vehicles to have a variety of options for avoiding traffic, such as using sirens to clear a path of travel and driving in the lanes of opposing traffic.

As discussed in Section 8.1.8, Public Services, the SCE Component construction-related activities would not have the potential to adversely affect fire department emergency response times. Furthermore, the SCE Component construction would not impair emergency or evacuation procedures along designated evacuation routes. Although construction would lead to temporary increases in vehicle trips to/from Honor Rancho, such trips would not impede the movement of emergency vehicles or evacuation procedures and would not interfere with the City's Local Hazard Mitigation Plan (City of Santa Clarita 2021). Emergency response providers near Honor Rancho would be notified in advance of construction locations, temporary lane closure schedules (if required), and potential alternate routes. The selected contractor would work with local police and traffic engineers to plan appropriate access alternatives for temporary lane closures and traffic disruptions, if required.

Compliance with regulatory requirements, coordination with emergency responders, and implementation of SCE BMPs would ensure that the SCE Component would not impair operations related to fire protection and associated emergency response or emergency evacuations, and impacts would be less than significant.

Operation

Hazardous Materials

For the SCE Component, no acutely hazardous materials would be stored or used at the proposed Retention Substation, the proposed new 66 kV subtransmission line segments, or the TSP subtransmission poles or during the installation of telecommunication cable. The Retention Substation would include containment infrastructure for potential spills or leaks of operational fluids, such as lubricants or oils. Hazardous materials would be used, handled, and stored in compliance with applicable rules, regulations, and SCE standard protocols designed to protect the public or the environment from the risk of upset and accident conditions involving the release of hazardous materials.

The SCE Component would be subject to all regulations and health and safety standards set forth by federal, state, and local authorities that regulate the proper handling of hazardous materials and their containers. SCE would also maintain a HMBP and SPCCP, where applicable. The HMBP and SPCCP would identify secondary containment and countermeasures to be in place for immediate response if any leaks or spills occur. Further, as required by 40 CFR Section 265.31 and 22 CCR Section 66265.31, all operations at facilities that generate hazardous waste must minimize the possibility of a fire, explosion, or any unplanned release of hazardous waste or hazardous waste constituents to air, soil, or surface water that could threaten human health or the environment (DTSC 2022).

Compliance with regulatory requirements, adherence to all manufacturer's specifications for use and disposal of hazardous materials, and implementation of the SCE HMBP, SPCCP, and BMPs would ensure

that the operation of the SCE Component would not create a significant hazard to the public or the environment and would comply with all applicable codes and regulations and accepted industry practices, and impacts would be less than significant.

Nearby Schools, Airports, and Hazardous Sites

The SCE Component design would not adversely impact nearby land uses. There are no schools within 0.25 miles of the proposed construction activities at Honor Rancho. The closest school is Libertas Preparatory School/Trinity Classical Academy, located approximately 0.3 miles northeast of proposed modifications of H-frame 1308954E associated with the Retention Substation site. Additionally, the portion of Kelly Johnson Parkway in the vicinity of the school would not be used for the transport of any hazardous material or construction-related trucks because this portion of the roadway does not provide access to Honor Rancho. There are no schools within 0.25 miles of the Saugus Substation, where the circuit breaker would be replaced, or the Pardee Substation and helipad, which would be used for staging. There may be schools located within 0.25 miles of the off-site areas of telecommunication lines related to the SCE Component; however, none of the telecommunication line activities would result in hazardous emissions or the handling of hazardous or acutely hazardous material during short-term construction or long-term operations.

According to Appendix D of the Final SEA for Rule 1110.2 and Rule 1100, Honor Rancho is not on a list compiled pursuant to California Government Code Section 65962.5 (South Coast AQMD 2019). Based on a Cortese list search conducted in 2024, there are no active hazardous waste sites within a 0.5-mile radius of Honor Rancho. While identified cleanup sites are located approximately 0.7 miles south of Honor Rancho along West Rye Canyon Road, no off-site improvements would occur in this area (DTSC 2024; SWRCB 2024).

According to Appendix D of the Final SEA for Rule 1110.2 and Rule 1100, Honor Rancho is not located within 2 miles of an airport (South Coast AQMD 2019). The nearest airport is the Van Nuys Airport, located approximately 16 miles south of Honor Rancho. According to the Federal Aviation Administration's Notice Criteria Tool, the height of the proposed TSPs has been confirmed by the Federal Aviation Administration to be within acceptable notice criteria limits and would not require hazard lighting or other safety features related to air travel (FAA 2024). As such, the SCE Component would not result in hazards to nearby land uses due to its proximity to schools, hazardous waste sites, or airports, and no impact would occur.

Fire Hazards

The SCE Component would not result in significant operational impacts related to fire protection or compliance with regulations related to exposure to hazardous chemicals. The SCE Retention Substation would not require any permanent employees at Honor Rancho, and there would be no permanent changes to public roadways or public vehicular or pedestrian circulation that could alter emergency access or emergency evacuations.

The presence of electrical infrastructure has been associated with the generation of wildfires in undeveloped areas or areas of high fire hazard. In recent years, SCE developed its 2020–2022 Wildfire Mitigation Plan (WMP), which addressed hardening system infrastructure and improving capabilities in risk and weather modeling, asset inspections, vegetation management, situational awareness, and community outreach. The recently updated 2023–2025 WMP builds on the previous plans' accomplishments to maintain the risk reductions and further reduce the significant wildfire risk and Public Safety Power Shutoff (PSPS) impacts. The primary goal of the WMP is to reduce the risk of wildfires

associated with utility equipment and to reduce the scope, scale, frequency, and impacts of PSPS events. The objectives of the WMP include the following (SCE 2023):

- Reduce the likelihood that objects will contact power lines and lead to an ignition by hardening the majority of the overhead distribution system in our high fire risk area with either covered conductor (and other mitigations) or targeted undergrounding, developing an expanded transmission grid hardening strategy and continuing to maintain vegetation clearance distances for trees and vegetation that could potentially contact power lines.
- Reduce the likelihood that equipment will fail and lead to an ignition by continuing to perform asset inspection initiatives that inspect over 99 percent of wildfire risk in our high fire risk area each year and by deploying new technologies that can detect when issues on the system may arise.
- Prioritize the deployment of our mitigation initiatives to the areas that have the greatest potential to lead to the most consequential wildfire and PSPS impacts.
- Improve the efficiency and effectiveness of our vegetation management activities to reduce the risk of vegetation-caused ignitions.
- Improve the operational efficiency and effectiveness of our wildfire mitigation initiatives by enhancing program deployment strategies, leveraging information technology solutions and incorporating new technologies where possible.
- Continue to improve our situational awareness capabilities by enhancing weather and fire potential modeling and forecasting, which will aid PSPS decisions and wildfire mitigation deployment.
- Reduce the impacts of PSPS to customers, particularly those with Access and Functional Needs, through expanded customer offerings, communications and circuit-specific strategies to minimize the need for PSPS altogether.
- Maintain a comprehensive, all-hazards planning and preparedness program to: provide effective emergency response; safely and expeditiously restore service during and after a major event; and communicate effectively with customers, stakeholders and agency partners.
- Deploy new technologies and updated protection device settings to improve wildfire mitigation effectiveness while balancing reliability impacts to customers.

Implementation of the WMP is conducted in accordance with applicable regulations, including but not limited to GO 95, Rules for Overhead Electrical Line Construction; GO 165, Requirements for Electric Distribution and Transmission Facilities; SCE Distribution Overhead Construction Standards; SCE Distribution Underground Construction Standards; GO 128, Rules for Construction of Underground Electric Supply and Communication Systems; SCE Distribution Apparatus Construction Standards; SCE Electrical Construction Station; SCE Electric Design Station Wiring; SCE Distribution Design Standards; and SCE Distribution Inspection Maintenance Program (SCE 2023). SCE's implementation of the Retention Substation and associated facilities would be conducted in accordance with the standards and protocols set forth in the 2023–2025 WMP, as well as applicable regulatory requirements, which would reduce potential impacts associated with fire hazards.

Compliance with regulatory requirements, implementation of the WMP and SCE BMPs, and incorporation of applicable mitigation measures listed in Section 7.2.4.4 would ensure that the operation of the SCE Component would not create a significant hazard related to increased fire hazards in areas with flammable materials, and impacts would be less than significant.

7.2.4.3 Cumulative Hazards and Hazardous Materials Impacts

Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

Section 5.9 of the Final Program EIR for the 2016 AQMP concluded that implementation of the 2016 AQMP would result in significant impacts, including fire hazard impacts associated with reformulated coatings, solvents, and consumer products; impacts from tank rupture of LNG and ammonia (in the nonrefinery sector) and transport of LNG and ammonia; and hazard impacts associated with the handling of hazardous or acutely hazardous materials within 0.25 miles of an existing or proposed school site. The 2016 AQMP control measures would result in significant adverse hazards and hazardous waste impacts and when combined with past, present, and reasonably foreseeable activities and would result in a significant cumulative impact.

The Final SEA for Rule 1110.2 and Rule 1100 found that hazard impacts from project-specific releases of ammonia would be significant even after mitigation measures are applied. The Final SEA for Rule 1110.2 and Rule 1100 concluded that cumulative adverse hazard impacts could contribute to existing nearby hazard risks from other projects. Therefore, cumulative hazard risks from implementing Amended Rules 1110.2 and 1100 would be significant.

SCE Component

As detailed above, the SCE Component would not change the potential impact findings related to hazards and hazardous materials as evaluated in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would have less than significant project-level impacts related to hazards and hazardous materials with the implementation of mitigation measures HZ-1 and HZ-2 to the extent those measures apply. Potential impacts related to compliance with applicable regulations and building code, NFPA standards, and accident conditions involving the release of hazardous materials into the environment are generally site specific and are not typically considered cumulative in nature. The SCE Component would not use aqueous ammonia. The SCE Component and other cumulative projects would be subject to existing regulations to minimize adverse effects related to the routine transport of hazardous materials, including the Resource Conservation and Recovery Act; the Comprehensive Environmental Response, Compensation, and Liability Act; the Hazardous Materials Transportation Act; HSC Section 25163; and 22 CCR, Chapter 13. Compliance with applicable regulations and relevant mitigation measures from the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100 would ensure that the SCE Component would not result in a cumulatively considerable impact.

In summary, the proposed SCE Component of the HRCM Project would not result in any new significant cumulative impacts, consistent with the analysis in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100 that analyzed the SoCalGas Component's scope of the HRCM Project. Additionally, the SCE Component would not substantially increase the severity of the significant cumulative impacts identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

7.2.4.4 Mitigation Measures

As described in Section 7.2.4.1 in the summary of the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100, implementation of the 2016 AQMP was found to result in significant and unavoidable impacts even after implementation of mitigation measures HZ-1 through HZ-18 (South Coast AQMD 2017b; refer to Appendix C-1 of this Addendum for the MMRP for the Final

Program EIR for the 2016 AQMP). Certain mitigation measures related to hazards and hazardous materials from the MMRP from the Final Program EIR for the 2016 AQMP have been identified as applicable to the HRCM Project. SCE will implement those mitigation measures applicable to the SCE Component of the HRCM Project. The mitigation measures related to hazards and hazardous materials identified as applicable to the HRCM Project include:

- HZ-1: The project applicant, project sponsor, or public agency shall include energy analyses in environmental documentation with the goal of conserving energy through the wise and efficient use of energy.
- HZ-2: The project applicant, project sponsor, or public agency shall add requirements to conduct a public education and outreach program in joint cooperation with local fire departments regarding flammable and extremely flammable products that may be included in reformulated products, especially for reformulated consumer paint thinners and multi-purpose solvents.

It is important to note that the MMRP from the Final Program EIR for the 2016 AQMP adopted other mitigation measures (e.g., HZ-3 through HZ-16) specific to the topic of hazards and hazardous materials. However, mitigation measures HZ-3, HZ-4, HZ-5, and HZ-6 are not applicable to the SCE Component because Honor Rancho does not require LNG on site. Mitigation measures HZ-7, HZ-8, HZ-8, HZ-9, HZ-10, HZ-11, HZ-12, HZ-13, HZ-14, and HZ-15 are also not applicable because Honor Rancho is not located on a list compiled per Government Code Section 65962.5. Lastly, mitigation measure HZ-16 is not applicable because there are no schools within 0.25 mile of the SCE Component's-related construction areas.

Refer to Appendix C-2 for the list of applicable mitigation measures from the Final Program EIR for the 2016 AQMP.

Mitigation measures from the Final SEA for Rule 1110.2 and Rule 1100 are not applicable because the SCE Component would not use aqueous ammonia.

7.2.4.5 Hazards and Hazardous Materials Conclusion

As demonstrated by the analysis above, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to hazards and hazardous materials, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

7.2.5 Hydrology and Water Quality

The Final Program EIR for the 2016 AQMP determined that the implementation of the control measures in the 2016 AQMP could result in significant adverse hydrology and water quality impacts. The Final SEA for Rule 1110.2 and Rule 1100 determined hydrology and water quality impacts to be less than significant.

The impacts on hydrology and water quality would be considered significant if the following conditions occur:

- Water Demand:
 - The existing water supply does not have the capacity to meet the increased demands of the project, or the project would use more than 262,820 gallons per day of potable water.
 - The project increases demand for total water by more than 5 million gallons per day.
- Water Quality:
 - The project will cause degradation or depletion of ground water resources substantially affecting current or future uses.
 - The project will cause the degradation of surface water substantially affecting current or future uses.
 - The project will result in a violation of National Pollutant Discharge Elimination System (NPDES) permit requirements.
 - The capacities of existing or proposed wastewater treatment facilities and the sanitary sewer system are not sufficient to meet the needs of the project.

7.2.5.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of the 2016 AQMP would result in less than significant impacts related to wastewater treatment facility capabilities; water quality standards from accidental spills and discharge; the increased use of alternative fuels, electric cars, ammonia, and sodium bisulfate; water conveyance systems; and the increase in wastewater.

The Final Program EIR for the 2016 AQMP determined that implementation of the 2016 AQMP would result in significant and unavoidable impacts related to groundwater depletion (even after implementation of mitigation measures WQ-1 through WQ-4 [refer to Appendix C-1 of this document for all mitigation measures]); and total water demand exceeding criteria (even after implementation of mitigation measures WQ-1 through WQ-4) (South Coast AQMD 2017b).

Several hydrology and water quality impacts were not discussed in detail in the Final Program EIR for the 2016 AQMP because they were found to have no impact in the 2016 AQMP Initial Study, including impacts related to substantial erosion or siltation; runoff water exceeding the capacity of existing or planned stormwater drainage systems or providing substantial additional sources of polluted runoff; impeding or redirecting flows; flood hazard, tsunami, or seiche zones; water quality control plan or sustainable groundwater management plans; and water supplies during normal, single-, and multiple-dry years. The Final Program EIR for the 2016 AQMP concluded that the availability of water supplies varies throughout the region; therefore, mitigation measures would minimize water demand impacts on an individual facility basis (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that impacts related to hydrology and water quality would not occur or would be less than significant. Table 4-22 of the Final SEA for Rule 1110.2 and Rule 1100 explained that the significant water demand impact found in the Final Program EIR for the 2016 AQMP would not be applicable because stationary engines and the corresponding NOx emission controls (e.g., SCR technology) do not utilize water for their operation, and therefore impacts related to hydrology and water quality would not occur or would be less than significant (South Coast AQMD 2019).

The SoCalGas Component scope of the HRCM Project fell within the scenario analyzed in the Final SEA for Rule 1110.2 and Rule 1000; the SCE Component scope did not. As a result, a determination of whether or not the SCE Component would involve new or more significant impacts related to hydrology and water

quality than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100 is addressed herein.

7.2.5.2 SCE Component

Construction

Water Quality

Staging would occur within the off-site Pardee Substation, but no earthwork associated with staging would be required. Construction site runoff can contain soil particles and sediments from these activities. Dust from construction sites, in addition to spills or leaks from heavy equipment and machinery, staging areas, or building sites, can also enter runoff and water bodies. Typical pollutants could include petroleum products and heavy metals from equipment, as well as products such as paints, solvents, and cleaning agents, which could contain hazardous constituents. Sediment from erosion of graded or excavated surface materials, leaks or spills from equipment, or inadvertent releases of construction materials could result in water quality degradation if runoff containing the sediment entered receiving waters in sufficient quantities to exceed water quality objectives of the downstream Santa Clara River. However, sediment and incidental pollutant contributions from construction activities would be minor and not measurable in the context of the watershed.

Because there would be earthwork disturbance greater than one acre for both the overall HRCM Project as well as the SCE Component, the HRCM Project, including the SCE Component would be required to obtain coverage under the General NPDES Permit for Discharges of Storm Water Associated with Construction Activity (Order No. 2022-0057-DWQ, NPDES No. CAS000002), also known as the CGP. As part of this coverage, a CGP SWPPP will be developed, which would be implemented during construction activities. The SWPPP will evaluate the level of risk to receiving waters (i.e., the Santa Clara River) and identify potential non-stormwater discharges, appropriate construction BMPs, BMP maintenance schedules, final stabilization measures, required inspections, testing, reporting, and post-construction BMPs.

Erosion/sediment control and pollutant control would be conducted in accordance with industry standard BMPs and the CGP SWPPP, which would be filed with the Los Angeles RWQCB via the state's online Stormwater Multi-Application Reporting and Tracking System.

In addition, the SoCalGas Compressor Building and SCE Retention Substation *Post-Construction Stormwater Management Plan/Erosion and Sediment Control Plan* (included as Appendix D-1, Stormwater and Erosion Control Plan, to this Addendum) includes proposed temporary erosion and sediment control features, including silt fences, rock check dams, stormwater inlet protection, compost filter socks, temporary slope drains, rolled erosion-control matting, concrete washout, rock construction entrance, and temporary mountable waterbars. Implementation of the CGP SWPPP and BMPs would ensure that construction of the SCE Component would not cause degradation of ground- or surface water resources substantially affecting current or future uses, and impacts would be less than significant.

Water Demand and Supply

Construction of the four phases of the SCE Component (Retention Substation, SCE Saugus Substation, SCE 66 kV Subtransmission Work, SCE Telecom) will each need limited amounts of water based on the types of activities that will be implemented. As discussed in Section 5.3.3.6 - Water Use, the SCE Retention Substation, which has the longest construction duration of the four phases at seven months,

would require approximately 360,000 gallons of water which is equivalent to less than 6,000 gallons per day.

As shown in Table 5-2, construction associated with the SCE Saugus Substation, SCE 66 kV Subtransmission Work, and SCE Telecom phases would overlap with construction of the SCE Retention Substation and water will be needed during various activities such as dust control/suppression, equipment washing, and concrete mixing. While the construction duration of the SCE Saugus Substation, SCE 66 kV Subtransmission Work, and SCE Telecom phases are individually much shorter than that of the SCE Retention Substation, the analysis assumes that the peak daily construction-related water demand would double (e.g., 12,000 gallons per day) during the overlapping phases. Nonetheless, even when construction of the SCE Retention Substation phase overlaps with any of the other phases the daily construction-related water demand would remain substantially less than the water demand significance criteria of 262,820 gallons per day of potable water. It is important to note that recycled or reclaimed water, in lieu of potable water, will be used as available and practicable for select discrete uses of water during construction, such as concrete batch mixing. However, there is no reclaimed water connection at the SCE Retention Substation site, so it is not feasible to use reclaimed water for dust control and equipment washing at this location. As such, for the purpose of analyzing whether water demand impacts would be significant, the analysis assumes that 100 percent of potable water will be utilized during construction.

.

.

Based on the Santa Clarita Valley Water Agency (SCV Water) 2020 Urban Water Management Plan, water supplied to the SCE Component area is provided from diverse sources, including local groundwater (SCV Water 2021) and existing and planned supplies are adequate to meet SCV Water service area demands during normal, single-, and multiple-dry year periods throughout the 30-year planning period. Additionally, SCV Water has alternative paths to reliability should planned supplies prove not to be viable. Based on the SCV Water 2020 Urban Water Management Plan (SCV Water 2021), water supplied to the City is accessed from diverse sources, including local groundwater and imported water, and recycled water. SCV Water is a State Water Contractor with access to imported water from the State Water Project, operated by the California Department of Water Resources. SCV Water is responsible for managing water supplies to ensure that projected future demands are met through local and imported sources, in addition to implementing local conservation efforts.

SCV Water's Groundwater extractions are completed in compliance with the Santa Clarita Valley Groundwater Sustainability Agency's (SCV-GSA's) Groundwater Sustainability Plan (GSP) (Santa Clarita Valley GSA 2022). The SCV-GSA conducts groundwater monitoring of representative wells throughout the Basin in the spring and summer to confirm that no potential undesirable results are occurring with respect to lowering of groundwater levels. Through SCV Water's compliance with the provisions of the GSP, in combination with the SCE Component's water demand being substantially less than the water demand significance criteria of 262,820 gallons per day of potable water, the SCE Component would not result in depletion of ground water resources. Therefore, the SCE Component would not conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan, and short-term construction impacts would be less than significant.

Flooding, Erosion, and Hydrology

Minor trenching within the roadway would be required for the telecommunication infrastructure connections to existing poles, but no grading would be required for the TSPs. The off-site trenching would be within the paved roadway and would not affect erosion or siltation.

The existing drainage pattern on site would be locally altered. However, stormwater runoff would continue to flow off site similar to existing conditions, with the Retention Substation site runoff flowing off site toward the existing roads located east and south of the site. In addition, construction would increase impervious surfaces and result in increased stormwater runoff. However, based on the HRCM Project Urban Stormwater Mitigation Plan (USMP) (Appendix D-2, Urban Stormwater Mitigation Plan, to this Addendum), construction and operation of the Retention Substation would be completed in compliance with City USMP Checklist requirements (City of Santa Clarita 2013), including hydromodification (flow/volume/duration) control criteria. The SCE Component would disturb more than 1 acre but less than 50 acres within natural drainage systems. Therefore, based on City USMP requirements, the SCE Component must provide hydromodification controls that would retain on site the 95th percentile, 24-hour storm event or the runoff flow rate, volume, velocity, and duration for the post-development condition for the 2-year, 24-hour storm event. The SoCalGas Hydrology and Hydraulic Report (Appendix D-3) calculated pre- and post-development runoff volumes and flow rates for each on-site drainage area in order to adequately size stormwater control features, such as drainage swales, culverts, and storm drainpipes, which would ultimately be connected to existing sediment basins on site. For each drainage area, it was demonstrated that post-construction outflow rates would be less than existing outflow rates, indicating that SCE Component development would not substantially increase the rate of stormwater runoff at the site. In addition, stormwater runoff from the Retention Substation site would flow through a proposed bioswale prior to off-site discharge. The final HRCM Project stormwater design would be completed in compliance with the City USMP Checklist (City of Santa Clarita 2013) regarding stormwater detention. Compliance with regulatory requirements would ensure that the SCE Component would not result in on- or off-site erosion and siltation of downstream drainages and the Santa Clara River, and impacts would be less than significant.

Wastewater Treatment Facilities and Sewer System

As summarized above, construction of the SCE Component will require limited water needs, and reclaimed water would be used to the extent available and practicable. Water usage during construction is expected to be substantially less than water demand significance criteria of 262,820 gallons per day of potable water.

Portable restroom facilities would be used during construction, which would require a negligible amount of water. Based on the modest increase in water demand during short-term construction activities, neither new water supply lines/water laterals nor new sewer lines would be required for the SCE Component. Compliance with regulatory requirements would ensure that the SCE Component would not exceed the existing capacity or result in the construction of new water or wastewater treatment facilities or sewer system facilities.

Operations

Water Quality

In the existing condition, Honor Rancho's stormwater is managed under the California Industrial General Permit for Stormwater and by its compliance with an operational industrial SWPPP, Waste Discharge

Identification No. 4 19I002738. Rainwater from impervious surfaces from industrial areas is transferred through a series of concrete ditches, culverts, and storm drains that directly flow to two in-line, centralized, on-site stormwater retention and desilting basins.

In the absence of stormwater detention features, an increase in impervious surfaces at the SCE Component site would result in an increase in stormwater runoff and associated potential increase in off-site discharge of incidental spills of pollutants, such as petroleum products, heavy metals, paints, solvents, and cleaning agents. In addition, in the absence of proper stormwater controls, sedimentation of the downstream Santa Clara River could occur due to runoff from graded, unpaved areas. However, the City is subject to waste discharge requirements set forth in Order No. R4-2021-0105, as amended by State Water Resources Control Board Order WQ 2015-0075 and Los Angeles RWQCB Order R4-2012-0175-A01 (NPDES Municipal Separate Storm Sewer System [MS4] Permit No. CAS004004). Based on criteria specified in these orders, the SCE Component is subject to the Stormwater Management Program Minimum Control Measures, Planning and Land Development Program, as applicable. The MS4 permit, as applicable, would require the SCE Component to control pollutants, pollutant loads, and runoff volume emanating from the construction activities by minimizing the impervious surface area and controlling runoff from impervious surfaces through infiltration, bioretention, and/or rainfall harvest and use. The SCE Component must retain on site the stormwater quality design volume (SWQDv), defined as the runoff from the 0.75-inch, 24-hour rain event or the 85th percentile, 24-hour rain event, as determined from the Los Angeles County 85th percentile precipitation isohyetal map, whichever is greater.

The 85th percentile, 24-hour rain event at Honor Rancho is between the 1.0-inch and 0.9-inch contour, as determined by the LACDPW Hydrology Manual (LACDPW 2006). Using linear interpolation, the 85th percentile, 24-hour rain event can be calculated to be a 0.96-inch event, which is greater than the 0.75-inch event and therefore has been used to calculate retention volume. The LACDPW *Low Impact Development Standards Manual* (LID Manual) (LACDPW 2014) would also apply. As applicable the LID Manual must be implemented and are categorized into the following types: retention-based BMPs, biofiltration, vegetation-based BMPs, and treatment-based BMPs.

In addition, the SCE Component would disturb more than 1 acre but less than 50 acres within natural drainage systems; therefore, based on City USMP requirements, the SCE Component must provide hydromodification controls that would retain on site the 95th percentile, 24-hour storm event or the runoff flow rate, volume, velocity, and duration for the post-development condition for the 2-year, 24-hour storm event (Appendix D-2).

The SCE Component would also be covered by the Statewide General NPDES Order for Discharges from Natural Gas Utility Construction, Operations, And Maintenance Activities, Order WQ 2017-0029-DWQ. This general order authorizes planned, emergency, and unplanned discharges from certain sources, including, but not limited to site dewatering related to excavation, construction, testing, maintenance, and/or repair of natural gas facilities.

Appendix D-1, Stormwater and Erosion Control Plan, includes the SCE Component Retention Substation. Within the proposed Retention Substation footprint, 17,700 square feet would be on a previously developed impervious area and 18,900 square feet would be within an undeveloped pervious area. Therefore, stormwater runoff and associated water quality impacts would increase as a result of operation of the substation ; however, the topography of the Retention Substation site slopes to the east and south and stormwater runoff would not flow toward Honor Rancho's existing detention/desilting basins that are illustrated in Appendix D-1. Stormwater from the substation would flow east toward Getaway Road, and

then down the road to the south. Similarly, the drainage swales on the proposed slope would flow toward the road.

Appendix D-1, Stormwater and Erosion Control Plan, depicts a proposed vegetated swale around the southwest perimeter of the Retention Substation and includes detailed descriptions and drawings of the vegetated swale, vegetated flow spreaders, and check dams (energy dissipators). These low impact design (LID) features have been designed such that off-site stormwater flow would not substantially increase over existing conditions, thus minimizing the potential for off-site erosive scour and sedimentation of downstream drainages. Detailed vegetated swale maintenance requirements are also provided. In addition, an existing small detention basin is located at the intersection of Brady Parkway and Getaway Road, southeast of the Retention Substation site. This basin would contribute to reducing off-site stormwater flow velocities. The Stormwater and Erosion Control Plan (Appendix D-1) also shows areas of vegetation preservation and provides detailed descriptions pertaining to waste disposal, hazardous waste, sanitary waste, spill prevention, dewatering, dust control, hydroseeding, and timing of control measures.

Based on the HRCM Project USMP (Appendix D-2), construction and operation of the SCE Component Retention Substation-related facilities would be completed in compliance with City USMP Checklist requirements (City of Santa Clarita 2013), including hydromodification (flow/volume/duration) control criteria, conservation of natural areas, minimization of stormwater pollutants of concern, protection of slopes and channels, inclusion of storm drain system signage, proper design of trash storage areas, provision of proof of ongoing BMP maintenance, and water quality/flow reduction/resources management criteria, as applicable.

The SoCalGas Hydrology and Hydraulic Report (Appendix D-3) calculated pre- and post-development runoff volumes and flow rates for each on-site drainage area to adequately size the stormwater control features, such as drainage swales, culverts, and storm drainpipes. For each drainage feature, it was demonstrated that post-construction outflow rates would be less than the existing outflow rate, indicating that the SCE Component of the HRCM Project development would not increase the rate of stormwater runoff at the site. In conclusion, compliance with the MS4 Permit, the LACDPW Hydrology Manual (LACDPW 2006), the LACDPW LID Manual (LACDPW 2014), and the City's USMP Checklist (City of Santa Clarita 2013), as well as LID features, would ensure that the SCE Component would retain and remove incidental pollutants and sediment from stormwater runoff from the facilities. Existing and proposed (if necessary) detention/desilting basins would accommodate stormwater runoff associated with the SWQDv, and other LID features, such as bioswales and permeable pavers, would be constructed per LID Manual specifications.

Compliance with regulatory requirements and SCE Component-specific plans would ensure that the operation of the SCE Component would not cause degradation of surface or groundwater resources substantially affecting current or future uses or result in a violation of NPDES permit requirements. Impacts would be less than significant.

Water Supply

The SCE component of the HRCM Project would not generate a new source of water demand.

Compliance with regulatory requirements, including the CGP SWPPP, MS4 Permit, LACDPW Hydrology Manual (LACDPW 2006), LACDPW LID Manual (LACDPW 2014), and the City USMP Checklist (City of Santa Clarita 2013), would ensure that the HRCM Project would not violate any water quality standards. As a result, the HRCM Project would not conflict with water quality objectives in the Los Angeles RWQCB Basin Plan (Los Angeles RWQCB 2014). In addition, as described above for

construction, although groundwater is one of the sources of water supply for SCV Water (the water purveyor for the City), groundwater extractions would be completed in compliance with the SCV-GSA's GSP, thus avoiding undesirable effects with respect to groundwater levels in the Basin. As a result, the SCE Component would not conflict with or obstruct implementation of a water quality control plan or sustainable groundwater management plan, and impacts would be less than significant. Because the SCE Component would not increase operational water demand, no operational impacts related to groundwater supply would occur.

Flooding, Erosion, and Hydrology

As discussed above, post-construction outflow rates for each drainage area would be less than existing outflow rates, indicating that SCE Component development would not substantially increase the rate of stormwater runoff at the site. In addition, stormwater runoff from the Retention Substation site would flow through a proposed bioswale prior to off-site discharge. The final HRCM Project stormwater design would be completed in compliance with regulatory requirements, including the City USMP Checklist (City of Santa Clarita 2013), ensuring that the SCE Component would not result in on- or off-site flooding, and impacts would be less than significant.

Honor Rancho is not within a 100-year floodplain, a known area of localized intermittent flooding, or a dam inundation area (FEMA 2024; City of Santa Clarita 2022). There would be no impact related to the redirection of flood flows. Honor Rancho is not located adjacent to a reservoir or other enclosed body of water that would potentially be susceptible to seiches. In addition, Honor Rancho is not located in proximity to the Pacific Ocean and would not be subject to tsunami inundation. There would be no impact related to flood hazards, tsunami, or seiche zones.

Wastewater Treatment Facilities and Sewer System

The Main Campus utilizes a septic system, and any increase of wastewater generation from SCE Component Retention Station-related sewage systems is expected to be negligible. Therefore, the capacities of the existing wastewater treatment facilities and the sanitary sewer system are sufficient to meet the needs of the SCE Component. The SCE Component would not result in relocation or construction of new or expanded wastewater facilities, the construction of which would result in significant environmental impacts, and impacts would be less than significant.

7.2.5.3 Cumulative Hydrology and Water Quality Impacts

Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

Section 5.10 of the Final Program EIR for the 2016 AQMP concluded that the overall water demand from implementing the 2016 AQMP would have significant hydrology (water demand) impacts. As such, the 2016 AQMP control measures would result in significant adverse water demand impacts and when combined with past, present, and reasonably foreseeable activities and would contribute to cumulatively considerable impacts to hydrology and water quality.

The Final SEA for Rule 1110.2 and Rule 1100 concluded that potential hydrology and water quality impacts would be less than significant; therefore, cumulative hydrology and water quality impacts were not analyzed in the Final SEA for Rule 1110.2 and Rule 1100.

SCE Component

As detailed above, the SCE Component would not change the potential impact findings related to hydrology and water quality as evaluated in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would result in less than significant impacts at the project level related to hydrology and water quality with implementation of mitigation measures WQ-2 and WQ-4, to the extent those mitigation measures apply. Other projects within the watershed area would be required to comply with existing City and/or County standards to minimize stormwater runoff and prevent substantial erosion or siltation. These include compliance with the CGP and applicable MS4 NPDES permit as well as required implementation of BMPs and LID design principles to mimic predevelopment hydrology through infiltration, evapotranspiration, and rainfall harvest. Further, projects in the City would need to prepare an erosion control plan in accordance with Santa Clarita Municipal Code Chapter 17.90, Wet Weather Erosion Control Plans (for projects in the City) and Los Angeles County Code Section J110.8.3, Erosion and Sediment Control Plans (for projects in the unincorporated County) to address potential effects of erosion, flooding, or the deposition of mud, debris, or construction-related pollutants. Therefore, the SCE Component would not result in cumulatively considerable impacts to hydrology and water quality.

Regarding the SCE Component's contribution to water demand, the construction water demand would be limited and the operational water demand would be within the range of existing annual use recorded at Honor Rancho. The SCE Component would not require a land use or zone change and would thus be consistent with population and employment assumptions included in local and regional planning documents, including the regional water plans. Per the 2020 Urban Water Management Plan, SCV Water has adequate existing and planned supplies to meet SCV Water service area demands during normal, single-dry, and multiple-dry year periods throughout the 30-year planning period. Therefore, the SCE Component would not result in cumulatively considerable impacts to water supply.

In sum, the proposed SCE Component would not result in any new significant cumulative impacts, consistent with the analysis in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100 that analyzed the SoCalGas Component's scope of the HRCM. Additionally, the SCE Component would not substantially increase the severity of the significant cumulative impacts identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

7.2.5.4 Mitigation Measures

As described in Section 7.2.5.1 in the summary of the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100, the Final Program EIR for the 2016 AQMP concluded that implementation of the 2016 AQMP would result in significant and unavoidable impacts to hydrology and water quality even after implementation of mitigation measures WQ-1 through WQ-4 (South Coast AQMD 2017b; refer to Appendix C-1 for all mitigation measures for the MMRP for the Final Program EIR for the 2016 AQMP). Certain mitigation measures related to hydrology and water quality from the MMRP from the Final Program EIR for the 2016 AQMP have been identified as applicable to the HRCM Project. SCE will implement those mitigation measures applicable to the SCE Component of the HRCM Project. The mitigation measures related to hydrology and water quality applicable to the HRCM Project include:

- **WQ-2:** The project applicant, project sponsor, or public agency shall coordinate with the local water provider to ensure that existing or planned water supply and water conveyance facilities are capable of meeting water demand/pressure requirements. In accordance with State Law, a Water

Supply Assessment shall be required for projects that meet the size requirements specified in the regulations. In coordination with the local water provider, each project sponsor shall identify specific on- and off-site improvements needed to ensure that impacts related to water supply and conveyance demand/pressure requirements are addressed prior to issuance of a certificate of occupancy. Water supply and conveyance demand/pressure clearance from the local water provider shall be required at the time that a water connection permit application is submitted.

- WQ-4: The project applicant, project sponsor, or public agency shall consult with the local water provider to identify feasible and reasonable measures to reduce water consumptions.

Refer to Appendix C-2 for the list of applicable mitigation measures from the Final Program EIR for the 2016 AQMP.¹⁰

7.2.5.5 Hydrology and Water Quality Conclusion

As demonstrated by the analysis above, SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to hydrology or water quality, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

7.2.6 Noise

The Final Program EIR for the 2016 AQMP determined that the implementation of the control measures in the 2016 AQMP could result in significant adverse noise impacts. The November 2019 Final SEA for Rule 1110.2 and 1100 determined that noise impacts associated with replacement of engines and installation of SCR and ammonia storage tanks, as would occur under the SoCalGas Component of the HRCM Project, would be less than significant.

The locations of the nearest sensitive noise receptors to the SoCalGas Component and SCE Component are described in detail in Section 6.1.1 and Section 6.1.2 of this Addendum. Sensitive noise receptors in the vicinity of the SoCalGas Component and SCE Component site fall within the City's jurisdiction. Because the City does not have a quantified limit on allowable construction noise, the analysis in this section relied upon guidance from the Federal Transit Administration (FTA).

A project would have a significant adverse noise or vibration impact under the following circumstances:

- Construction noise levels exceed the local noise ordinances or, if the noise threshold is currently exceeded, project noise sources increase ambient noise levels by more than three decibels (dBA) at the site boundary. Construction noise levels will be considered significant if they exceed federal Occupational Safety and Health Administration (OSHA) noise standards for workers.

¹⁰ Mitigation measure WQ-1 would not apply because the SCE Component sponsor has no control over the local water agencies' water supply and demand. Mitigation measure WQ-3 would not apply because recycled water is not available at Honor Rancho and recycled water would not be appropriate for use the HRCM Project.

- The proposed project operational noise levels exceed any of the local noise ordinances at the site boundary or, if the noise threshold is currently exceeded, project noise sources increase ambient noise levels by more than three dBA at the site boundary.

7.2.6.1 Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that the implementation of the control measures in the 2016 AQMP would result in less than significant noise and vibration impacts during operation and potentially significant noise and vibration impacts during construction. The short-term construction impacts would remain significant and unavoidable even with the implementation of mitigation measures NS-1 through NS-17 (South Coast AQMD 2017b; refer to Appendix C-1 for all mitigation measure in the MMRP for the Final Program EIR for the 2016 AQMP).

The Final SEA for Rule 1110.2 and 1100 concluded that potential noise increases associated with replacement of engines and installation of SCR and ammonia storage tanks, as would occur under the SoCalGas Component, would be within the allowable levels established by local noise ordinances for industrial areas, resulting in less than significant impacts (South Coast AQMD 2019).

The SoCalGas Component scope of the HRCM Project fell within the scenario analyzed in the Final SEA for Rule 1110.2 and Rule 1000; the SCE Component scope did not. As a result, a determination of whether or not the SCE Component would involve new or more significant noise impacts than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100 is addressed herein.

7.2.6.2 SCE Component

Construction

Construction activities would occur during the hours allowed by the City, which are specified in Section 11.44.080, Special Noise Sources, of the City's Municipal Code as being between 7 a.m. and 7 p.m. Monday through Friday and between 8 a.m. and 6 p.m. on Saturdays. Because the City does not have a quantified limit on allowable construction noise, this analysis has relied on guidance from the FTA, which recommends a criterion of 80 A-weighted decibels (dBA) 8-hour sound equivalent level (L_{eq}) for construction noise at the exterior of an existing residence and 85 dBA 8-hour L_{eq} outside of a commercial land use (FTA 2018).

This analysis used a technique akin to the FTA "general assessment" method, whereby all construction equipment is expected to operate—on average—at the geographic center of where on-site construction activity is expected to occur. Inputs and outputs are in the construction noise prediction worksheet of Appendix E, HRCM Predictive Modeling Input/Output Worksheets, to this Addendum, which includes data for the SCE Component. Predicted construction noise exposure levels during on-site construction activities are anticipated to be less than 55 dBA 8-hour L_{eq} at the lodging facilities (i.e., the Oakmont of Santa Clarita, Homewood Suites by Hilton) on the southern side of Newhall Ranch Road. This is 25 decibels (dB) lower than the 80 dBA 8-hour L_{eq} construction noise criterion for residences and 30 dB lower than 85 dBA 8-hour L_{eq} criterion for commercial uses established by the FTA. Such predicted proposed SCE Component construction activity noise levels are less than or comparable to estimated current traffic noise levels along these busy roadways (i.e., 55 dBA at distances of up to 400 feet from the roadway, per FTA guidance [FTA 2018]), so any increase of the outdoor ambient sound environment would be barely perceptible.

Off-site construction areas are discussed in further detail in Section 6.1.2, Setting for Off-Site HRCM Project Components. As discussed therein, the SCE Component involves off-site infrastructure improvements at the Saugus Substation. Appendix E construction noise prediction worksheets include consideration of noise emission from these off-site activities at the Oakmont of Santa Clarita on Newhall Ranch Road, along with the following additional receiver positions:

- Residences on the eastern corner of the Copper Hill Drive and Smyth Drive intersection that are approximately 1,300 feet from SCE Telecom trenching; and
- Residences north of Magic Mountain Parkway that are approximately 1,200 feet from the SCE Saugus Substation.

Predicted noise exposure levels from these studied off-site construction activities at the Oakmont of Santa Clarita on Newhall Ranch Road are compliant with the aforementioned FTA guidance and similarly result in noise levels comparable to those of the existing outdoor ambient sound environment.

For Honor Rancho on-site workers, predicted construction noise exposure levels would depend on the proximity of the listener to the feature(s) under construction. However, such workers are already exposed to an elevated sound environment due to existing Honor Rancho operations and relevant OSHA regulations are already implemented for these operations as part of on-site health and safety procedures pertaining to potential noise hazards and allowable exposure criteria. Predicted construction noise exposure levels for the SCE Component, therefore, would not exceed either these existing operational noise levels or the effectiveness of OSHA regulatory protective measures for workers.

Compliance with regulatory requirements, including the City's Municipal Code, and implementation of applicable mitigation measures would ensure that the construction of the SCE Component would not generate a substantial temporary increase in ambient noise levels. Therefore, impacts would be less than significant with mitigation from the MMRP for the Final Program EIR for the 2016 AQMP.

Construction of the SCE Component would result in groundborne vibration. However, vibration levels diminish rapidly with distance and would be imperceptible beyond the Honor Rancho site boundary due to the size of Honor Rancho, the HRCM Project feature locations, and the activities within the site. The SCE Component would not result in excessive groundborne vibration or groundborne noise levels during construction, and impacts would be less than significant. For example, a roller, which is the most vibratory of the anticipated on-site heavy construction equipment, has a reference groundborne vibration velocity level of 0.089 inches per second peak particle velocity at a reference distance of 25 feet from the equipment (FTA 2018). At a propagation distance of just 240 feet from the roller, and thus well within the distance to nearest off-site sensitive receptor, the estimated peak particle velocity exposure per FTA methodology would be less than 0.007 inches per second, or 65 VdB (i.e., root mean square vibration velocity decibels), which is at the threshold of human perception (FTA 2018).

Regarding the off-site improvements to SCE facilities under the SCE Component, the nearest sensitive receptors are all located more than 1,000 feet from proposed construction areas with the potential to generate groundborne noise or vibrations. Although the proposed telecommunication lines within the public rights-of-way of Kelly Johnson Parkway, Copper Hill Drive, Newhall Ranch Road, and Bouquet Canyon Road would be within 40 feet of various residential land uses, the running of these lines would not involve any construction activities or equipment that would generate groundborne noise or vibration. Thus, groundborne vibration and groundborne noise associated with off-site construction activities would be less than significant.

Operation

Noise associated with operation of the SCE Component would not exceed off-site noise exposure criteria established by the City, based on three-dimensional sound propagation modeling (inputs for which are provided in Appendix E). Figure 5 from Appendix E presents predicted noise contours from the aggregate operation of proposed HRCM Project features, which includes the Retention Substation transformer part of the SCE Component. The results are less than 40 dBA in the vicinity of lodging uses south of Newhall Ranch Road and less than 35 dBA at the exteriors of commercial office uses along Kelly Johnson Parkway to the east. Such predicted proposed operational noise levels are less than the estimated current traffic noise levels along these busy roadways (i.e., 45 dBA at distances of up to 400 feet from the roadway, per FTA guidance), so any increase of the outdoor ambient sound environment would be less than 3 dB and thus barely perceptible. For Honor Rancho on-site workers, Figure 5 from Appendix E shows that predicted noise exposure levels due to proposed SCE Component may be elevated depending on the proximity of the listener. However, such workers are already exposed to a comparable sound environment due to existing Honor Rancho operations and relevant OSHA regulations are already implemented for these operations as part of on-site health and safety procedures pertaining to potential noise hazards and allowable exposure criteria. Therefore, as for the previously-analyzed SoCalGas Component, the SCE Component design would ensure that long-term operation would not generate a substantial permanent increase in ambient noise levels, and impacts would be less than significant.

The nearest airport is the Van Nuys Airport, which is approximately 16 miles south of Honor Rancho. The SCE Component is not located within 2 miles of a public airport or private airstrip or included in an airport land use plan; therefore, there would be no impact related to private airstrips or public airports.

7.2.6.3 Cumulative Noise Impacts

Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

Section 5.13 of the 2016 AQMP Final Program EIR evaluated cumulative noise and vibration impacts associated with air pollution control technologies and exhaust standards and found that implementation of the 2016 AQMP control measures could result in significant construction noise and vibration impacts due to the geographic proximity of sensitive receptors. As such, the 2016 AQMP Final Program EIR concluded that, when combined with past, present, and reasonably foreseeable activities, cumulatively considerable noise and vibration impacts could occur during construction. The 2016 AQMP Final Program EIR determined that nearby noise-sensitive land uses could experience substantial increases in noise associated with regional operations of transportation facilities and increased vehicle activity. As such, the 2016 AQMP Final Program EIR concluded that, when combined with past, present, and reasonably foreseeable activities, noise impacts would be cumulatively considerable during operations.

The Final SEA for Rule 1110.2 and Rule 1100 concluded that potential noise impacts would be less than significant. Cumulative noise impacts were not analyzed in the Final SEA for Rule 1110.2 and Rule 1100.

SCE Component

As detailed above, the SCE Component would not change the potential impact findings related to noise as evaluated in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would have less than significant impacts related to short-term construction-related noise with the implementation of mitigation measures NS-3, NS-7, and NS-9 through NS-13, and would have less than significant operational noise impacts. For the SCE Component to have a cumulatively considerable noise impact at an off-site sensitive receptor, both its project-related activity

and that of other sources of noise would need to be sufficiently close together and exhibit adequate sound amplitude. The SCE Component construction and operational noise would be less than significant and its contribution to cumulative noise levels from existing ambient sound sources (e.g., roadway traffic, HVAC system operation) would not be cumulatively considerable because there are no noise-generating activities that would be sufficiently close and/or generate noise loud enough to result in a cumulative impact.

As such, the proposed SCE component of the HRCM Project would not result in any new significant cumulative impacts, consistent with the analysis in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1100.2 and Rule 1100 that analyzed the SoCalGas Component's scope of the HRCM. Additionally, the SCE Component would not substantially increase the severity of the significant cumulative impacts identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

7.2.6.4 Mitigation Measures

As described in Section 7.2.6.1 in the summary of the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100, the Final Program EIR for the 2016 AQMP concluded that short-term construction impacts would remain significant and unavoidable even with the implementation of mitigation measures NS-1 through NS-17 (South Coast AQMD 2017b; refer to Appendix C-1 for mitigation measures from the MMRP for the Final Program EIR for the 2016 AQMP). Certain mitigation measures related to noise from the MMRP from the Final Program EIR for the 2016 AQMP have been identified as applicable to the HRCM Project. SCE will implement those mitigation measures applicable to the SCE Component of the HRCM Project. The mitigation measures related to noise applicable to the HRCM Project include:

- NS-3: The project applicant, project sponsor, or public agency shall schedule construction activities consistent with the allowable hours pursuant to applicable general plan noise element or noise ordinance. Noise-generating construction activities (including truck deliveries, pile driving, and blasting) shall be limited to the least noise-sensitive times of day (e.g., weekdays during the daytime hours) for projects near sensitive receptors. Where construction activities are authorized outside the limits established by the noise element of the general plan or noise ordinance, the project applicant, project sponsor, or public agency shall notify affected sensitive noise receptors and all parties who will experience noise levels in excess of the allowable limits for the specified land use of the level of exceedance and duration of exceedance and provide a list of protective measures that can be undertaken by the individual, including temporary relocation or use of hearing protective devices.
- NS-7: The project applicant, project sponsor, or public agency shall hold a preconstruction meeting with the job inspectors and the general contractor/onsite project manager to confirm that noise measures and practices (including construction hours, neighborhood notification, posted signs, etc.) are completed.
- NS-9: The project applicant, project sponsor, or public agency shall ensure that construction equipment are properly maintained per manufacturers' specifications and fitted with the best available noise suppression devices (e.g., mufflers, silencers, wraps). Additionally, all intake and exhaust ports on power equipment shall be muffled or shielded.
- NS-10: The project applicant, project sponsor, or public agency shall ensure that impact tools (e.g., jack hammers, pavement breakers, and rock drills) used for project construction are hydraulically or electrically powered to avoid noise associated with compressed air exhaust from pneumatically

powered tools. However, where use of pneumatic tools is unavoidable, an exhaust muffler on the compressed air exhaust shall be used. External jackets on the tools themselves shall be used, if such jackets are commercially available and this could achieve a reduction of 5 dBA. Quieter procedures shall be used, such as drills rather than impact equipment, whenever such procedures are available and consistent with construction procedures.

- NS-11: The project applicant, project sponsor, or public agency shall ensure that construction equipment is not idling for an extended time in the vicinity of noise-sensitive receptors.
- NS-12: The project applicant, project sponsor, or public agency shall locate fixed/stationary equipment (such as generators, compressors, rock crushers, and cement mixers) as far as possible from noise-sensitive receptors.
- NS-13: The project applicant, project sponsor, or public agency shall consider using flashing lights instead of audible back-up alarms on mobile equipment.

Refer to Appendix C-2 for the list of mitigation measures applicable to the HRCM Project.¹¹

7.2.6.5 Noise Conclusion

As demonstrated by the analysis above, the SCE component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to noise, nor would it require new or modified mitigation measures or alternatives to be studied, that were not previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

7.2.7 Solid/Hazardous Waste

The Final Program EIR for the 2016 AQMP determined that the implementation of the control measures in the 2016 AQMP could result in significant adverse solid and hazardous waste impacts. The Final SEA for Rule 1110.2 and Rule 1100 determined solid and hazardous waste impacts to be less than significant.

A project would have a significant impact on solid and hazardous waste if the following condition occurs:

- The generation and disposal of hazardous and non-hazardous waste exceeds the capacity of designated landfills.

7.2.7.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that impacts from the solid and hazardous waste generated during construction and from vehicle equipment and scrapping would be significant and unavoidable, with no feasible mitigation measures. Although the Final Program EIR for the 2016 AQMP did not discuss impacts related to federal, state, and local management and reduction statutes and regulations related to solid and hazardous waste in detail, the 2016 AQMP Initial Study, included in

¹¹ Mitigation measures NS-1, NS-2, NS-5, and NS-8 are not required due to the locations of the proposed improvements in Honor Rancho and their considerable distances from off-site sensitive receptors. Mitigation measure NS-4 is not applicable because the HRCM Project would not impact rail and transit systems. Mitigation measure NS-6 is not applicable because the HRCM Project is not anticipated to exceed limits established in the noise element of the General Plan or noise ordinance. Mitigation measures NS-14 through NS-17 are not applicable because the HRCM Project does not require pile driving.

Appendix A to the Final Program EIR for the 2016 AQMP, concluded that implementation of the 2016 AQMP would not interfere with facilities' abilities to comply with federal, state, or local statutes and regulations related to solid and hazardous waste handling or disposal, and no impact would occur (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded impacts related to solid and hazardous waste would not occur or would be less than significant. Table 4-22 of the Final SEA for Rule 1110.2 and Rule 1100 explained that the significant solid waste impact identified in the Final Program EIR for the 2016 AQMP would not be applicable because vehicle scrapping is not applicable to stationary engines and the corresponding NOx emission controls (South Coast AQMD 2019).

The SoCalGas Component scope of the HRCM Project fell within the scenario analyzed in the Final SEA for Rule 1110.2 and Rule 1000; the SCE Component scope did not. As a result, a determination of whether or not the SCE Component would involve new or more significant impacts related to solid and hazardous waste than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100 is addressed herein

7.2.7.2 SCE Component

Construction

Project construction activities would result in a minimal amount of solid waste because the SCE Component does not involve demolition of large buildings or structures. Construction of the SCE Component would result in a negligible amount of solid waste because the only demolition required is the replacement of the H-frame structures and minor trenching associated with the telecommunication line connection. The City's Municipal Code, Section 15.46.300, requires completion and submittal of a construction and demolition materials management plan to the City prior to issuance of building permits for the site.. Additionally, per California's 2022 Green Building Standards Code (CALGreen), 65 percent of construction and demolition waste must be diverted from landfills. As such, at least 65 percent of all construction and demolition debris from the site would be diverted. In compliance with the California Solid Waste Reuse and Recycling Act, any application submitted for a building permit must include adequate, accessible areas for the collection and loading of recyclable materials. Any hazardous wastes that are generated during construction activities, such as used motor oil, empty paint cans, or empty solvent containers, would be managed and disposed of in compliance with all applicable federal, state, and local laws. The remaining 35 percent of construction and demolition material that is not required to be recycled would either be disposed of or voluntarily recycled at a solid waste facility with available capacity.

Construction waste is anticipated to be disposed of at the Sunshine Canyon Landfill, which is approximately 13 miles southeast of Honor Rancho. The Sunshine Canyon Landfill has a remaining capacity of 77,900,000 CY (38,950,000 tons), an estimated cease operation date of 2038, and a maximum permitted disposal rate of 12,100 tons per day (CalRecycle 2024). There are other facilities that process, recycle, and transfer inert waste and other construction and demolition waste in the County that could be used for construction waste recycling or disposal if needed, including several in Sun Valley; these facilities include AMH Recycling, Vulcan Materials, RAMCO, and Security Paving Company (LACDPW 2024). SCE Component construction debris requiring disposal would be sufficiently accommodated by the existing Sunshine Canyon Landfill. As a result, the SCE Component construction would not generate solid waste in excess of state or local standards or in excess of the capacity of local infrastructure, nor would they otherwise impair the attainment of solid waste reduction goals (e.g., County and CALGreen standards). Impacts would be less than significant.

Additionally, the City and County are required to comply with the solid waste reduction and diversion requirements set forth in AB 75, Countywide Integrated Waste Management Plan; AB 939 and AB 341, California Integrated Waste Management Act; AB 1327, California Solid Waste Reuse and Recycling Access Act; AB 1374, Construction and Demolition Waste Reduction; and AB 1826, Mandatory Commercial Organics Recycling. Project solid waste disposal would also be completed in compliance with CALGreen, which sets forth recycling requirements for construction and demolition projects. As discussed above, the Sunshine Canyon Landfill has existing capacity to accept waste generated by the SCE Component. As such, the SCE Component would comply with federal, state, and local management and reduction statutes and regulations related to solid waste. Impacts under the proposed SCE Component would be less than significant.

Operations

Once operational, the SCE Component would cause no substantive long-term changes to landfill disposal needs and solid waste would continue to be sufficiently accommodated by the existing landfill. As a result, SCE Component operations would not generate solid waste in excess of state or local standards or capacity of local infrastructure, nor would operations otherwise impair the attainment of solid waste reduction goals.

7.2.7.3 Cumulative Solid/Hazardous Waste Impacts

Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

Section 5.17 of the Final Program EIR for the 2016 AQMP concluded that the impacts from waste generated from construction of 2016 AQMP control measures and from vehicle scrapping programs could result in significant impacts. Further, the Final Program EIR for the 2016 AQMP concluded that control measures would result in significant adverse solid and hazardous waste impacts when combined with past, present, and reasonably foreseeable activities, thereby resulting in a significant cumulative impact.

The Final SEA for Rule 1110.2 and Rule 1100 concluded that potential solid and hazardous waste impacts would be less than significant; therefore, cumulative solid and hazardous waste impacts were not analyzed in the Final SEA for Rule 1110.2 and Rule 1100.

HRCM Project

As detailed above, the SCE Component would not change the potential impact findings related to solid and hazardous waste as evaluated in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. Construction of the SCE Component would result in a negligible amount of solid waste because the only demolition required is the replacement of the H-frame structures and minor trenching associated with the telecommunication line connection. Although the SoCalGas Component's short-term construction would incrementally contribute solid waste to local landfills, the construction waste recycling and disposal would be conducted in accordance with all applicable regulations and waste would be disposed of at facilities with adequate capacity. The long-term operation of the SCE Component would not increase employment or other solid waste generating activities and would thus have no potential to contribute to a cumulatively considerable solid waste impact. As such, the proposed SCE component of the HRCM Project would not result in any new significant cumulative impacts, consistent with the analysis in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100 that analyzed the SoCalGas Component's scope of the HRCM. Additionally, the SCE Component would not

substantially increase the severity of the significant cumulative impacts identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

7.2.7.4 Solid/Hazardous Waste Conclusion

As demonstrated by the analysis above, the SCE Component would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts concerning solid/hazardous waste, nor would it require new or modified mitigation measures or alternatives to be studied that were not previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

7.2.8 Transportation and Traffic

The Final Program EIR for the 2016 AQMP determined that implementing the control measures in the 2016 AQMP could result in significant adverse transportation impacts. The Final SEA for Rule 1110.2 and Rule 1100 determined transportation impacts to be less than significant.

A project's impacts on transportation and traffic would be considered significant if any of the following significance criteria occur:

- Peak period levels on major arterials are disrupted to a point where level of service (LOS) is reduced to D, E, or F for more than one month.
- An intersection's volume to capacity ratio increase by 0.02 (two percent) or more when the LOS is already D, E or F.
- A major roadway is closed to all through traffic, and no alternate route is available.
- There is an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system.
- The demand for parking facilities is substantially increased.
- Water borne, rail car or air traffic is substantially altered.
- The need for more than 350 employees.
- An increase in heavy-duty transport truck traffic to and/or from the facility by more than 350 truck round trips per day.
- Increase customer traffic by more than 700 visits per day.

7.2.8.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of the 2016 AQMP would result in significant and unavoidable impacts related to transportation and traffic during construction and during operation on roadways with catenary lines and at the harbors (even after implementation of mitigation measure TR-1 [refer to Appendix C-1 of this document for all mitigation measures from the MMRP for the Final Program EIR for the 2016 AQMP]) (South Coast AQMD 2017b).

Several transportation impacts were not discussed in detail in the Final Program EIR for the 2016 AQMP because they were found to have no impact in the 2016 AQMP Initial Study. These include impacts related

to a program, plan, ordinance, or policy addressing the circulation system; hazards due to a geometric design feature or incompatible uses; and inadequate emergency access.

The Final Program EIR for the 2016 AQMP did not discuss impacts regarding CEQA Guidelines Section 15064.3(b) because the applicable metric at that time for determining impacts was LOS and not vehicle miles traveled (VMT). The Final Program EIR for the 2016 AQMP found that impacts related to LOS were determined to be significant and unavoidable, even with implementation of mitigation measure TR-1 (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that no significant impacts or less than significant impacts would occur related to transportation and traffic. Table 4-22 of the Final SEA for Rule 1110.2 and Rule 1100 explained that significant impacts found in the Final Program EIR for the 2016 AQMP related to catenary lines and the associated transportation and traffic impacts on roadways and at the harbors would not be applicable to stationary engines and the corresponding NOx emission controls, and impacts related to transportation and traffic would not occur or would be less than significant (South Coast AQMD 2019).

The SoCalGas Component scope of the HRCM Project fell within the scenario analyzed in the Final SEA for Rule 1110.2 and Rule 1000; the SCE Component scope did not. As a result, a determination of whether or not the SCE Component would involve new or more significant impacts related to transportation and traffic than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100 is addressed herein.

7.2.8.2 SCE Component

Regarding the significance criteria listed above, automobile delay and traffic congestion are no longer considered to be impacts on the environment for the purposes of a traffic and circulation analysis under CEQA (see California Public Resources Code Section 21099[b][2]). Instead, CEQA now measures potential impacts on the environment in the category of traffic and circulation using the VMT metric.¹² Although LOS no longer constitutes a significant environmental effect under CEQA, Los Angeles County and the City of Santa Clarita have vehicle LOS policies to ensure that proposed developments are consistent with their respective Circulation Elements.

However, when preparing an addendum to a previously certified CEQA document, as is the case here, the significance criteria applied in the addendum should remain the same as what was relied upon for the original analysis.¹³ Therefore, this Addendum presents the impacts of the LOS analysis of the proposed SCE Component of the HRCM Project.

Construction

Honor Rancho would continue to be accessed via Brady Parkway during construction activities. Construction of the SCE Component would temporarily increase the daily trips to Honor Rancho in comparison to existing conditions due to construction-related hauling, vendor, and working trips. The proposed average daily workforce of approximately 33 workers for the SCE Component during construction would not exceed the significance criteria of 350 employees. The number of workers and the number and type of trucks that would be used on the peak day for each phase were provided by SoCalGas and are presented in Appendix B.

¹² *Id.*; California Code of Regulations, title 14, Section 15064.3

¹³ *Ibid.*; see also IBC Business Owners for Sensible Development v. City of Irvine (2023) 88 Cal.App.5th 100, 121-124

Due to the SCE Component's proximity to I-5 and Newhall Ranch Road, additional construction-related trips would not result in congestion or need dedication of traffic lanes. Newhall Ranch Road is designated as a Major Highway in the City of Santa Clarita Circulation Element, with a design capacity of approximately 54,000 vehicles per day (City of Santa Clarita 2011b). Therefore, the SCE Component would not result in an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system.

The SCE Component would not result in an increase in heavy-duty transport truck traffic to and/or from the facility by more than 350 truck round trips per day and, therefore, falls below the significance criteria. Additionally, construction-related traffic would be temporary. No new roads or primary access points are anticipated as a result of the SCE Component, as it is expected that the existing entries/exits and existing roads on site would be sufficient for implementation of the proposed improvements. Further, the SCE Component would be subject to mitigation measure TR-1, which requires scheduling of major truck trips and deliveries to avoid peak traffic hours, and would not result in temporary disruption to major arterials during peak periods and would not result in impacts to any intersection's volume to capacity ratio by 2 percent or more.

In compliance with the City Public Works Department, Traffic and Transportation Planning Division's requirements for traffic control on City roadways, including requirements set forth under Chapter 12.92 of the City's Municipal Code related to road closures, and as required per mitigation measure TR-1 from the Final Program EIR for the 2016 AQMP, as provided in Section 7.2.8.4, a construction management plan would be prepared to address any potential disruptions related to lane closures associated with trenching required to connect the telecommunications lines to the existing lines on Kelly Johnson Parkway and would ensure that no major roadway would be closed to through traffic.

With implementation of SCE's construction management plan, the potential impact to the local circulation would be minimized and there would be no changes that would affect the safety and accessibility of the transportation system. Emergency response providers near Honor Rancho would also be notified in advance of construction locations, lane closure schedules (if required), and potential alternate routes. The selected contractor would work with local police and traffic engineers to plan appropriate access alternatives for temporary lane closures and traffic disruptions, if required.

Implementation of the SCE Component would not interfere with the City's Local Hazard Mitigation Plan (City of Santa Clarita 2021). The SCE Component would require the use of oversized loads for equipment deliveries to project areas during construction. A Caltrans oversized load permit would be obtained, if necessary. Emergency response providers near Honor Rancho would be notified in advance of construction locations, road closure schedules (if required), and potential alternate routes. The selected contractor would work with local police and traffic engineers to plan appropriate access alternatives for temporary lane closures and traffic disruptions, if required. The internal roadway improvements would improve internal circulation and access to throughout the Main Campus. The same access for emergency response personnel would continue to be used. Compliance with the City's Local Hazard Mitigation Plan, as well as compliance with applicable mitigation measure TR-1 from the Final Program EIR for the 2016 AQMP, would ensure that the SCE Component would not result in inadequate emergency access, and impacts would be less than significant with mitigation.

Construction parking would be accommodated within Honor Rancho at the Main Campus and may also occur at the off-site staging area at Pardee Substation. These locations would provide adequate parking facilities for all worker and vendor parking needs and equipment staging activities.

Operations

The number of permanent employees at Honor Rancho would not change with implementation of the SCE Component; therefore, there would be no long-term impact related to parking demands, increased traffic at peak periods on major arterials, or intersection volume to capacity ratios. Ingress and egress to and from Honor Rancho would not change. The proposed internal roadway improvements would reduce sharp turns for operational vehicle circulation. Therefore, no sharp curves, dangerous intersections, or incompatible uses would be introduced by the SCE Component.

The SCE Component would be served by existing roadway, transit, and pedestrian facilities and would not require any off-site alterations to the public transportation infrastructure or circulation system, including transit, roadway, bicycle, and pedestrian facilities. The SCE substation and upgrades would not generate new operational vehicle trips beyond occasional maintenance, similar to what is required for existing facilities in the current conditions.

The SCE Component operations would have no impact related to waterborne, rail car, or air traffic. Furthermore, the SCE Component would not increase customer traffic to Honor Rancho. With the exception of occasional maintenance trips associated with the SCE substation and upgrades, there would be no new operational or customer trips to Honor Rancho and the SCE Component would not conflict with the threshold of increased customer traffic of more than 700 visits per day.

7.2.8.3 Cumulative Transportation Impacts

Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

Section 5.18 of the Final Program EIR for the 2016 AQMP concluded that construction activities, including potential lane closures, would be significant. As such, the 2016 AQMP control measures would result in significant adverse transportation and traffic impacts and when combined with past, present, and reasonably foreseeable activities, and would be cumulatively considerable.

The Final SEA for Rule 1110.2 and Rule 1100 concluded that potential project-level transportation impacts would be less than significant; therefore, cumulative transportation impacts were not analyzed in the Final SEA for Rule 1110.2 and Rule 1100.

SCE Component

As detailed above, the SCE Component would not change the potential impact findings related to transportation and traffic as evaluated in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would result in less than significant impacts to short-term construction-related traffic with implementation of mitigation measure TR-1 from the Final Program EIR for the 2016 AQMP. Construction truck traffic would avoid the peak hour and would not result in substantial contributions to the circulation system, including Newhall Ranch Road, which has a design capacity of approximately 54,000 vehicles per day (City of Santa Clarita 2011b). The SCE Component would not require a land use or zone change and would thus be consistent with population and employment assumptions included in local and regional planning documents. Further, operation of the SCE Component would not generate new employees or otherwise increase worker-related vehicle trips associated with long-term operations, with the exception of occasional maintenance associated with the SCE substation and upgrades. As such, the proposed SCE Component of the HRMC Project would not result in any new significant cumulative impacts, consistent with the analysis in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100 that analyzed the SoCalGas Component's scope of the

HRCM. Additionally, the SCE Component would not substantially increase the severity of the significant cumulative impacts identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

7.2.8.4 Mitigation Measures

As described in Section 7.2.8.1 in the summary of the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100, the Final Program EIR for the 2016 AQMP found that impacts related to LOS were determined to be significant and unavoidable with implementation of mitigation measure TR-1 to the extent applicable (South Coast AQMD 2017b; refer to Appendix C-2 for applicable mitigation measures from the MMRP for the Final Program EIR for the 2016 AQMP). Certain mitigation measures related to transportation from the MMRP from the Final Program EIR for the 2016 AQMP have been identified as applicable to the HRCM Project. SCE will implement those mitigation measures applicable to the SCE Component of the HRCM Project. The mitigation measures related to transportation applicable to the HRCM Project include:

- TR-1: The project applicant, project sponsor, or public agency shall develop a construction management plan that includes at least the following items and requirements, if determined to be feasible by the Lead Agency:
 - A set of comprehensive traffic control measures, including scheduling of major truck trips and deliveries to avoid peak traffic hours, detour signs if required, lane closure procedures, signs, cones for drivers, and designated construction access routes;
 - Notification procedures for adjacent property owners and public safety personnel regarding when major deliveries, detours, and lane closures will occur;
 - Location of construction staging areas for materials, equipment, and vehicles at an approved location;
 - A process for responding to and tracking complaints pertaining to construction activity, including identification of an onsite complaint manager. The manager shall determine the cause of the complaints and shall take prompt action to correct the problem. The Lead Agency shall be informed who the Manager is prior to the issuance of the first permit;
 - Provision for accommodation of pedestrian flow;
 - As necessary, provision for parking management and spaces for all construction workers to ensure that construction workers do not park in street spaces;
 - Any damage to the street caused by heavy equipment, or as a result of this construction, shall be repaired, at the project sponsor's expense, within one week of the occurrence of the damage (or excessive wear), unless further damage/excessive wear may continue; in such case, repair shall occur prior to issuance of a final inspection of the building permit. All damage that is a threat to public health or safety shall be repaired immediately. The street shall be restored to its condition prior to the new construction as established by the Lead Agency (or other appropriate government agency) and/or photo documentation, at the sponsor's expense, before the issuance of a Certificate of Occupancy;
 - Any heavy equipment brought to the construction site shall be transported by truck, where feasible;
 - No materials or equipment shall be stored on the traveled roadway at any time;

- Prior to construction, a portable toilet facility and a debris box shall be installed on the site, and properly maintained through project completion;
- All equipment shall be equipped with mufflers;
- Prior to the end of each workday during construction, the contractor or contractors shall pick up and properly dispose of all litter resulting from or related to the project, whether located on the property, within the public rights-of-way, or properties of adjacent or nearby neighbors; and
- Promote “least polluting” ways to connect people and goods to their destinations.

7.2.8.5 Transportation and Traffic Conclusion

As demonstrated by the analysis above, the SCE Component would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to transportation and traffic, nor would it require new or modified mitigation measures or alternatives to be studied that were not previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

8.0 POTENTIAL ENVIRONMENTAL IMPACTS IN THE FINAL PROGRAM EIR FOR THE 2016 AQMP/2016 AQMP INITIAL STUDY AND FINAL SEA FOR RULE 1110.2 AND RULE 1100 FOUND NOT TO BE SIGNIFICANT

This section discusses the remaining nine environmental topic areas that were found to have less than significant impacts within the Final Program EIR for the 2016 AQMP as well as the Final SEA For Rule 1110.2 and Rule 1100. The effect of the SCE Component on the conclusions relating to each of these environmental topic areas is discussed in the following sections.

At the time the NOP/Initial Study for the 2016 AQMP was circulated for public review and comment, and following the certification of the Final Program EIR for the 2016 AQMP, the environmental checklist did not include TCRs or wildfires as specific environmental topics. However, the CEQA Guidelines have since been updated to include these specific topics. TCRs are discussed in Section 8.1.3, Cultural Resources, and wildfire is discussed in Section 8.2.1, Wildfire.

8.1 Analysis of Impacts for Environmental Topics Included in the Final Program EIR for the 2016 AQMP/2016 AQMP Initial Study and Final SEA For Rule 1110.2 and Rule 1100

8.1.1 Agriculture and Forestry Resources

8.1.1.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of the control measures in the 2016 AQMP would result in less than significant impacts to agricultural and forestry resources. It found that implementation of the 2016 AQMP would not generate new construction of buildings or other structures that would require the conversion of farmland to non-agricultural use, conflict with zoning for agricultural uses or with a Williamson Act contract, conflict with any forest land zoning codes, or convert forest land to non-forest uses. The Final Program EIR for the 2016 AQMP determined that the 2016 AQMP would provide benefits to agricultural and forest land resources through the improvement of air quality in the region (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to agricultural resources (South Coast AQMD 2019).

8.1.1.2 SCE Component

According to the California Department of Conservation's (DOC) California Important Farmland Finder, Honor Rancho is classified as grazing land and urban and built-up land, and off-site areas are classified as urban and built-up land. Therefore, the SCE Component would not convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance to non-agricultural use, per the Farmland Mapping and Monitoring Program map (DOC 2018). There are no active farmlands within the areas where activities would occur for the SCE Component, including adjacent to operations of Honor Rancho or where off-site improvements would occur, and no impacts to agricultural or farming activities would occur.

Although the portion of Honor Rancho within the unincorporated area of the County is designated and zoned Heavy Agriculture (A-2-5), all proposed improvements for the SCE Component would be similar in nature to those existing on site and the SCE Component does not propose new facilities within the County's jurisdiction. No Williamson Act contract land exists within the areas where activities would occur for the SCE Component, including adjacent to operations of Honor Rancho or where off-site improvements would occur. The proposed SCE Component would not result in impacts to agricultural

zoning or a Williamson Act contract beyond what was originally evaluated in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. Therefore, no impacts relative to agricultural zoning or a Williamson Act contract would occur.

There is no forest land, timberland, or areas zoned for Timberland Production within the areas where activities would occur for the SCE Component, including adjacent to operations of Honor Rancho or where off-site improvements would occur. The SCE Component would not result in impacts to forest land or timberland.

Areas where activities would occur for the SCE Component are not used as farmland nor forest land. Parts of the SCE Component at the Honor Rancho site are already developed, and offsite parts of the SCE Component will be located in existing rights of way and at existing SCE facilities. Therefore, the SCE Component would result in no impacts related to the conversion of farmland or forest land.

8.1.1.3 Agriculture and Forestry Resources Conclusion

As demonstrated through the analysis above, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to agriculture and forestry resources, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and 1100.

8.1.2 Biological Resources

8.1.2.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of the control measures in the 2016 AQMP would result in less than significant impacts to biological resources. It found that implementation of the 2016 AQMP would generally occur in areas zoned as commercial or industrial, which typically do not support candidate, sensitive, or special-status species; would not adversely affect any riparian habitat; would not adversely affect protected wetlands; would not interfere with the movement of any native resident or migratory fish or wildlife species; would not affect land use plans, local policies or ordinances, or regulations protecting biological resources; and would not affect habitat conservation or natural community conservation plans (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to biological resources (South Coast AQMD 2019).

8.1.2.2 SCE Component

Literature review and records searches were conducted by Caskey Biological to determine which special-status biological resources may potentially occur on or within the vicinity of Honor Rancho (Appendix F-1). An initial field reconnaissance survey by Caskey Biological was completed on February 24, 2021, which included the onsite areas of construction and disturbance for the HRCM Project and a 500-foot buffer (Study Area) as outlined in the April 2024 Biological Resources Assessment report prepared for

the HRCM Project (Appendix F-1).¹⁴ The Study Area was subject to field surveys consisting of a 500-foot distance from the construction/disturbance areas and staging areas identified on Figure 2, Study Area Map of the Biological Resources Assessment (Appendix F-1). Subsequent surveys by Caskey Biological were conducted in spring 2022, 2023, and 2024 to cover additional areas as the project design was revised. Pedestrian survey areas included all areas where disturbance may occur (Appendix F-1). The potential for the presence of sensitive biological resources, including sensitive plant and animal species, sensitive plant communities, and habitat for nesting birds protected by federal and state laws, was evaluated. Focused/protocol surveys were then conducted based on the literature review, records searches, and reconnaissance surveys.

Sensitive, Special-Status, Resident, and Migratory Species

Based on the literature review and existing conditions documented in the reconnaissance surveys (Appendix F-1), coastal California gnatcatcher (*Polioptila californica californica*), western spadefoot (*Spea hammondii*), Crotch's bumble bee (*Bombus crotchii*), and San Fernando Valley spineflower (*Chorizanthe parryi* var. *fernandina*) were determined to have potential to occur within the Study Area. Additionally, an incidental transient least Bell's vireo (*Vireo bellii pusillus*) was observed in the Study Area. Protocol/focused surveys were conducted to determine the presence or absence of each species in the Study Area, with the exception of Crotch's bumblebee. Crotch's bumblebee surveys would be conducted prior to project construction to ensure full avoidance of the species.

California Gnatcatcher Protocol Surveys

As discussed in the April 2024 Biological Resources Assessment, the coastal California gnatcatcher, a federally listed threatened species and a California Department of Fish and Wildlife (CDFW) Species of Special Concern, has been observed in the Study Area for the HRCM Project (Appendix F-1). As such, an assessment of habitat suitability for coastal California gnatcatcher was performed for the entire Study Area. The results of the habitat assessment, which are included with this document as Appendix F-1, were further assessed and confirmed during the first focused survey.

Coastal California gnatcatcher was not detected during the habitat assessment or protocol surveys. Based on the negative survey results of the protocol survey, coastal California gnatcatcher is considered absent from the Study Area. The 2017 Rye Fire came through Honor Rancho, and all areas of the property with native vegetation were impacted. It is uncertain whether coastal California gnatcatcher was present prior to the 2017 Rye Fire. However, as described in the gnatcatcher report (Appendix F-1), potential coastal California gnatcatcher habitat appeared more abundant, connected, and of higher quality prior to the fire. Therefore, as the habitat recovers over time within and near the Study Area, it is likely to support higher-quality habitat for coastal California gnatcatcher (Appendix F-1).

¹⁴ The Biological Resources Assessment (Appendix F-1), 2022 Jurisdictional Delineation (Appendix F-2), and 2023 Jurisdictional Delineation (Appendix F-3) evaluated potential biological resources associated with activities for the HRCM Project, which comprises both the SoCalGas Component and SCE Component. A summary of those potential biological resources for both components of the HRCM project is provided in this section for informational purposes. This section focuses on whether the SCE Component would involve new or more significant impacts related to biological resources than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100. While references in this section to resources within or near construction areas refer to construction areas for both the SoCalGas Component and SCE Component, disturbance for the SCE Component will be smaller than the total disturbance for the HRCM Project. The conclusions of significance are focused on potential impacts of the SCE Component only.

Least Bell's Vireo Protocol Surveys

During the 2022 coastal California gnatcatcher protocol surveys, a single least Bell's vireo was detected in a 0.30-acre patch of mulefat (*Baccharis salicifolia*) in the southern portion of the Study Area (Appendix F-1). As a result, protocol surveys for least Bell's vireo were conducted from April 20 to July 21, 2022, and again from April 14 to July 26, 2023, that focused on the 0.30 acres of mulefat because no other suitable habitat is present on site (Appendix F-1). No least Bell's vireo were detected in the 2022 and 2023 surveys; as such, least Bell's vireo is considered absent from the Study Area (Appendix F-1).

Western Spadefoot

Dudek biologists conducted a western spadefoot survey for the Study Area that consisted of an initial habitat assessment, nocturnal surveys, potential diurnal breeding site inspections, and standard diurnal and nocturnal amphibian visual encounter surveys. The full methodology can be found in Appendix F-1.

No western spadefoot were observed within the Study Area during the surveys and are therefore considered to be absent. Suitable upland habitat was observed throughout the Study Area, with several suitable breeding pools mapped in the southern and northern portions of the Study Area. Suitable breeding habitat within the Study Area ranged from small, ponded sections in drainages to larger stormwater basins. Other species of amphibians were active during the surveys, with California toads (*Anaxyrus boreas halophilus*) and Baja California treefrogs (*Pseudacris hypochondriaca hypochondriaca*) being the most common species. The full results are provided in Appendix F-1.

Crotch's Bumble Bee

Dudek biologists conducted a habitat assessment for Crotch's bumble bee on April 4, 2024, and determined that the Study Area contains suitable nesting and foraging habitat. To avoid impacts to Crotch's bumble bee at the commencement of SCE Component-related construction activities, PDF-3 (Pre-Construction Clearance Survey and Monitoring) would be implemented consistent with guidance provided in the CDFW's Survey Considerations for California Endangered Species Act Candidate Bumble Bee Species (CDFW 2023a). If presence of Crotch's bumble bee is observed at the time of construction, avoidance measures would be implemented to ensure avoidance of impacts to Crotch's bumble bee.

San Fernando Valley Spineflower

Focused surveys were undertaken for San Fernando Valley spineflower because there are records of occurrences 1.5 miles west of the Study Area in areas of similar rolling hill topography and soils (Castaic–Balcom silty clay loams, 30 percent to 50 percent slopes, eroded, soil map unit) to those found in the Study Area. The full methodology is provided in Appendix F-1.

Coastal scrub and grassland plant communities reported to be associated with San Fernando Valley spineflower were observed within the Study Area. Other characteristics suitable for San Fernando Valley spineflower observed on site were rock outcrops present at coastal sage scrub/grassland interfaces supporting shallow soils and bare ground with few neighboring plants. Unsuitable habitats observed on site during surveys were chaparral and dense grasslands. No observation of San Fernando Valley spineflower was made during surveys. The full results are provided in Appendix F-1.

Non-Listed Special-Status Species

As documented in Appendix F-1, five birds listed on CDFW's Special Animals List were detected over the course of the surveys of the Study Area. These include Southern California rufous-crowned sparrow

(*Aimophila ruficeps canescens*; Watch List), Cooper's hawk (*Accipiter cooperii*; Watch List—nesting), yellow warbler (*Setophaga petechia*; Species of Special Concern—nesting), Lawrence's goldfinch (*Spinus lawrencei*; no formal designation—nesting), and Costa's hummingbird (*Calypte costae*; no formal designation—nesting).

Southern California rufous-crowned sparrow was common throughout the Study Area, including in ruderal habitats adjacent to low habitat quality sage scrub. Lawrence's goldfinch and Costa's hummingbird were uncommon but detected on nearly all of the surveys. Cooper's hawk was also uncommon and was not observed nesting in the Study Area. Yellow warbler was observed only transiently during migration and is not expected to nest in the Study Area (Appendix F-1).

The SCE Component would comply with the Migratory Bird Treaty Act and California Fish and Game Code, which protects bird nests by having biologists conduct nesting bird surveys and establishing appropriate no-work buffers around active nests. In accordance with PDF-3 (Pre-Construction Clearance Survey and Monitoring), biological surveys would be conducted prior to construction to ensure avoidance. Professional biologist(s) would monitor activities in areas of, or close to, biological sensitivity, if determined necessary after completion of pre-construction surveys. If occupied nests are identified through pre-construction surveys, appropriate avoidance and minimization measures established by a qualified biologist would be implemented. These avoidance and minimization measures are expected to avoid impacts to nesting birds, including Southern California rufous-crowned sparrow, Cooper's hawk, yellow warbler, Lawrence's goldfinch, and Costa's hummingbird.

The SCE Component's improvements are consistent with projects contemplated in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. Compliance with regulatory requirements and incorporation of proposed HRCM PDF-3 (Pre-Construction Clearance Survey and Monitoring) would ensure that the SCE Component would not result in a substantial adverse effect on any species identified as a candidate, sensitive, or special-status species, and impacts would be less than significant.

Resident or Migratory Wildlife Species

Honor Rancho and the off-site areas where activities for the SCE Component would occur are not located within any designated wildlife corridors or habitat linkages, so impacts on wildlife corridors and habitat connectivity would not occur as a result of the SCE Component. Nesting birds are protected under the California Fish and Game Code and Migratory Bird Treaty Act. The ruderal/coastal sage scrub habitat observed within the Study Area could be used by numerous species of nesting birds protected under the California Fish and Game Code. Additionally, there are numerous structures within the Main Campus and adjacent areas that could provide nesting opportunities. Biological surveys were conducted during the nesting bird season (February 15–August 31) and suitable nesting habitat was observed to be present within the Study Area.

PDF-2 (Workers Environmental Awareness Program) and PDF-3 (Pre-Construction Clearance Survey and Monitoring), outlined in Table 5-1, have been built into the SCE Component to ensure that impacts to wildlife movement would remain below a level of significance. These PDFs include features such as a Workers Environmental Awareness Program, pre-construction clearance surveys, biological monitoring, and nest buffers. Compliance with regulatory requirements and incorporation of PDF-2 and PDF-3 would ensure that the SCE Component would not interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites, and impacts would be less than significant.

Sensitive Natural Communities

None of the vegetation communities identified by Caskey Biological in the Study Area are considered sensitive vegetation communities according to CDFW's California Natural Community List (CDFW 2023b). Ephemeral streams in the Study Area do not support riparian vegetation (Appendix F-1, Appendix F-2, and Appendix F-3). As such, no impacts to riparian habitat or other sensitive natural communities would occur because of the SCE Component.

A jurisdictional waters delineation was conducted by Caskey Biological Consulting in February 2021 and was documented in the *Delineation of Potentially Jurisdictional Waterbodies* report prepared in March 2021 and revised July 2022 (Appendix F-2). An additional jurisdictional waters delineation was conducted and documented in November 2023 (Appendix F-3). The extent of potential streambeds, streambanks, and riparian habitat subject to CDFW jurisdiction under Section 1600 et seq. of the California Fish and Game Code was delineated by reviewing the topography and morphology of potentially jurisdictional features to determine the outer limit of riparian vegetation, where present, or the tops of banks for stream features. Potentially jurisdictional features were identified within the Study Area (Appendix F-2 and Appendix F-3). Based on the ephemeral nature of the delineated features, no wetland features were observed. The SCE Component would avoid all jurisdictional waters, and no resource agency permits would be required. No impacts would occur.

Conflicts with Plans, Policies, or Ordinances Protecting Biological Resources

The Study Area supports oaks (*Quercus* spp.) within both the City and County jurisdictions. Both jurisdictions have ordinances that protect oak trees that provide permitting mechanisms for the removal of oak trees and include planting replacement oaks. However, the SCE Component would not result in the removal or encroachment of any oak trees on Honor Rancho or on off-site staging or trenching areas where activities for the SCE component would occur. No other local policies or ordinances protecting biological resources would apply to the SCE Component.

The SCE Component does not fall within the area of an adopted habitat conservation plan, natural community conservation plan, or other habitat conservation plan. Implementation of the proposed SCE Component would not conflict with any conservation plans that were in effect at the time of the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. Therefore, no changes in circumstances and no new information of substantial importance relative to habitat conservation plans or natural community conservation plans have been identified. No impacts would occur.

8.1.2.3 Biological Resources Conclusion

As demonstrated through the analysis above, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to biological resources, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and 1100.

8.1.3 Cultural Resources

8.1.3.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that it is unlikely that implementation of the control measures in the 2016 AQMP would uncover cultural resources as existing facilities are located in previously disturbed areas, and impacts were found not to be significant. The Final Program EIR for the 2016 AQMP determined that although the likelihood of encountering cultural or archaeological resources is low, there is still a potential that additional buried archaeological resources may exist. However, impacts to such unexpected subsurface resources would not result with use of standard construction practices and measures listed in California Public Resources Code Section 21083.2 and CEQA Guidelines Section 15064.5, and impacts were determined to be less than significant (South Coast AQMD 2017b).

The 2016 AQMP Final Program EIR did not address impacts related to human remains or TCRs in detail. This criterion was discussed in the 2016 AQMP Initial Study, included in Appendix A to the Final Program EIR for the 2016 AQMP, which concluded that implementation of the 2016 AQMP would not disturb human remains interred outside formal cemeteries, and no impact would occur (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to cultural resources and TCRs (South Coast AQMD 2019).

8.1.3.2 SCE Component

Historical and Archaeological Resources

A *Cultural Resources Inventory and Evaluation Report for Honor Rancho Compressor Modernization Project* was prepared by Dudek in August 2022 (see Appendix G-1).¹⁵ As part of the inventory process, a records search was conducted at the South-Central Coastal Information Center and revealed that no historical resources intersect the areas where activities for the SoCalGas Component and SCE Component would occur. One previously recorded built environment resource, SCE's Big Creek East & West Transmission Line (P-19-186861), is adjacent to the areas where activities for the SoCalGas Component and SCE Component would occur, however. However, the SCE Component would not impact that resource. Honor Rancho was evaluated and recommended not eligible for any National Register of Historic Places, California Register of Historical Resources (CRHR), or City of Santa Clarita designation criteria and is not a historic resource for the purposes of CEQA. The areas where activities for the SoCalGas Component and SCE Component will occur have been previously disturbed and subject to various developments since at least 1959 for residential, industrial, and agricultural use; therefore, the

¹⁵ The *Cultural Resources Inventory and Evaluation Report for Honor Rancho Compressor Modernization Project* (Appendix G-1), *Archaeological Addendum to the Cultural Resources Inventory and Evaluation Report for Honor Rancho Compressor Modernization Project* (Appendix G-1), and *Historical Resources Impact Analysis for the SoCalGas Retention Substation Project* (Appendix G-2) evaluated potential cultural, archaeological, and historical resources associated with activities for the HRCM Project, which comprises both the SoCalGas Component and SCE Component. A summary of those potential cultural resources for both components of the HRCM project is provided in this section for informational purposes. This section focuses on whether the SCE Component would involve new or more significant impacts related to cultural resources than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100. While references in this section to resources within or near construction areas refer to construction areas for both the SoCalGas Component and SCE Component, disturbance for the SCE Component will be smaller than the total disturbance for the HRCM Project. The conclusions of significance are focused on potential impacts of the SCE Component only.

potential for unrecorded historical resources to exist within the areas where activities for the SCE Component would occur is low (Appendix G-1).

An Archaeological Addendum to the Cultural Resources Inventory and Evaluation Report for Honor Rancho Compressor Modernization Project was prepared by Dudek in April 2024 (Appendix G-1) to address the proposed Retention Substation, temporary staging areas, construction work areas, and distribution alignments for the SCE Component, and no historical resources were identified. A Historical Resources Impact Analysis for the SoCalGas Retention Substation Project was prepared by South Environmental in April 2024 (Appendix G-2) and evaluated the proposed modifications to the Saugus Substation, which is eligible for the National Register of Historic Places, CRHR, and City of Santa Clarita designation criteria and is a historical resource under CEQA Guidelines. As described in Appendix G-2, none of the character-defining features of the Saugus Substation would be impacted by the SCE Component. The SCE Component proposes changes to the 66 kV switchrack, which was not identified as historically significant and is located a substantial distance from the historically significant control house building. Therefore, the SCE Component has no potential to adversely impact the control house building because there are no proposed changes to this building and it is well outside the area where work will take place. Further, none of the other character-defining features of the Saugus Substation would be impacted by the SCE Component, because its location, function, and relationship to Big Creek 220 kV system would remain as they are. This portion of the SCE Component would not result in adverse impacts to the significance of a historical resource pursuant to Section 15604.5 and no mitigation is required.

The Cultural Resources Inventory and Evaluation Report for Honor Rancho Compressor Modernization Project (see Appendix G-1) and the Addendum to the Cultural Resources Inventory and Evaluation Report for Honor Rancho Compressor Modernization Project (Appendix G-1) did not identify any archaeological resources within the areas where activities for the SoCalGas Component and SCE Component would occur during the archival and records search review and the pedestrian surveys. The areas where activities for the SoCalGas Component and SCE Component would occur have been previously disturbed and subject to various developments since at least 1959 for residential, industrial, and agricultural use, therefore, the potential for unrecorded archaeological resources to exist within areas where activities for the SCE Component would occur is low (Appendix G-1).

PDF-4 (Inadvertent Discovery of Archaeological Resources), outlined in Table 5-1, requires a qualified archaeologist to evaluate archaeological resources if exposed during construction. Standard construction practices and use of measures listed in California Public Resources Code Section 21083.2 and CEQA Guidelines Section 15064.5, including implementing a cultural resources orientation for construction workers on identifying cultural resources and what steps to take if this occurs (e.g., temporarily halting or redirecting work until the find can be evaluated), and implementation of PDF-4 would ensure that the SCE Component would not result in a substantial adverse change in the significance of a historical resource pursuant to Section 15064.5 or in the significance of an archaeological resource. Impacts would be less than significant.

Human Remains

Based on previous and current site investigations and record searches, there are no formal burial sites within areas where activities for the SCE Component would occur and no human remains have been discovered. In the event that human remains are discovered during ground-disturbing activities, as required by state law in California Public Resources Code Sections 5097.94 and 5097.98, construction activity would cease in any area or nearby area suspected to overlie remains, and the County Coroner would be contacted in compliance with HSC Section 7050.5. Pursuant to California Public Resources

Code Section 5097.98, if the remains are thought to be Native American, the County Coroner would notify the Native American Heritage Commission (NAHC), who would then notify the most likely descendant. Compliance with state law would ensure that impacts would be less than significant.

Tribal Cultural Resources

The SCE Component is not subject to AB 52, which requires consultation with Native American tribes during the CEQA process, because this Addendum does not require a notice of preparation or a notice of availability of a negative declaration or mitigated negative declaration to be filed.

As indicated above, the cultural resource records search and field surveys conducted for the HRCM Project did not identify any archaeological resources within the areas where activities for the SoCalGas Component and SCE Component would occur. These studies determined that no archaeological resources listed in, or eligible for listing in, the CRHR or in a local register of historical resources as defined in California Public Resources Code Section 5020.1(k) would be impacted by the SCE Component.

A search of the NAHC Sacred Lands Files was conducted on April 1, 2021. The result of that search was positive but did not provide details on what the resources are or where they are located (Appendix G-1).

No resources listed in, or eligible for listing in, the CRHR or local registers have been discovered during previous development of the property or during the current cultural resource surveys. Therefore, the potential of encountering TCRs is low. However, based on the positive NAHC Sacred Lands Files records search for the general vicinity, the possibility for TCRs to be discovered during ground-disturbing activities cannot be ruled out. PDF-4 (Inadvertent Discovery of Archaeological Resources), presented in Table 5-1, requires a qualified archaeologist to evaluate archaeological resources if such resources are exposed during construction. This PDF has been built into the SCE Component to ensure that potential impacts to unknown TCRs would be below a level of significance.

Standard construction practices and use of measures listed in California Public Resources Code Section 21083.2 and CEQA Guidelines Section 15064.5, including implementing a cultural resources orientation for construction workers on identifying cultural resources and what steps to take if this occurs (e.g., temporarily halting or redirecting work until the find can be evaluated), and implementation of PDF-4 would ensure that the SCE Component would not cause a substantial adverse change to a resource listed or eligible for listing in the CRHR or in a local register of historical resources as defined in California Public Resources Code Section 5020.1(k).

The South Coast AQMD provides a notice of all proposed projects to all California Native American Tribes that request to be on either the NAHC's notification list or South Coast AQMD's mailing list per California Public Resources Code Section 21080.3.1(b)(1) (South Coast AQMD 2019).

8.1.3.3 Cultural Resources Conclusion

As demonstrated by the analysis above, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to cultural resources, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and 1100.

8.1.4 Geology and Soils

8.1.4.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of the control measures in the 2016 AQMP would result in less than significant impacts to geology and soils. It found that implementation of the 2016 AQMP would not directly or indirectly expose people or structures to earthquake faults, seismic shaking, or seismic-related grounding failure. In addition, soil erosion impacts are not expected because the modifications required by the 2016 AQMP are not expected to require substantial grading or construction activities. The Final Program EIR for the 2016 AQMP determined that geologic hazards that are part of the existing setting would not be made worse through the implementation of the 2016 AQMP. The 2016 AQMP control measures would not promote the construction of residential or other types of land use projects in remote areas that would require septic tanks or other alternative waste disposal systems (South Coast AQMD 2017b).

The Final Program EIR for the 2016 AQMP did not address impacts related to landslides in detail. This criterion was discussed in the 2016 AQMP Initial Study, included in Appendix A to the Final Program EIR for the 2016 AQMP, which determined that proposed 2016 AQMP control measures would not directly or indirectly expose people or structures to landslides, and no impact would occur (South Coast AQMD 2017b).

The Final Program EIR for the 2016 AQMP states that if paleontological resources are uncovered during site preparation and grading, significant adverse impacts are not anticipated because construction activities would occur at previously disturbed industrial or commercial locations and there are existing laws in place that are designed to protect and mitigate potential adverse impacts to cultural and paleontological resources. Paleontological resources were discussed in the Cultural Resources Section of the 2016 AQMP Initial Study, included in Appendix A to the Final Program EIR for the 2016 AQMP, which determined that it is unlikely that implementing 2016 AQMP control measures would destroy unique paleontological resources, and no impact would occur (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to geology and soils. Impacts regarding paleontological resources were covered under the cultural resources section of the Final Program EIR for the 2016 AQMP; as such, the Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to cultural resources and geology and soils (South Coast AQMD 2019).

8.1.4.2 SCE Component

Seismic Hazards

According to the California Geological Survey Earthquake Zones of Required Investigation map, the San Gabriel Fault is located approximately 0.3 miles northeast of the Main Campus at its closest point (CGS 2024). Geotechnical reports prepared for the Compressor Plant No. 2 site in 2021 (Appendix H-1, Geotechnical Report; Appendix H-2, Access Road Geotechnical Report) similarly concluded that the San Gabriel Fault–Palomar Section is the closest major active fault to the Main Campus, located approximately 0.3 miles northeast.¹⁶ A geotechnical report prepared for the Retention Substation site in 2024 indicated

¹⁶ The Geotechnical Report, (Appendix H-1), Access Road Geotechnical Report (Appendix H-2), Access Road Geotechnical Report (Appendix H-3), Slope Stability Report (Appendix H-4), and Paleontological Resources Memorandum (Appendix I)

that pre-Holocene splays of the fault (i.e., potentially active) have been identified approximately 1,000 feet from the site (Appendix H-3, Substation Geotechnical Report). The geotechnical reports stated that due to the lack of active or potentially active faults crossing or projecting toward Honor Rancho, the potential for fault-related surface rupture at the Main Campus is low. Furthermore, Honor Rancho is not located within an Alquist–Priolo Earthquake Fault Zone, as defined by the California Geological Survey (CGS 2024). As such, no impacts would occur.

As described in the geotechnical reports (Appendices H-1, H-2, and H-3), Honor Rancho is situated within a seismically active region and would likely experience moderate to severe ground shaking in response to a large magnitude earthquake occurring on a local or more distant active fault during the expected lifespan of the proposed structures. Due to the proximity of the Main Campus to the nearest active fault zone, about 0.3 miles to the northeast, the Main Campus would potentially be subject to strong seismic ground shaking. However, the SCE Component would be built in compliance with the CBC and CPUC General Order 95, as applicable, to ensure that new structures would be reinforced against potential strong seismic ground shaking in a seismic event.

The SCE Component would implement design recommendations and seismic design parameters outlined in the geotechnical reports (Appendices H-1, H-2, and H-3). In addition, the SCE Component would not directly or indirectly cause seismic ground shaking. No impacts would occur.

The California Geological Survey Earthquake Zones of Required Investigation map depicts the Compressor Plant No. 2 site and western portion of the proposed access road site as potential liquefaction zones, but the Retention Substation is not within a liquefaction zone (Appendices H-1, H-2, and H-3). In addition, the Retention Substation geotechnical report (Appendix H-3) concludes that the Retention Substation site is underlain by Saugus Formation bedrock, which is not susceptible to liquefaction or lateral spreading. However, the proposed access road geotechnical report (Appendix H-2) indicates that areas of fill and alluvium may be susceptible to liquefaction if shallow groundwater is present. Saugus Formation bedrock underlying the Retention Substation site is not anticipated to be subject to seismically induced settlements during ground shaking. However, if a portion of the proposed Retention Substation foundation extends to the adjacent fill/native alluvium, then differential settlement is likely. However, the SCE Component would be completed in compliance with the CBC and the recommendations of the geotechnical reports (Appendices H-1 through H-3), thus minimizing the potential for damage due to liquefaction and seismically induced settlement.

Compliance with regulatory requirements and incorporation of requirements set forth in the geotechnical reports would ensure that the SCE Component would not directly or indirectly cause seismic-related ground failure, including liquefaction, and impacts would be less than significant.

The California Geological Survey Earthquake Zones of Required Investigation map shows that the Retention Substation site is located within an area of potential seismically induced landslides (Appendix H-3). Slope stability evaluations were also completed (Appendix H-4, Slope Stability Report). Based on the evaluations, the proposed construction areas are generally suitable for the proposed development of slopes, provided the design and construction incorporate the recommendations in the geotechnical reports.

evaluated geology and soils and paleontological resources associated with activities for the HRCM Project, which comprises both the SoCalGas Component and SCE Component. A summary of information related to geology and soils both components of the HRCM project is provided in this section for informational purposes. This section focuses on whether the SCE Component would involve new or more significant impacts related to geology and soils than those analyzed in the Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and 1100.

Incorporation of requirements set forth in the geotechnical reports would ensure that the SCE Component would not directly or indirectly cause landslides, and impacts would be less than significant.

Erosive, Unstable, or Expansive Soils

The proposed Retention Substation would require 44,203 CY of cut and 663 CY of fill and gravel, resulting in 43,885 CY of material. These soil-disturbing activities would potentially result in soil erosion and siltation of downstream drainages.

Because the SCE Component grading would disturb more than 1 acre of soil, the SCE Component would need coverage under the NPDES CGP. As part of this coverage, a CGP SWPPP will be developed and would be filed with the Los Angeles RWQCB via the state's online Stormwater Multi-Application Reporting and Tracking System.

In addition, the SoCalGas *Compressor Building and Retention Substation Post-Construction Stormwater Management Plan/Erosion and Sediment Control Plan*, included as Appendix D-1, Stormwater and Erosion Control Plan, includes proposed temporary erosion and sediment control features, including silt fences, rock check dams, stormwater inlet protection, compost filter socks, temporary slope drains, rolled erosion control matting, concrete washout, rock construction entrance, and temporary mountable waterbars. Compliance with regulatory requirements and implementation of the CGP SWPPP and BMPs would ensure that construction of the SCE Component would not result in substantial soil erosion or the loss of topsoil.

Honor Rancho is not in an area of regional ground subsidence due to groundwater pumping, peat loss, or oil extraction (USGS 2024). As discussed above, in the absence of shallow groundwater in the young alluvium and fill overlying the Saugus Formation in the vicinity of the Compressor Plant No. 2 and Retention Substation facilities, liquefaction is not anticipated. However, areas of fill and alluvium in the vicinity of the proposed access road may be susceptible to liquefaction if shallow groundwater is present. Given the general absence of shallow groundwater in proximity to Honor Rancho, the potential for lateral spreading is low. Although the Retention Substation site is in an area of potential seismically induced landslides, proposed cut slopes would be stable provided the recommendations in the geotechnical report are followed. The geotechnical report (Appendix H-1) indicates that collapsible soils are present. Collapsible soils constitute a significant hazard for proposed shallow foundations, and settlement-sensitive structures supported on shallow foundations may be damaged if inundation of subgrade soils occurs. However, as previously discussed, all facilities proposed would be built according to the CBC and all recommendations in the geotechnical reports.

Chapters 16 and 16A of the 2022 CBC include structural design requirements governing seismically resistant construction, including (but not limited to) factors and coefficients used to establish seismic site class and seismic occupancy category for the soil/rock at the building location and the proposed building design. Chapters 18 and 18A include the requirements for foundation and soil investigations (Sections 1803 and 1803A); excavation, grading, and fill (Sections 1804 and 1804A); damp-proofing and waterproofing (Sections 1805 and 1805A); allowable load-bearing values of soils (Sections 1806 and 1806A); the design of foundation walls, retaining walls, embedded posts and poles (Sections 1807 and 1807A), and foundations (Sections 1808 and 1808A); and design of shallow foundations (Sections 1809 and 1809A) and deep foundations (Sections 1810 and 1810A). Chapter 33 of the 2022 CBC includes requirements for safeguards at work sites to ensure stable excavations and cut or fill slopes (Section 3304).

Construction activities are subject to occupational safety standards for excavation and trenching, as specified in the California Safety and Health Administration regulations (8 CCR) and in Chapter 33 of the

CBC. These regulations specify the measures to be used for excavation and trench work where workers could be exposed to unstable soil conditions. The SCE Component would be required to employ these safety measures during excavation and trenching. Compliance with regulatory requirements and implementation of the geotechnical report recommendations would ensure that construction of the SCE Component would not result in development on unstable soils.

According to the geotechnical report (Appendix H-1), based on the plasticity characteristics of the soils encountered (plasticity index less than 18), the site soils are considered to have a low potential for expansion. However, based on the geotechnical report prepared for the Retention Substation (Appendix H-3), medium-plasticity claystone was observed in soils deeper than 11 feet below ground. In the event these claystones are present at the final building grade, Geosyntec recommends 12 inches of soil overexcavation, followed by backfill with non-expansive soil, to minimize the potential for adverse impacts associated with expansive soils. As previously discussed, the facilities proposed would be built according to the CBC and recommendations in the geotechnical reports. Compliance with regulatory requirements, as summarized above, and implementation of the geotechnical report recommendations would ensure that construction of the SCE Component would not result in substantial risks associated with development on expansive soils. Impacts would be less than significant.

Septic Tanks or Alternative Wastewater Disposal Systems

The proposed SCE Component would not include any new septic tanks. The Main Campus includes a septic system, and any increase of wastewater from sewage systems is expected to be negligible. There are no plans to increase existing wastewater capacity. Therefore, no changes in circumstances and no new information of substantial importance relative to septic tanks or alternative wastewater disposal systems have been identified. No impact would occur.

Paleontological Resources

According to the Paleontological Resources Memorandum prepared for the HRCM Project, included as Appendix I to this Addendum, the HRCM Project area is underlain by Holocene (<11,700 years ago) alluvium (map unit Qa) and the Pleistocene (approximately 2.58 million to 774,000 years ago) upper Saugus Formation (map unit Qts). In general, Quaternary alluvium consists of unconsolidated gravel sand, and clay deposited by water in valleys or at the base of slopes (alluvial fans), sediments of the upper Saugus Formation are weakly indurated, interstratified, light-gray pebble conglomerates and sandstones and greenish to grayish claystones. Holocene alluvium is generally too young on the surface and at shallow depths to contain significant paleontological resources and has low paleontological sensitivity. However, with depth, the paleontological sensitivity increases to moderate or high. The Saugus Formation has yielded numerous scientifically significant marine and terrestrial invertebrate and vertebrate specimens and has high paleontological sensitivity. The Sunshine Ranch Member, which does not crop out in the project area, is typically marine and has produced fossil mollusks and echinoids in the San Fernando Pass area that have been documented in the published scientific literature. The Upper Saugus Formation, which is present within the HRCM Project area, is terrestrial, and vertebrate fossils have been recovered from the unit, including mammoth (*Mammuthus* sp.), bison (*Bison* sp.), deer (*Cervidae*), horse (*Equus* sp.), and tapir (*Tapirus* sp.) (Appendix I).

Given the potential for significant paleontological resources to be preserved within grading limits, a full paleontological review of Honor Rancho, including a paleontological records search through the Natural History Museum of Los Angeles County and a field survey, has been completed. During the field survey, sedimentological and taphonomical characteristics were noted on exposed rock outcrops. The Saugus

Formation was observed along roadcuts and an eroded hillside within the proposed construction areas, but no fossils were observed during the paleontological survey. No paleontological resources were identified within proposed construction areas as a result of the institutional records search and desktop geological and paleontological review. As outlined in Appendix I, given the presence of the Saugus Formation mapped within the proposed construction areas and the vertebrate fossils recovered from the formation in the vicinity, intact paleontological resources may be encountered during excavations. Pedestrian survey areas for the HRCM Project included accessible areas where ground disturbance may occur. Possible staging areas outside the pedestrian survey areas have been desktop reviewed and a field spot check was conducted confirming they are entirely disturbed/developed. These staging areas outside the pedestrian survey areas would be used for equipment storage, materials storage, parking, and other temporary activities in support of the SCE Component construction. No ground disturbance would occur at these sites. They are currently paved or compacted sediment and gravel and are used for miscellaneous purposes, including temporary storage of materials or equipment.

PDF-5 (Paleontological Monitoring), outlined in Table 5-1, has been built into the SCE Component to ensure that potential impacts to paleontological resources during construction activities would be below a level of significance. A qualified paleontological monitor would be on site during initial rough grading and other significant ground-disturbing activities in previously undisturbed, Early Pleistocene Saugus Formation and below a depth of 5 feet below the ground surface in areas underlain by Holocene alluvium. Incorporation of PDF-5 would ensure that construction of the SCE Component would not result in destruction of a unique paleontological resource or site or unique geologic feature, and impacts would be less than significant.

8.1.4.3 Geology and Soils Conclusion

As demonstrated by the analysis above, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to geology and soils, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and 1100.

8.1.5 Land Use and Planning

8.1.5.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of the control measures in the 2016 AQMP would result in less than significant impacts to land use and planning. The Final Program EIR for the 2016 AQMP determined that construction activities to modify transportation routes could temporarily disrupt or divide a community. However, because construction of new traffic routes/corridors is not required for implementation of the 2016 AQMP, once construction activities are finished and physical barriers removed, no long-term land use impacts are anticipated, and impacts were found not to be significant (South Coast AQMD 2017b).

The Final Program EIR for the 2016 AQMP determined that the 2016 AQMP would not affect local government land use planning decisions, and impacts were found not to be significant (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to land use and planning (South Coast AQMD 2019).

8.1.5.2 SCE Component

There are no residential communities within 0.4 miles of the construction activities on the Main Campus for Retention Substation and TSPs. The Honor Rancho site and surrounding land uses generally consist of undeveloped land, utility infrastructure, and business park uses. Considering the existing uses on site, as well as the purpose and location of the HRCM Project, no communities would be physically divided, and no impacts would occur. The off-site portions of the SCE component, including trenching and telecommunication lines, circuit breaker replacement at Saugus Substation, and staging areas, would be located within the public right-of-way or at existing SCE facilities and would not impact any established communities.

Approximately half of Honor Rancho is located in the City and half in the unincorporated County. The property within the City is designated by the General Plan as Business Park (BP) and zoned as Business Park (BP), with overlays of Homeless Shelter (HS) and Mineral/Oil Conservation Area (MOCA) (City of Santa Clarita 2011c, 2024). The portion of Honor Rancho within the unincorporated County is designated and zoned Heavy Agriculture (A-2-5).

As described in Section 6.3.2 of this Addendum, Article XII, Section 8 of the California Constitution establishes the CPUC's preemptive authority over matters for which the legislature has granted the CPUC regulatory powers. Utilities are exempt from local land use controls that are in conflict with "the paramount authority of the State" (California Public Utilities Code Section 6294). Due to state preemption, the HRCM Project, including the SCE Component, is not subject to local discretionary zoning requirements. Nevertheless, the HRCM Project would be located at Honor Rancho and would be consistent with the current uses of the site, which are allowable in the Business Park general plan land use designation and zone, and in the zoning overlay for HS–Homeless Shelter and MOCA–Mineral/Oil Conservation Area. Similarly, off-site portions of the SCE component would constitute minor changes to existing utility infrastructure and temporary staging areas and would not conflict with any land use plans, policies, or regulations.

The SCE Component would not change the existing and permitted land uses and would be consistent with the existing uses. As such, no local discretionary (e.g., rezone, land use) permits would be required because the CPUC has preemptive jurisdiction over the siting, construction, maintenance, and operation of electric facilities in California.

The current and proposed use of the Honor Rancho site is consistent with this zoning and land use designation, and the SCE Component would not conflict with an applicable land use plan, policy, or regulation. No impacts would occur.

8.1.5.3 Land Use and Planning Conclusion

As demonstrated by the analysis above, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to land use, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

8.1.6 Mineral Resources

8.1.6.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of control measures in the 2016 AQMP would not result in the loss of a known mineral resource of value to the region or the loss of a locally important mineral resource recovery site, and impacts were found not to be significant (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to mineral resources (South Coast AQMD 2019).

8.1.6.2 SCE Component

There are existing oil, natural gas fields, and sand and gravel resources located within the City of Santa Clarita (City of Santa Clarita 2011b). Honor Rancho has a Mineral/Oil Conservation Area (MOCA) overlay zone, which permits drilling for and/or production, handling, storage, extraction and removal of oil, gas, and other hydrocarbons. There are currently 20 natural gas wells in service at Honor Rancho. Produced water (brine) from operations at Honor Rancho are disposed of through four on-site wells, permitted through LACDPW with an Industrial Waste Disposal Permit. These wells are permitted according to Chapter 17.38.30 of the City of Santa Clarita Municipal Code. A small portion of Honor Rancho is in a Mineral Resource Zone (MRZ) 2, defined as areas that are underlain by mineral deposits where geologic data indicate that significant measured, or indicated, resources are present (City of Santa Clarita 2011a). However, this area does not overlap with the SCE Component areas that are subject to development. The SCE Component would not alter the storage capacity of the regional SoCalGas storage system or alter the demand or available supply of natural gas resources, and therefore would not result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state or a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan. No impacts would occur.

8.1.6.3 Mineral Resources Conclusion

As demonstrated by the analysis above, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to mineral resources, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

8.1.7 Population and Housing

8.1.7.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of the control measures in the 2016 AQMP would result in less than significant impacts to population and housing. Implementation of the 2016 AQMP would mainly affect existing commercial and industrial facilities in appropriately zoned industrial and commercial areas and would not generate significant effects on the South Coast Air Basin's population or population distribution. The 2016 AQMP contains no provisions that would lead to displacement of a substantial number of people of existing housing or necessitate the construction of

replacement housing elsewhere. Therefore, impacts were found to be less than significant (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to population and housing (South Coast AQMD 2019).

8.1.7.2 SCE Component

The SCE Component would not include residential development or development that would increase population in the area. The proposed average daily workforce of approximately 33 workers over the duration of construction are anticipated to be located within commuting distance of Honor Rancho or could be accommodated by existing temporary accommodations and housing within the area. The number of permanent employees at Honor Rancho would not change with implementation of the SCE Component. The proposed SCE Component would not result in population growth, either directly or indirectly. The SCE Component would upgrade facilities at the Main Campus and within the public right-of-way and would not result in the displacement of people or housing. No impacts would occur.

8.1.7.3 Population and Housing Conclusion

As demonstrated by the analysis above, the SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to population and housing, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

8.1.8 Public Services

8.1.8.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of control measures in the 2016 AQMP would result in less than significant impacts to public services. Impacts to public services are not expected as a result of implementing the 2016 AQMP because it would not result in the need for new or physically altered government facilities to maintain acceptable service ratios, response times, or other performance objectives, and because implementation of the 2016 AQMP would not cause a future population increase or require new or physically altered school facilities. (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to public services (South Coast AQMD 2019).

8.1.8.2 SCE Component

Construction

Construction activities may temporarily result in a slight increase in demand for fire protection services. Construction activities would involve the operation of construction equipment and machinery, storage, handling, and disposal of combustible materials, and the use of flammable or hazardous materials, as is typical of construction sites. Construction activities would therefore have the potential to temporarily increase the risk of a fire at areas subject to construction activity relative to typical site conditions due to additional activities and the operation of additional equipment and materials. However, this potential

temporary increase in demand would not result in significant environmental impacts pertaining to the need for new, expanded, or physically altered fire protection facilities.

Compliance with California Division of Occupational Safety and Health Administration (Cal/OSHA) regulations, California Process Safety Management regulations, and applicable CFR requirements would be maintained throughout construction activities for the HRCM Project. Project construction would comply with all applicable codes and ordinances related to the maintenance of mechanical equipment, handling and storage of flammable materials, and cleanup of spills of flammable materials. State regulations and statutory code requirements would require personnel to be trained in fire prevention and emergency response, maintenance for fire suppression equipment, and implementation of proper procedures for storage and handling of flammable materials. Further, the SCE Component would comply with the Construction Fire Protection Plan for the Honor Rancho site (Appendix J-1), as applicable, which outlines awareness related to prevention, mitigation, and training to help educate personnel and eliminate the potential of a fire incident on site.

Compliance with regulatory requirements and implementation of the Construction Fire Protection Plan for Honor Rancho would ensure that construction of the SCE Component would not result in the need for new, expanded, or physically altered fire protection facilities, and impacts would be less than significant. Short-term construction activities and personnel would not increase demand for sheriff or police services, schools, parks, or other public facilities and would not result in the need for new, expanded, or physically altered public facilities and no impacts would occur.

Operation

The SCE Component would not generate additional need for fire protection services in excess of the fire protection services already serving the permitted routine operations and maintenance activities at the existing Honor Rancho facility. Additional hazardous materials and expanded facilities on site would be reported to and subject to oversight by the local fire department, serving as the CUPA. The SCE Component would be designed and operated in accordance with NFPA standards and local building codes, as applicable. Furthermore, it is anticipated that the proposed facilities may ultimately serve to reduce the potential for fire, because equipment and structures would be modernized and/or brought into compliance with current fire, safety, and building codes. SoCalGas prepared a *Fire Prevention and Protection – Transmission and Storage Plan* (SoCalGas 2021c) containing guidelines and requirements for fire prevention and protection, including policies, procedures, and permits for fire protection. Flammable and combustible materials would be stored in accordance with NFPA 30 standards (latest revision incorporated by reference in 49 CFR 192) and all solvent use would be compliant with federal, state, and local regulations. Further, the HRCM Project's SCE Component would comply with the *Industrial Site-Specific Safety Plan* for the Honor Rancho site (Appendix J-2), which includes fire prevention and control measures, including having portable fire extinguishers at every construction area and wherever flammable or combustible liquids or gases are being stored or used. The SCE Component would comply with the SoCalGas *Fire Prevention and Protection – Transmission and Storage Plan*, and fire-related measures in the *Industrial Site-Specific Safety Plan and Construction Fire Prevention Plan*, as applicable, as well as regulatory requirements and would ensure that operation of the SCE Component of the HRCM Project would not result in the need for new, expanded, or physically altered fire protection facilities, and impacts would be less than significant.

The SCE Component would not include residential development, and the number of permanent employees at Honor Rancho would not change with implementation of the SCE Component. Therefore, the SCE Component would not require construction or expansion of school facilities, parks, recreational facilities,

or other public facilities. Nor would the SCE Component generate additional need for sheriff or police protection services in excess of the services already provided during routine operations at Honor Rancho. No impacts would occur.

8.1.8.3 Public Services Conclusion

As demonstrated by the analysis above, the proposed SCE Component of the HRCM Project would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to public services, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

8.1.9 Recreation

8.1.9.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Final Program EIR for the 2016 AQMP determined that implementation of the control measures in the 2016 AQMP would result in less than significant impacts to recreation because the 2016 AQMP does not have the potential to induce population growth, and because the control measures would not increase the use of, or demand for, existing neighborhood and/or regional parks and recreational facilities. Because the 2016 AQMP does not have the potential to induce population growth, the control measures would not require construction of recreational facilities that might have an adverse physical effect on the environment. (South Coast AQMD 2017b).

The Final SEA for Rule 1110.2 and Rule 1100 concluded that less than significant impacts would occur related to recreation (South Coast AQMD 2019).

8.1.9.2 SCE Component

The SCE Component would not cause a change in population that would increase demand on recreational facilities or cause negative effects on existing recreational facilities. The SCE Component does not propose and is not required to provide any recreational facilities. No impacts to recreation are expected.

8.1.9.3 Recreation Conclusion

As demonstrated by the analysis above, the SCE Component would not result in any new significant impacts or substantial increases in the severity of previously identified significant impacts related to recreation, nor would it require new or modified mitigation measures or alternatives to be studied that were not previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

8.2 Analysis of Impacts for Environmental Topics Not Included in the Final Program EIR for the 2016 AQMP/2016 AQMP Initial Study and the Final SEA for Rule 1110.2 and Rule 1100

8.2.1 Wildfire

As discussed in Section 2.4, CEQA Guidelines Revisions, of this Addendum, neither the Final Program EIR for the 2016 AQMP nor the Final SEA for Rule 1110.2 and Rule 1100 included wildfire as an environmental topic area. This environmental topic area was not included because no criteria had been established under CEQA when the Final Program EIR for the 2016 AQMP was prepared. However, now that potential impacts associated with wildfires are considered under CEQA, an evaluation of the SCE Component's potential to result in wildfire impacts has been prepared and is presented below.

Impacts associated with wildfire would be considered significant if any of the following occur:

- The project would substantially impair an adopted emergency response plan or emergency evacuation plan.
- The project may exacerbate wildfire risks by exposing the project's occupants to pollutant concentrations from a wildfire or the uncontrolled spread of a wildfire due to slope, prevailing winds, and other factors.
- The project may exacerbate wildfire risks or may result in temporary or ongoing impacts to the environment because the installation or maintenance of associated infrastructure (such as roads, fuel breaks, emergency water sources, power lines, or other utilities) are required.
- The project would expose people or structures to significant risks such as downslope or downstream flooding or landslides, as a result of runoff, post-fire slope instability, or drainage changes.
- The project would expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildfires.

8.2.1.1 Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

The Hazards and Hazardous Materials section of the 2016 AQMP Initial Study, included in Appendix A to the Final Program EIR for the 2016 AQMP, concluded that implementation of the 2016 AQMP would not have the potential to expose people or structures to a significant risk of loss, injury, or death involving wildland fires because site preparation of industrial facilities often includes the removal of vegetation for fire safety and commercial and industrial areas are not typically located near wildland or forested areas. The 2016 AQMP Initial Study concluded that no impact would occur related to wildland fires (South Coast AQMD 2017b). Therefore, wildfire was not an issue area topic discussed in the Final Program EIR for the 2016 AQMP.

Potential impacts related to wildfire were not discussed in detail in the Final SEA for Rule 1110.2 and Rule 1100 (South Coast AQMD 2019).

8.2.1.2 SCE Component

Construction

Short-term construction activities would result in temporary increases in traffic in the vicinity of the HRCM Project and off-site improvement areas but would not interfere with the City of Santa Clarita's

ability to implement their Local Hazard Mitigation Plan. This Plan addresses wildfire hazards and the City's programs, strategies, and actions to reduce potential wildfire hazards (City of Santa Clarita 2021). In compliance with the City Public Works Department, Traffic and Transportation Planning Division's requirements for traffic control on City roadways, including requirements set forth under Chapter 12.92 of the City's Municipal Code related to road closures, a traffic control plan would be prepared by SCE or its contractor to address any potential short-term disruptions related to lane closures associated with trenching required to connect the telecommunications lines to the existing lines on Kelly Johnson Parkway. Emergency response providers near Honor Rancho would be notified in advance of construction locations, road closure schedules (if required), and potential alternate routes. The selected contractor would work with local police and traffic engineers to plan appropriate access alternatives for temporary lane closures and traffic disruptions, if required.

Compliance with regulatory requirements would ensure that the SCE Component's short-term construction activities would not substantially impair an adopted emergency response plan or emergency evacuation plan, and impacts would be less than significant with mitigation incorporated.

According to the California Department of Forestry and Fire Protection (CAL FIRE) Fire Hazard Severity Zone (FHSZ) map, Honor Rancho is located within an area designated as a Local Responsibility Area Very High FHSZ and State Responsibility Area Very High FHSZ (CAL FIRE 2024). Construction activities involve the use of vehicles, engines, and other equipment that have the potential to generate sparks and therefore could exacerbate wildfire risks. A *Construction Fire Prevention Plan* and an *Industrial Site-Specific Safety Plan* (Appendices J-1 and J-2) were prepared for the HRCM Project and include fire prevention and control measures in compliance with the SoCalGas *Fire Prevention and Protection – Transmission and Storage Plan*. The *Construction Fire Prevention Plan* sets forth requirements for safe construction areas and fire prevention, including but not limited to placement of fire extinguishers, management and disposal of construction waste, constraints on locating and conducting hot work activities, proper storage of combustible materials, signage, and training. The SCE Component would comply with the SoCalGas *Fire Prevention and Protection – Transmission and Storage Plan*, and fire-related measures in the *Industrial Site-Specific Safety Plan* and *Construction Fire Prevention Plan*, as applicable, as well as regulatory requirements so that the SCE Component would not exacerbate wildfire risks during construction activities.

Operations

The SCE substation and upgrades that comprise the SCE Component would not generate operational vehicle trips beyond occasional maintenance, similar to what is required on existing facilities in the current conditions and would not have the potential to interfere with emergency evacuation.

The SCE Component would constitute new facilities at Honor Rancho and could exacerbate wildfire risks. Although the proposed new facilities on site are associated with the potential for fire risk, standard operating procedures followed by SoCalGas would minimize the risk of fire at Honor Rancho. Fire protection services for Honor Rancho are provided by the Santa Clarita Fire Department, which is run by the Los Angeles County Fire Department, Battalion 6. The HRCM Project site and surrounding areas, including areas of off-site portions of the SCE Component, are within a Very High FHSZ and California Public Resources Code Section 4290 requires minimum fire safety standards related to defensible space that are applicable to residential, commercial, and industrial building construction in State Responsibility Area lands and lands classified and designated as Very High FHSZs.

Under current conditions, SoCalGas routinely conducts fuel modification and vegetation management to reduce the potential for wildfire hazards at Honor Rancho. Additionally, SoCalGas prepared a *Fire Prevention and Protection – Transmission and Storage Plan*, containing guidelines and requirements for fire prevention and protection, including policies, procedures, and permits for fire protection. Flammable and combustible materials would be stored in accordance with NFPA 30 standards (latest revision incorporated by reference in 49 CFR 192) and all solvent use would be compliant with federal, state, and local regulations (SoCalGas 2021c).

Furthermore, staff at Honor Rancho perform preventive maintenance in accordance with the preventive maintenance program, and annual first responder training is provided to educate fire and law enforcement agencies and enable familiarity with Honor Rancho.

Two new subtransmission lines would be required to loop in the new Retention Substation to the grid. The presence of power lines and energized electrical equipment can also pose a wildland fire risk. New utility connections to adjacent existing SCE infrastructure, such as aboveground electrical and telecommunication conduit, would be subject to regular inspection to maintain proper power line clearances. In accordance with tree and power line clearance requirements in California Public Resources Code Section 4293 and CPUC GO 95 and GO 165, SCE would maintain the utility infrastructure to manage fire and safety hazards and ensure the electrical reliability of the proposed poles and conduit. Protective equipment in the adjacent public right-of way, such as circuit breakers, reclosers, and fuses, are standard components of the grid that help keep workers and the public safe by automatically shutting off the power in the case of a disturbance. SCE, in partnership with the City, regularly inspects, maintains, and repairs the electrical infrastructure in the City. These activities involve both routine preventive maintenance and emergency procedures to maintain service continuity. Inspectors perform aerial and ground inspections of facilities and patrol aboveground components annually. Inspection for corrosion, equipment misalignment, loose fittings, and other common mechanical problems is performed at least every 3 years (per CPUC GO 165) for power lines.

As discussed in detail in Section 7.2.4.2, to minimize the risk of accidental ignition of a wildland fire from the subtransmission lines, SCE operates in compliance with the recently updated 2023–2025 WMP, which would reduce the significant wildfire risk and PSPS impacts. The primary goal of the WMP is to reduce the risk of wildfires associated with utility equipment and to reduce the scope, scale, frequency and impacts of PSPS events. Implementation of the WMP is conducted in accordance with applicable regulations, including but not limited to GO 95, Rules for Overhead Electrical Line Construction; GO 165, Requirements For Electric Distribution And Transmission Facilities; SCE Distribution Overhead Construction Standards; SCE Distribution Underground Construction Standards; GO 128, Rules for Construction of Underground Electric Supply and Communication Systems; SCE Distribution Apparatus Construction Standards; SCE Electrical Construction Station; SCE Electric Design Station Wiring; SCE Distribution Design Standards; and SCE Distribution Inspection Maintenance Program (SCE 2023). SCE's implementation of the Retention Substation and associated facilities would be conducted in accordance with the standards and protocols set forth in the 2023–2025 WMP, as well as applicable regulatory requirements, which would reduce potential impacts associated with fire hazards.

Compliance with regulatory requirements, adherence to all manufacturer's specifications for use and disposal of hazardous materials, and implementation of the WMP and SCE BMPs would ensure that the SCE Component would not expose people or structures, either directly or indirectly, to a significant risk of loss, injury or death involving wildland fires, and impacts would be less than significant.

8.2.1.3 Cumulative Wildfire Impacts

Final Program EIR for the 2016 AQMP and Final SEA for Rule 1110.2 and Rule 1100

Wildfire impacts were not included in the cumulative hazards and hazardous materials section, Section 5.9, of the Final Program EIR for the 2016 AQMP. However, the Final Program EIR for the 2016 AQMP stated that there is the potential to expose people to significant impacts from wildland fires due to possible cumulative development in areas with a high fire hazard risk. However, because the 2016 AQMP Initial Study determined that implementation of the 2016 AQMP's control measures would have no impact regarding wildland fires, impacts from implementation of the 2016 AQMP would not contribute to cumulatively considerable impacts to wildland fires.

Wildfire was not an environmental topic area in the Final SEA for Rule 1110.2 and Rule 1100. Although the Final SEA for Rule 1110.2 and Rule 1100 discussed cumulative hazards and hazardous materials impacts, the Final SEA for Rule 1110.2 and Rule 1100 does not discuss cumulative impacts related to wildfire. As such, cumulative wildfire impacts were not analyzed in the Final SEA for Rule 1110.2 and Rule 1100.

SCE Component

Although Honor Rancho is located within an area designated as Very High FHSZ and is surrounded by areas designated as Very High FHSZ and Moderate FHSZ, the proposed onsite improvements of the SCE Component would be located on adjacent vegetated hillside areas to the Main Campus that are routinely maintained as part of ongoing Honor Rancho operations. Improvements in off-site areas would occur within developed and disturbed areas that are also appropriately maintained under existing conditions. The SCE Component would not combine with other cumulative development projects in the area to exacerbate the existing wildfire risk by expanding development into previously undeveloped or disturbed areas. Although proposed construction activities would increase the potential for ignitions to occur within previously developed and disturbed areas, the SCE Component would be required to comply with all applicable federal, state, and local regulations, codes, and standards discussed in Section 8.2.1.2 to minimize risks. The SCE Component (at the project level) would be less than significant and would not, in and of itself, rise to a level of significance that would represent a new cumulatively considerable impact.

As such, the SCE Component would not result in any new significant cumulative impacts, nor would it substantially increase the severity of the significant cumulative impacts identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

8.2.1.4 Wildfire Conclusion

As demonstrated by the analysis above, the SCE Component of the HRCM Project would not result in new significant impacts or substantial increases in the severity of previously identified significant impacts related to wildfire, nor would it require new or modified mitigation measures or alternatives to be studied that were not already previously analyzed in the March 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100. The SCE Component would, therefore, not alter the conclusions of the 2017 Final Program EIR for the 2016 AQMP and the November 2019 Final SEA for Rule 1110.2 and Rule 1100.

9.0 CONCLUSIONS

The 2016 AQMP includes strategy and control measures needed to attain the standards for which the South Coast Air Basin is not in attainment. To attain the ozone and PM2.5 ambient air quality standards, the 2016 AQMP identified the amount of NOx emissions reductions that were needed. As part of the approval process of the 2016 AQMP, the South Coast AQMD prepared a programmatic EIR pursuant to CEQA that disclosed the potential for significant impacts that would occur as a result of implementation of the 2016 AQMP (South Coast AQMD 2017b). Subsequent to the certification of the 2016 AQMD Final Program EIR, South Coast AQMD staff determined that Amended Rules 1110.2 and 1100 contain new information of substantial importance that was not known and could not have been known at the time the 2016 AQMP Final Program EIR was certified. Therefore, South Coast AQMD completed an SEA for Amended Rules 1110.2 and 1100 that tiered off the Final Program EIR for the 2016 AQMP to facilitate the transition of affected equipment subject to the NOx RECLAIM program to a command-and-control regulatory structure and to implement CMB-05 (South Coast AQMD 2019). The HRCM Project includes the SoCalGas Component (compressor system upgrades) and SCE Component (substation and 66-kV electrical lines) and has been proposed in order to comply with the mandates set forth in Amended Rules 1110.2 and 1100.

The SoCalGas Component of the HRCM Project is within the scope of what was analyzed in the Final Program EIR for the 2016 AQMP and the SEA for Amended Rule 1110.2 and Rule 1100. However, the SCE Component was not. Therefore, this Addendum analyzes the potential impacts from the SCE Component and changes to the scope of the HRCM Project that was previously analyzed in the prior CEQA documents. This Addendum concludes that implementation of the SCE Component would not result in any new significant environmental impacts that were not already identified in the certified Final Program EIR for the 2016 AQMD and/or the Final SEA for Rule 1110.2 and Rule 1100 and has determined that none of the previously identified significant effects would be substantially more severe with implementation of the SCE Component.

9.1 SCE Component Impact Summary

The SCE Component of the HRCM Project would not result in new significant impacts, substantial increases in previously identified significant impacts, or the requirement for new mitigation measures or alternatives to be studied that were not already analyzed under the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100. In addition, implementation of the SCE Component would not change the conclusions reached in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

This Addendum provides adequate analysis and substantial supporting evidence pursuant to CEQA Guidelines Section 15164 and has concluded that none of the conditions described in CEQA Guidelines Section 15162 calling for preparation of a subsequent EIR have occurred. The SCE Component would not considerably contribute to cumulative impacts in the region. In addition, past, present and reasonably foreseeable future projects in the region would presumably be bound by their applicable lead agency to (1) comply with all applicable federal, state, and local regulatory requirements and (2) incorporate all feasible mitigation measures, consistent with CEQA, to further ensure that their potentially cumulative impacts would be reduced to less than significant levels.

Through the incorporation of PDFs, compliance with regulations, and implementation of all applicable mitigation measures of the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100, as outlined in this Addendum, the SCE Component of the HRCM Project would not result

in or substantially contribute to any of the significant and unavoidable impacts identified in the Final Program EIR for the 2016 AQMP and the Final SEA for Rule 1110.2 and Rule 1100.

10.0 REFERENCES

California Department of Conservation (DOC), 2018. “California Important Farmland Finder” [map]. Accessed February 22, 2024. <https://maps.conservation.ca.gov/dlrc/ciff/app/>

California Department of Forestry and Fire Protection (CAL FIRE), 2024. FHSZ Viewer. Accessed February 2024. <https://osfm.fire.ca.gov/what-we-do/community-wildfire-preparedness-and-mitigation/fire-hazard-severity-zones>

California Department of Fish and Wildlife (CDFW), 2023a. *Survey Considerations for California Endangered Species Act (CESA) Candidate Bumble Bee Species*. June 6, 2023. <https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=213150&inline>

CDFW, 2023b. *California Natural Community List*. June 1, 2023. Accessed May 2024. <https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=153398&inline>

California Department of Resources Recycling and Recovery (CalRecycle), 2024. SWIS Facility Detail: Sunshine Canyon City/County Landfill. May 31, 2018. Accessed April 5, 2024. <https://www2.calrecycle.ca.gov/SolidWaste/SiteActivity/Details/259?siteID=4702>

California Department of Toxic Substances Control (DTSC), 2022. “DTSC Hazardous Waste Generator Requirements,” November 2022. Accessed June 2024. <https://dtsc.ca.gov/hazardous-waste-generator-requirements-fact-sheet/#:~:text=Each%20generator%20that%20generates%201000,procedures%20for%20dealing%20with%20emergencies>

California Public Utilities Commission (CPUC), 2010. “General Order 171: Rules Governing Filings Made Pursuant to the Telecommunications Act of 1996.” Accessed March 2025. <https://docs.cpuc.ca.gov/PUBLISHED/GRAPHICS/133206.PDF>.

DTSC, 2024. “EnviroStor Map.” Accessed February 2024. <https://www.envirostor.dtsc.ca.gov/public/map/?myaddress=socal+gas+honor+rancho>

California Department of Transportation (Caltrans), 2022. “California State Scenic Highway System Map.” <https://caltrans.maps.arcgis.com/apps/webappviewer/index.html?id=465dfd3d807c46cc8e8057116f1aaca>

California Environmental Protection Agency (CalEPA), 2024. California Accidental Release Prevention Program. Accessed May 21, 2024. <https://calepa.ca.gov/california-accidental-release-prevention/>

California Geological Survey (CGS), 2024. “Earthquake Zones of Required Investigation.” Accessed April 2, 2024. <https://data.ca.gov/showcase/earthquake-zones-of-required-investigation>

California Governor’s Office of Business and Economic Development (GO-Biz), 2020. *Hydrogen Station Permitting Guidebook*. September 2020. https://business.ca.gov/wp-content/uploads/2019/12/GO-Biz_Hydrogen-Station-Permitting-Guidebook_Sept-2020.pdf

California Public Utilities Commission (CPUC), 2022. General Order No. 177. Adopted December 1, 2022. https://www.cpuc.ca.gov/-/media/cpuc-website/divisions/administrative-law-judge-division/documents/general-orders/go_177_gas_infrastructure.pdf

CPUC, 2025. General Order No. 131-E. Adopted January 30, 2025, to supersede General Order No. 131-D.

Federal Aviation Administration (FAA), 2024. Notice Criteria Tool. Accessed May 24, 2024. https://www.faa.gov/air_traffic/environmental_issues/environmental_tetam

Federal Emergency Management Agency (FEMA), 2024. FEMA Flood Map Service Center: Search By Address. Accessed April 1, 2024. <https://msc.fema.gov/portal/search#searchresultsanchor>

Federal Transit Administration (FTA), 2018. *Transit Noise and Vibration Impact Assessment*. FTA Report No. 0123, September 2018. https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf

Kimmel, J., 2021. Re: HRCM Water Usage estimate. RFI request response via shared document from J. Kimmel (SoCalGas contractor) to H. Patel (SoCalGas) and M. Valerio (Dudek). December 22, 2021.

Kimmel, J., 2022. Re: HRCM Water Usage estimate. Email from J. Kimmel (SoCalGas contractor) to D. Gonzalez (SoCalGas) and M. Valerio (Dudek). April 25, 2022.

Los Angeles County Department of Public Works (LACDPW), 2006. *Los Angeles County Department of Public Works Hydrology Manual*. LACDPW, Water Resources Division, January 2006. Accessed March 27, 2024. <http://dpw.lacounty.gov/wrd/Publication/index.cfm>

LACDPW, 2014. *Low Impact Development Standards Manual*. February 2014. Accessed March 27, 2024. https://dpw.lacounty.gov/ldd/lddservices/docs/Low_Impact_Development_Standards_Manual.pdf

LACDPW, 2024. “Construction and Demolition Debris Recycling Facilities in Los Angeles County.” Accessed April 5, 2024. https://dpw.lacounty.gov/epd/CD/cd_attachments/Recycling_Facilities.pdf

Los Angeles, County of, 2022. *General Plan 2035: Los Angeles County General Plan*. July 14, 2022. <https://planning.lacounty.gov/long-range-planning/general-plan/general-plan-elements/>

Los Angeles Regional Water Quality Control Board (RWQCB), 2014. *Water Quality Control Plan: Los Angeles Region Basin Plan for the Coastal Watersheds of Los Angeles and Ventura Counties*. September 11, 2014. Accessed April 1, 2024. https://www.waterboards.ca.gov/losangeles/water_issues/programs/basin_plan/basin_plan_documentation.html

Lukins, W., 2024. Re: Question for Addendum. Email between W. Lukins (SoCalGas) and K. Starbird (Dudek). May 29, 2024.

Santa Clarita, City of, 2011a. *City of Santa Clarita General Plan – Conservation and Open Space Element*. Adopted June 2011. Accessed June 11, 2021. <https://www.codepublishing.com/CA/SantaClarita/html/SantaClaritaGP/6%20-%20Conservation%20and%20Open%20Space%20Element.pdf>

Santa Clarita, City of, 2011b. *City of Santa Clarita General Plan – Circulation Element*. Adopted June 2011. Accessed June 11, 2021. <https://www.codepublishing.com/CA/SantaClarita/html/SantaClaritaGP/4%20-%20Circulation%20Element.pdf>

Santa Clarita, City of, 2011c. *City of Santa Clarita General Plan – Land Use Element*. Adopted June 2011. Accessed June 11, 2021. <https://www.codepublishing.com/CA/SantaClarita/html/SantaClaritaGP/2%20-%20Land%20Use%20Element.pdf>

Santa Clarita, City of, 2013. “City of Santa Clarita Project-Specific Urban Stormwater Mitigation Plan Checklist.” Accessed March 31, 2024. https://santaclarita.gov/wp-content/uploads/sites/42/migration/USMP_Checklist.pdf

Santa Clarita, City of, 2020. "Transportation Analysis Updates in Santa Clarita." May 19, 2020. Accessed January 16, 2025. https://santaclarita.gov/wp-content/uploads/sites/42/migration/Transportation%20Analysis%20Updates%20in%20Santa%20Clarita_05192020.pdf

Santa Clarita, City of, 2021. *2021 Santa Clarita Local Hazard Mitigation Plan*. Adopted October 2, 2021. https://santaclarita.gov/wp-content/uploads/sites/42/migration/2021%20SCHMP_%20Approved.pdf

Santa Clarita, City of, 2022. "Safety Element." Chapter 7 in *City of Santa Clarita General Plan*. May 2022. Accessed April 1, 2024. <https://www.codepublishing.com/CA/SantaClarita/html/SantaClaritaGP/7%20-%20Safety%20Element.pdf>

Santa Clarita, City of, 2024. "Mapping Your City." Accessed April 3, 2024. <https://maps.santaclarita.com/portal/apps/webappviewer/index.html?id=4b3cfb271314475db6518999b4747876>

Santa Clarita Valley Water Agency (SCV Water), 2021. *2020 Urban Water Management Plan for Santa Clarita Valley Water Agency*. KJ Project No. 2044228*00, prepared by Kennedy Jenks for SCV Water, Oxnard, California: Kennedy Jenks, June 2021. Accessed March 31, 2024. https://yourscvwater.com/sites/default/files/SCVWA/SCVWA-2020-UWMP-Volume-I_FINAL.pdf

Santa Clarita Valley GSA (Groundwater Sustainability Agency). 2022. Santa Clarita River Valley East Groundwater Subbasin Groundwater Sustainability Plan. January 2022. Accessed February 26, 2025. <https://scvgsa.org/wp-content/uploads/2022/02/Santa-Clara-River-Valley-East-Groundwater-Subbasin-GSP.pdf>.

SoCalGas, 2020. *Facility-Wide Engine Modernization Compliance Plan*. December 2020. Approved November 2021.

SoCalGas, 2021a. *Aspire 2045: Sustainability and Climate Commitment to Net Zero*. March 2021. https://www.socalgas.com/sites/default/files/2021-03/SoCalGas_Climate_Commitment.pdf

SoCalGas, 2021b. *Safety Management System Plan*. September 2021.

SoCalGas, 2021c. Fire Prevention and Protection – Transmission and Storage.

SoCalGas, 2022a. Revised Prepared Direct Testimony of Larry T. Bittleston and Steve Hruby (Gas Storage Operations and Construction). August 2022. https://www.socalgas.com/sites/default/files/SCG-10-R_Revised_Direct_Testimony_of_Bittleston_Hruby-Gas-Storage_1402.pdf

SoCalGas, 2022b. A.22-05-015 – SoCalGas 2024 General Rate Case. May 16, 2022. <https://www.socalgas.com/regulatory/2024-general-rate-case>

SoCalGas, 2023. *Gas Safety Plan*. March 15, 2023. Accessed February 5, 2025. <https://www.socalgas.com/sites/default/files/2023-Gas-Safety-Plan.pdf>

Society of Vertebrate Paleontology (SVP), 2010. *Standard Procedures for the Assessment and Mitigation of Adverse Impacts to Paleontological Resources*. Society of Vertebrate Paleontology, Impact Mitigation Guidelines Revision Committee. Accessed February 5, 2025. https://vertpaleo.org/wp-content/uploads/2021/01/SVP_Impact_Mitigation_Guidelines.pdf

South Coast Air Quality Management District (AQMD), 1993. *South Coast AQMD CEQA Handbook*. <https://www.aqmd.gov/home/rules-compliance/ceqa/air-quality-analysis-handbook>

South Coast AQMD, 2008. *Final Localized Significance Threshold Methodology*. June 2003. Revised July 2008. Accessed February 10, 2010. <https://www.aqmd.gov/docs/default-source/ceqa/handbook/localized-significance-thresholds/final-lst-methodology-document.pdf?sfvrsn=2>

South Coast AQMD, 2017a. *Final 2016 Air Quality Management Plan*. March 2017. <https://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/final-2016-aqmp/final2016aqmp.pdf>

South Coast AQMD, 2017b. *Final Program Environmental Impact Report for the 2016 Air Quality Management Plan*. January 2017. Certified July 2017. <http://www.aqmd.gov/docs/default-source/ceqa/documents/aqmd-projects/2016/2016aqmpfpeir.pdf>

South Coast AQMD, 2017c. *Risk Assessment Procedures for Rules 1401, 1401.1, and 212*. Version 8.1, September 1, 2017. Accessed February 5, 2025. <https://www.aqmd.gov/docs/default-source/permitting/rule-1401-risk-assessment/riskassessproc-v8-1.pdf>

South Coast AQMD, 2018. “A New Direction: Sunset of RECLAIM Program.” *SCAQMD Advisor* 25(2): 1. <http://www.aqmd.gov/docs/default-source/publications/aqmd-advisor/march-april-2018-advisor.pdf>

South Coast AQMD, 2019. Final Subsequent Environmental Assessment for Proposed Amended Rule 1110.2 – Emissions from Gaseous-and Liquid-Fueled Engines and Proposed Amended Rule 1100 – Implementation Schedule for NOx Facilities. South Coast AQMD No. 07252019TT, State Clearinghouse No. 2016071006, October 2019.

South Coast AQMD. 2023. “South Coast AQMD Air Quality Significance Thresholds.” March 2023. <https://www.aqmd.gov/docs/default-source/ceqa/handbook/south-coast-aqmd-air-quality-significance-thresholds.pdf?sfvrsn=25>

South Coast AQMD, 2024a. Draft HRCM Project Permit to Construct and Statement of Basis. September 3, 2024.

South Coast AQMD, 2024b. Tier 2 HRA Tool. Health Risk Assessment Tool and AERMOD-ready meteorological data files for use in South Coast AQMD permit applications and CEQA purposes, updated October 31, 2024. Accessed January 2025. https://www.aqmd.gov/assets/aermet/AERMET_files_And_HRA_Tool.html

Southern California Edison (SCE), 2023. *2023–2025 Wildfire Mitigation Plan*. Docket No. 2023-2025-WMPs, March 27, 2023. Accessed April 2024. https://www.sce.com/sites/default/files/AEM/Wildfire%20Mitigation%20Plan/2023-2025/2023-03-27_SCE_2023_WMP_R0.pdf

State Water Resources Control Board (SWRCB), 2024. GeoTracker. Accessed March 19, 2024. <https://geotracker.waterboards.ca.gov/map/?CMD=runreport&myaddress=SoCal+Gas+Honor+Rancho>

U.S. Department of Energy (DOE). 2024. “Hydrogen Production: Electrolysis.” Accessed April 4, 2024. Department of Energy, Office of Energy Efficiency and Renewable Energy. <https://www.energy.gov/eere/fuelcells/hydrogen-production-electrolysis>

U.S. Department of Transportation (DOT), 2018. “General Pipeline FAQs.” DOT, Pipeline and Hazardous Materials Safety Administration. Last updated November 6, 2018. Accessed March 19, 2024. <https://www.phmsa.dot.gov/faqs/general-pipeline-faqs>

U.S. Geological Survey (USGS), 2024. “Areas of Land Subsidence in California.” Accessed April 3, 2024. https://ca.water.usgs.gov/land_subsidence/california-subsidence-areas.html

ACRONYMS AND ABBREVIATIONS

Acronym/Abbreviation	Definition
AB	Assembly Bill
amsl	above mean sea level
A/N	Application Number
AER	Annual Emissions Reporting
APN	Assessor's Parcel Number
AQMP	air quality management plan
ARE	Advanced Renewable Energy
BACM	Best Available Control Measure
BACT	best available control technology
BARCT	best available retrofit control technology
BMP	best management practice
CalEPA	California Environmental Protection Agency
CAL FIRE	California Department of Forestry and Fire Protection
CalARP	California Accidental Release Prevention
CalEEMod	California Emissions Estimator Model
CalGEM	California Geologic Energy Management Division
CALGreen	California Green Building Standards Code
Caltrans	California Department of Transportation
CARB	California Air Resources Board
CBC	California Building Code
CCR	California Code of Regulations
CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
CGP	Construction General Permit
CH ₄	methane
CMB	Combustion Source
CO	carbon monoxide
CO ₂	carbon dioxide
CO _{2e}	carbon dioxide equivalent
CPCN	Certificate of Public Convenience and Necessity
CPUC	California Public Utilities Commission
CRHR	California Register of Historical Resources
CUPA	Certified Unified Program Agency
CY	cubic yards
dB	decibels
dBA	A-weighted decibels

Acronym/Abbreviation	Definition
DPM	diesel particulate matter
EDC	electric-motor-driven compressor
EIR	environmental impact report
EPA	Environmental Protection Agency
ERPG	Emergency Response Planning Guideline
ESD	emergency shut down
ESS	energy storage system
FHSZ	Fire Hazard Severity Zone
FTA	Federal Transit Administration
FWEMCP	Facility-Wide Engine Modernization Compliance Plan
GDC	gas-driven compressor
GHG	greenhouse gas
GO	General Order
HIA	acute hazard index
HIC	chronic hazard index
HMBP	Hazardous Materials Business Plan
Honor Rancho	Honor Rancho Storage Field
HP	horsepower
HRA	Health Risk Assessment
HRCM	Honor Rancho Compressor Modernization
HSC	Health and Safety Code
I	Interstate
ICE	Internal Combustion Engine
kV	kilovolt
LACDPW	Los Angeles County Department of Public Works
L _{eq}	sound equivalent level
LID	low impact development
LNG	liquid natural gas
LOS	level of service
LST	localized significance threshold
MEIR	maximally exposed individual resident
MEIW	maximally exposed individual worker
MESR	maximally exposed sensitive receptor
MICR	maximum individual cancer risk
MMRP	Mitigation Monitoring and Reporting Plan
MS4	Municipal Separate Storm Sewer System
MT	metric ton
NAHC	Native American Heritage Commission

Acronym/Abbreviation	Definition
NFPA	National Fire Protection Association
NH ₃	ammonia
NO _x	nitrogen oxides
NPDES	National Pollutant Discharge Elimination System
O ₃	ozone
OSHA	Occupational Safety and Health Administration
PDF	project design feature
PM10	respirable particulate matter
PM2.5	fine particulate matter
ppmvd	parts per million by volume, dry
PSPS	Public Safety Power Shutoff
PTC	Permit to Construct
PTE	potential to emit
RECLAIM	Regional Clean Air Incentives Market
RTC	RECLAIM Trading Credit
RWQCB	Regional Water Quality Control Board
SCADA	supervisory control and data acquisition
SCE	Southern California Edison
SCR	Selective Catalytic Reduction
SCV Water	Santa Clarita Valley Water Agency
SEA	subsequent environmental assessment
SIP	State Implementation Plan
SOFC	solid oxide fuel cell
South Coast AQMD	South Coast Air Quality Management District
SPCCP	Integrated Storm Water/Oil Spill Prevention, Control, and Countermeasure Plan
SR	State Route
SRA	source receptor area
SWPPP	stormwater pollution prevention plan
SWQDv	stormwater quality design volume
TAC	toxic air contaminant
TCR	tribal cultural resource
TSP	tubular steel pole
TTC UG Dip	transmission/telecommunication underground dip
USMP	Urban Stormwater Mitigation Plan
VMT	vehicle miles traveled
VOC	volatile organic compounds
WEZU	Wayside Equivalent Zone Unit

Acronym/Abbreviation	Definition
WMP	Wildfire Mitigation Plan

Appendix A
Retention Substation Project Description

Appendix B
Air Quality and Greenhouse Gas Technical Summary Memorandum

Appendix C-1
MMRP for the Final Program EIR for the 2016 AQMP

Appendix C-2

Mitigation Measures From the MMRP for the Final Program EIR for the 2016 AQMP which Are Applicable to the HRCM Project

Appendix D-1
Stormwater and Erosion Control Plan

Appendix D-2
Urban Stormwater Mitigation Plan

Appendix D-3
Hydrology and Hydraulic Report

Appendix E
HRCM Predictive Modeling Input/Output Worksheets

Appendix F-1
Biological Resources Assessment

Appendix F-2
2022 Jurisdictional Delineation

Appendix F-3
2023 Jurisdictional Delineation

Appendix G-1
Cultural Resources Report

Appendix G-2
Built Environment Report

Appendix H-1
Geotechnical Report

Appendix H-2
Access Road Geotechnical Report

Appendix H-3
Substation Geotechnical Report

Appendix H-4
Slope Stability Report

Appendix I
Paleontological Resources Memorandum

Appendix J-1
Construction Fire Protection Plan

Appendix J-2
Industrial Site-Specific Safety Plan