SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

PROTOCOL

NITROGEN OXIDES EMISSIONS COMPLIANCE TESTING FOR NATURAL GAS-FIRED WATER HEATERS AND SMALL BOILERS

MARCH 1995

(AMENDED JANUARY 1998)

SOURCE TESTING AND ENGINEERING BRANCH

APPLIED SCIENCE AND TECHNOLOGY

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT

PROTOCOL

NITROGEN OXIDES EMISSIONS COMPLIANCE TESTING FOR NATURAL GAS-FIRED WATER HEATERS AND SMALL BOILERS

MARCH 1995

(AMENDED JANUARY 1998)

SOURCE TESTING AND ENGINEERING BRANCH

APPLIED SCIENCE AND TECHNOLOGY

TABI	E OF CONTENTS	i
1.0	OVERVIEW AND APPLICABILITY	1
2.0	ENVIRONMENTAL CRITERIA	3
3.0	DEFINITIONS	4
	3.1 INDEPENDENT TESTING LABORATORY	4
	3.2 NATURAL GAS-FIRED WATER HEATER	4
	3.3 NATURAL GAS-FIRED BOILER	4
	3.3.1 HOT WATER HEATING BOILER	4
	3.3.2 HOT WATER SUPPLY BOILER	5
	3.3.3 STEAM HEATING BOILER	5
	3.4 NATURAL GAS-FIRED POOL HEATER	5
4.0	TEST CONDITIONS	6
	4.1 AMBIENT AIR TEMPERATURE	6
	4.2 SUPPLY WATER TEMPERATURE	6
	4.2.1 STORAGE, INSTANTANEOUS, AND CIRCULATING WATER	
	HEATERS	6
	4.2.2 POOL HEATERS	6
	4.2.3 STEAM AND HOT WATER BOILERS	6
	4.3 SUPPLY WATER PRESSURE	7
	4.3.1 WATER HEATERS	7
	4.3.2 POOL HEATERS	7
	4.3.3 STEAM AND HOT WATER BOILERS	7
	4.4 NATURAL GAS PRESSURE	7
	4.5 INSTALLATION REQUIREMENTS	7
5.0	INSTRUMENTATION	8
	5.1 PRESSURE MEASUREMENT	8
	5.2 TEMPERATURE MEASUREMENTS	8
	5.3 BAROMETRIC PRESSURE	9
	5.4 LIQUID FLOW MEASUREMENTS	9
	5.5 NATURAL GAS FLOW	9
	5.6 MASS MEASUREMENT	9
	5.7 TIME	9
	5.8 FLUE GAS ANALYSIS	. 10
	5.8.1 NOx CONCENTRATION	. 10
	5.8.2 CO CONCENTRATION	. 10

5.8.3 CARBON DIOXIDE OR OXYGEN ANALYSIS	10
5.8.3.1 CO2 CONCENTRATION	10
5.8.3.2 O2 CONCENTRATION	10
5.8.4 SAMPLE CONDITIONING SYSTEM	10
5.8.4.1 Sample Probe	11
5.8.4.1.1 Integrating Sample Probes	11
5.8.4.1.2 Open Ended Sample Probes	11
5.8.4.2 Sample Lines	11
5.8.4.3 Moisture Removal System	12
5.8.4.3.1 Permeation-Type Dryers	12
5.8.4.3.2 Refrigerated Condenser/Separator	12
5.8.4.4 Sample Pump	12
5.8.4.5 Flow Indicators	12
5.8.4.6 Pressure Indicators	12
5.8.4.7 Sample Vent	13
5.9 NATURAL GAS COMPOSITION	13
6.0 ANALYTICAL METHODS	14
6.1 START UP	14
6.1.1 ANALYZERS	14
6.1.2 SAMPLE CONDITIONING SYSTEM	14
6.2 CALIBRATION AND PERFORMANCE TESTING	14
6.2.1 ANALYZER CALIBRATION	14
6.2.2 SAMPLING SYSTEM BIAS TEST	14
6.2.3 RESPONSE TIME	15
6.2.4 NO2 TO NO CONVERSION EFFICIENCY	15
6.3 ANALYSIS	16
6.3.1 SAMPLE POINT	16
6.3.1.1 Appliances with Vents Less Than 12 Inch	
Diameter	16
6.3.1.2 Appliances With Vents 12 Inch Diameter or	
Greater	16
6.3.1.3 Appliances Which Do Not Have Vents	17
6.3.2 SAMPLING PERIOD	18
6.3.2.1 Integrating Sample Probes	18
6.3.2.2 Sample Traverses	18

		6.3.3	DATA RECORDING	18
7.0	INS	STALLATI	ION	19
	7.1	STORAC	GE TANK WATER HEATERS WITH INPUT RATINGS BELOW	
		75,	,000 BTU/HR	19
		7.1.1	WATER HEATER MOUNTING	19
		7.1.2	WATER SUPPLY	19
		7.1.3	WATER INLET AND OUTLET CONFIGURATION	19
		7.1.4	FUEL CONSUMPTION	20
		7.1.5	INTERNAL STORAGE TANK TEMPERATURE MEASUREMENTS	20
		7.1.6	AMBIENT TEMPERATURE	21
		7.1.7	INLET AND OUTLET WATER TEMPERATURE MEASUREMENTS	21
		7.1.8	FLOW CONTROL	21
		7.1.9	VENT REQUIREMENTS	22
		7.1.10	NATURAL GAS SAMPLE	22
	7.2	STORAC	GE TANK WATER HEATERS WITH INPUT RATINGS ABOVE	
		75,000) BTU PER HOUR	23
		7.2.1	WATER HEATER MOUNTING	23
		7.2.2	WATER SUPPLY	23
		7.2.3	WATER INLET AND OUTLET CONNECTIONS	23
		7.2	2.3.1 Storage Tank Water Heaters	23
		7.2	2.3.2 Instantaneous & Circulating Water Heaters	24
		7.2.4	FUEL CONSUMPTION	24
		7.2.5	INTERNAL STORAGE TANK TEMPERATURE MEASUREMENTS	24
		7.2.6	AMBIENT TEMPERATURE	25
		7.2.7	INLET AND OUTLET WATER TEMPERATURE MEASUREMENTS	25
		7.2	2.7.1 Storage Tank Water Heater	25
		7.2	2.7.2 Instantaneous and Circulating Water Heaters	25
		7.2.8	FLOW CONTROL	25
		7.2.9	VENT REQUIREMENTS	25
		7.2	2.9.1 Appliances Equipped With Draft Hoods	25
		7.2	2.9.2 Direct Vent Appliances	26
		7.2.10	NATURAL GAS SAMPLE	26
	7.3	POOL H	HEATERS	26
		7.3.1	Pool Heater Mounting	26
		7.3.2	Water Supply	26

	7.3.3	Water	Inlet and Outlet Connections	26
	7.3.4	Fuel (Consumption	27
	7.3.5	Interr	nal Storage Tank Temperature Measurements	27
	7.3.6	Ambier	nt Temperature	27
	7.3.7	Inlet	and Outlet Water Temperature Measurements	27
	7.3.8	Flow (Control	28
	7.3.9	Vent I	Requirements	28
	7.3.10	Natur	al Gas Sample	28
	7.4 STEAM	AND HO	DT WATER BOILERS	29
	7.4	4.1 ST	TEAM BOILERS	29
	7.4	4.1.1	Boiler Installation	29
	7.4	4.1.2	Water Supply	29
	7.4	4.1.3	Water Inlet and Outlet Connection	29
	7.4	4.1.4	Water Consumption	29
	7.4	4.1.5	Fuel Consumption	30
	7.4	4.1.6	Ambient Temperature	30
	7.4	4.1.7	Inlet and Outlet Temperature Measurements	30
	7.4	4.1.8	Vent Requirements	30
	7.4	4.1.9	Natural Gas Sample	31
	7.4.2	HOT WA	ATER BOILERS	31
	7.4	4.2.1	Boiler	31
	7.4	4.2.2	Water Supply	31
	7.4	4.2.3	Water Inlet and Outlet Connections	31
	7.4	4.2.4	Water Consumption	32
	7.4	4.2.5	Fuel Consumption	32
	7.4	4.2.6	Ambient Temperature	32
	7.4	4.2.7	Inlet and Outlet Water Temperature	
			Measurement	32
	7.4	4.2.8	Flow Control	32
	7.4	4.2.9	Vent Requirements	33
	7.4	4.2.10	Natural Gas Sample	33
8.0	TEST PROCI	EDURE.		34
	8.1 STORA	GE TANF	WATER HEATERS WITH INPUT RATINGS OF 75,000	
	BTU PI	ER HOUP	R OR LESS	34
	8.1.1	POWER	INPUT	34

		8.1.2 DETERMINATION OF STORAGE TANK VOLUME	34
		8.1.3 SETTING THE THERMOSTAT	34
		8.1.4 EMISSION TESTING	34
	8.2	STORAGE TANK WATER HEATERS WITH INPUT RATINGS ABOVE	
		75,000 BTU PER HOUR	36
		8.2.1 POWER INPUT	36
		8.2.2 SETTING THE THERMOSTAT	36
		8.2.3 EMISSION TESTING	36
		8.2.3.1 Instantaneous Water Heaters with Input	
		Ratings of 200,000 BTU per Hour or Less	36
		8.2.3.2 Storage with Input Ratings Above 75,000 BTU	
		per Hour, Instantaneous with Input Ratings	
		Above 200,000 BTU per Hour, and Circulating	
		Water Heaters	37
	8.3	POOL HEATERS	38
		8.3.1 Power Input	38
		8.3.2 Outlet Water Temperature	38
		8.3.3 Emission Testing	39
	8.4	STEAM AND HOT WATER BOILERS	40
		8.4.1 STEAM BOILERS	40
		8.4.1.1 Power Input	40
		8.4.1.2 Outlet Steam Pressure	40
		8.4.1.3 Emission Testing	40
		8.4.2 HOT WATER BOILER	41
		8.4.2.1 Power Input	41
		8.4.2.2 Outlet Water Temperature	41
		8.4.2.3 Emission Testing	41
.0	CAI	LCULATIONS	43
	9.1	CARBON NUMBER	43
	9.2	HEATING VALUE	44
	9.3	HEAT OUTPUT	45
		9.3.1 STORAGE TANK WATER HEATERS WITH INPUT RATINGS OF	
		75,000 BTU/HR OR LESS	45
		9.3.1.1 Storage Tank Capacity	45
		9.3.1.2 Computation	45

9

9.3.2 STORAGE TANK WATER HEATERS WITH INPUT RATINGS	
ABOVE 75,000 BTU PER HOUR, CIRCULATING, AND	
INSTANTANEOUS WATER HEATERS, AND POOL HEATERS	46
9.3.3 STEAM BOILERS	47
9.3.4 HOT WATER BOILERS	47
9.4 EMISSION OF NOX	48
9.4.1 NOx EMISSION (ng/J Heat Output)	48
9.4.2 NOx EMISSION (Concentration at 3% O2)	48
9.4.3 NOx EMISSION (lb/MMBtu)	49
10.0 REPORT	50
10.1 TEST RESULTS	50
10.1.1 ENVIRONMENT AND HOT WATER PRODUCTION	50
10.1.2 EMISSION MEASUREMENTS	50
10.1.3 GAS COMPOSITION ANALYSIS	51
10.1.4 ANALYZER CALIBRATION AND SAMPLING SYSTEM BIAS	
TEST	51
10.1.5 NO2 CONVERTER EFFICIENCY TEST	51
10.2 FORMS USED FOR PERFORMING THE CALCULATIONS	51
10.2.1 CALCULATION OF HEAT OUTPUT	51
10.2.2 CORRECTION OF GAS METER READING AND	
DETERMINATION OF FIRING RATE	52
10.2.3 CALCULATION OF NOX EMISSIONS	52
DRAWINGS AND FIGURES	53
DATA AND CALCULATION FORMS	60

NITROGEN OXIDES EMISSIONS COMPLIANCE TESTING FOR NATURAL GAS-FIRED WATER HEATERS & BOILERS

PROTOCOL

1.0 OVERVIEW AND APPLICABILITY

The South Coast Air Quality Management District adopted Rule 1121, Control of Nitrogen Oxides from Residential Type, Natural Gas-Fired Water Heaters, on December 1, 1978. This rule imposes an emission limit of 40 nanograms of NO_x (calculated as NO_2) per joule of heat output for residential type, natural gas-fired water heaters. Natural gas-fired water heaters require testing to certify compliance with the 40 nanograms of NO_x per joule emission limit before they can be supplied, offered for sale or sold within the jurisdiction of the South Coast Air Quality Management District.

Proposed Rule 1146.2, which applies to equipment larger than those regulated by Rule 1121, seeks to limit NOx emissions from commercial water heaters, small industrial boilers, and process heaters. These combustion equipment must also be tested and certified before they can be supplied, offered for sale or sold within the jurisdiction of the South Coast Air Quality Management District. Compliance will be based either on a nanogram per joule of heat output basis, or a concentration basis (parts per million, or pounds per million Btu heat input).

This protocol has been developed to support Rules 1121 and 1146.2 to ensure standardization of compliance certification test

-1-

procedures including the use of: specified test conditions, required test methods, specifications for test equipment, data collection/reporting and quality assurance requirements.

An independent testing laboratory, approved by the South Coast Air Quality Management District, shall conduct the testing and prepare a report of findings, including all raw data sheets/charts and laboratory analytical data. This report and a request for product certification must be submitted to the Executive Officer. The testing must demonstrate to the satisfaction of the Executive Officer that emissions from the operation of a natural gas-fired water heater or boiler meets the requirements of Rules 1121 and 1146.2 before product compliance certification is granted.

When a natural gas-fired water heater or boiler does not fall within the testing guidelines of this protocol, the protocol may be modified following an equivalency determination and written approval of the Executive Officer.

-2-

2.0 ENVIRONMENTAL CRITERIA

Testing shall be conducted indoors with the ambient air temperature of the test room maintained between $65^{\circ}F$ and $85^{\circ}F$ at all times during the test. The ambient air temperature during these tests shall not vary more than \pm 7°F from the average ambient air temperature determined as the arithmetic average of the air temperatures measured periodically at intervals no greater than 15 minutes throughout the duration of the test.

The ambient temperature shall be monitored and recorded before, during, and after the tests in accordance with Section 7.1.6 of this protocol.

The relative humidity shall be between 20% and 65% during the test. It shall be recorded before and after the test.

The barometric pressure shall be monitored and recorded before and after each test.

3.0 DEFINITIONS

For the purposes of this test protocol, the following definitions shall apply:

3.1 INDEPENDENT TESTING LABORATORY

A testing laboratory that meets the requirements of South Coast Air Quality Management District's <u>Rule 304</u>, <u>Paragraph (K)</u>, and is approved by the SCAQMD to conduct testing under this protocol.

3.2 NATURAL GAS-FIRED WATER HEATER

A closed vessel, in which water is heated by the combustion of natural gas and is withdrawn for use external to the vessel at pressures not exceeding 160 psig, including the apparatus by which heat is generated and all controls and devices necessary to prevent water temperatures from exceeding 210° F.

3.3 NATURAL GAS-FIRED BOILER

A self-contained gas burning appliance for supplying steam or hot water. A boiler can be of the following types:

3.3.1 <u>HOT WATER HEATING BOILER</u> A boiler in which no steam is generated, from which hot water is circulated for heating purposes and then returned to the boiler.

-4-

- 3.3.2 <u>HOT WATER SUPPLY BOILER</u> A boiler, completely filled with water, which furnishes hot water to be used externally to itself, and which operates at water pressures not exceeding 160 psig (1.10 MPa) and at water temperatures not exceeding 250°F (121°C) at or near the boiler outlet.
- 3.3.3 <u>STEAM HEATING BOILER</u> A boiler in which steam is generated and/or produced.

3.4 NATURAL GAS-FIRED POOL HEATER

An appliance designed for heating non-potable water stored at atmospheric pressure, such as water in swimming pools, spas, hot tubs and similar applications.

4.0 TEST CONDITIONS

4.1 AMBIENT AIR TEMPERATURE

The ambient air temperature shall be controlled to a value between $65^{\circ}F$ and $85^{\circ}F$ on a continuous basis.

4.2 SUPPLY WATER TEMPERATURE

- 4.2.1 STORAGE, INSTANTANEOUS, AND CIRCULATING WATER HEATERS The temperature of water being supplied to the water heater shall be maintained at 72 \pm 4^oF throughout the test. Instantaneous and circulating water heaters may use a recirculating line with pump to control inlet water temperature as specified by the manufacturer. The specified inlet water temperature for circulating water heaters shall not be more than 120^oF.
- 4.2.2 POOL HEATERS The supply water temperature shall not be less than $65^{\circ}F$ and the outlet water temperature not more than $115^{\circ}F$ with a rise of $40^{\circ}F$. When specified by the manufacturer the water temperature rise may be adjusted to a lower value, but not less than $10^{\circ}F$ with the average temperature of the inlet and outlet being 90° \pm $5^{\circ}F$.
- 4.2.3 STEAM AND HOT WATER BOILERS The temperature of make-up water shall be $70^{\circ} \pm 2^{\circ}$ F. If required, a recirculating pump may be used to provide feedwater at the manufacturer's specified temperature.

4.3 SUPPLY WATER PRESSURE

- 4.3.1 WATER HEATERS During tests when water is not being withdrawn, the supply pressure shall be maintained between 40 psig and the maximum allowable pressure specified by the appliance manufacturer. When water is being withdrawn, the supply pressure shall be adequate to maintain the specified test flows.
- 4.3.2 POOL HEATERS The supply pressure shall be adequate to maintain the specified test flows.
- 4.3.3 STEAM AND HOT WATER BOILERS The supply pressure shall be in accordance with the manufacturer's instructions.

4.4 NATURAL GAS PRESSURE

Maintain the supply pressure in accordance with the manufacturer's specifications. If the supply pressure is not specified, maintain a supply pressure of 7-10 inches of water column. Use natural gas with a dry or higher heating value of 1040 \pm 25 BTU per standard cubic foot (14.73 psia and 60^oF).

4.5 INSTALLATION REQUIREMENTS

Tests shall be performed with the water heater and instrumentation in accordance with Section 7.

5.0 INSTRUMENTATION

All instrumentation within this section and pertaining to this protocol shall be calibrated as a minimum within the requirements set forth in SCAQMD Source Test Methods Chapter III, Calibrations.

5.1 PRESSURE MEASUREMENT

Pressure measurement instruments shall have an error no greater than the following values:

Measurement	Accuracy	Precision
Gas Pressure	<u>+</u> 0.1" of water column	<u>+</u> 0.05" of water column
Atmospheric Pressure	<u>+</u> 0.1" of Hg column	<u>+</u> 0.05" of Hg column
Water and Steam Pressure	<u>+</u> 1.0 psi	<u>+</u> 0.50 psi

5.2 TEMPERATURE MEASUREMENTS

Temperature measuring instruments shall have an error no greater than the following values:

	Accuracy	Precision
Inlet/outlet water temperatures	<u>+</u> 0.2 ⁰ F	<u>+</u> 0.1 ⁰ F
Storage Tank Temperature	<u>+</u> 0.5 ⁰ F	<u>+</u> 0.25 ⁰ F
Ambient Temperature	<u>+</u> 0.2 ⁰ F	<u>+</u> 0.1 ⁰ F

The time constant of instruments measuring inlet and outlet water temperatures shall be 5 seconds or less.

5.3 BAROMETRIC PRESSURE

Use a mercury, aneroid, or other barometer capable of measuring atmospheric pressure to within 0.1 in. Hg.

5.4 LIQUID FLOW MEASUREMENTS

The accuracy of liquid flow measurements, using calibration curves if furnished, shall be equal to or less than + 2% of the measured value.

5.5 NATURAL GAS FLOW

The quantity of fuel used by the water heater shall be measured in cubic feet with dry gas meter and associated readout device that is accurate within \pm 1% of the reading. The dry gas meter reading shall be corrected for gas pressure and temperature.

5.6 MASS MEASUREMENT

Mass shall be measured with instruments that are accurate within + 1%.

5.7 TIME

The elapsed time measurement shall be measured with an instrument that is accurate within \pm 0.5 seconds per hour.

-9-

5.8 FLUE GAS ANALYSIS

- 5.8.1 $\underline{NO_x}$ <u>CONCENTRATION</u> A chemiluminescence NO_x Analyzer shall be employed to measure NO_x in flue gas. Performance specifications of the analyzer shall be in accordance with SCAQMD Method 100.1 (Appendix A).
- 5.8.2 <u>CO CONCENTRATION</u> A non-dispersive infrared analyzer shall be employed to measure CO in flue gas. Performance specifications of the analyzer shall be in accordance with SCAQMD Method 100.1 (Appendix A).

5.8.3 CARBON DIOXIDE OR OXYGEN ANALYSIS

- 5.8.3.1 <u>CO₂ CONCENTRATION</u> A non-dispersive infrared analyzer shall be employed to measure CO₂ in flue gas. Performance specifications of the analyzer shall be in accordance with SCAQMD Method 100.1 (Appendix A).
- 5.8.3.2 O_2 <u>CONCENTRATION</u> As an alternative to measuring CO_2 for emission limits which require an oxygen correction, an electrochemical type analyzer shall be employed to measure O_2 in flue gas. Performance specifications of the analyzer shall be in accordance with SCAQMD Method 100.1 (Appendix A).
- 5.8.4 <u>SAMPLE CONDITIONING SYSTEM</u> The NO_x , CO, and CO_2 (or O_2) analyzers shall sample flue gas delivered by a single

-10-

sample conditioning system. The gases shall be measured simultaneously after undergoing identical sample conditioning. Figures 1 and 2 show acceptable sample conditioning systems. Additional components may be added at the user's discretion. However, deviations from the basic design must be approved by the Executive Officer.

5.8.4.1 Sample Probe

- 5.8.4.1.1 <u>Integrating Sample Probes</u> Integrating sample probes may be used with vents less than 12 inches in diameter. Figure 3 shows an acceptable hole layout for an integrating sample probe. The probe shall be of 316 stainless steel construction.
- 5.8.4.1.2 <u>Open Ended Sample Probes</u> Open ended sample probes shall be used to sample vents 12 inches in diameter and larger. They shall also be used to measure emissions from heaters and boilers designed for outdoor use which do not have vents.
- 5.8.4.2 <u>Sample Lines</u> The sample line shall be of Teflon construction. It shall be electrically heated. The allowable temperature range is 175^oF - 300^oF. The use of self-limiting heated sample line is permitted.

-11-

- 5.8.4.3 Moisture Removal System
- 5.8.4.3.1 <u>Permeation-Type Dryers</u> A Permapure permeation-type dryer may be employed to dry the sample gas. The air to the dryer shall be dried with a heat-less dryer, which includes a colored moisture indicator.
- 5.8.4.3.2 <u>Refrigerated Condenser/Separator</u> A refrigerated condenser/separator designed to minimize contact between the condensate and the sample gas may be used to dry the sample gas. The dew point of the dry gas shall be less than 35^oF.
- 5.8.4.4 <u>Sample Pump</u> The sample pump shall be a diaphragm type. The diaphragm shall be Viton A; other wetted parts of the pump shall be 316 stainless steel.
- 5.8.4.5 <u>Flow Indicators</u> Because the flow indicators in the sample conditioning system are for the operators convenience, they do not have to be calibrated. Water shall not be allowed to collect in the indicator tubes.
- 5.8.4.6 <u>Pressure Indicators</u> Because the pressure indicators in the sample conditioning system are for the operators convenience, they do not have to be calibrated.

-12-

5.8.4.7 <u>Sample Vent</u> The analyzers shall have an unrestricted atmospheric sample vent.

5.9 NATURAL GAS COMPOSITION

Heating value or gas composition of the fuel must be measured. If the heating value is measured, the reproducibility of the measurement device shall be \pm 1% of full scale. The precision of the device shall be \pm 2 Btu/dscf. Calibration shall be conducted weekly using the device manufacturer's directions.

If the composition of the fuel is measured, it shall be measured with a gas chromatograph having a TC detector. Ethane, Propane, C4+, CO_2 , and permanent gases will be measured directly. Methane may be determined by difference. The reproducibility of the gas chromatograph shall be <u>+</u> 1% of full scale for each measured component.

6.0 ANALYTICAL METHODS

6.1 START UP

- 6.1.1 <u>ANALYZERS</u> Allow analyzers to warm up according to manufacturer's instructions. It is recommended that the analyzers be allowed to run overnight before testing.
- 6.1.2 <u>SAMPLE CONDITIONING SYSTEM</u> Energize sample pump and sample line. Allow temperatures and flows to come to equilibrium.

6.2 CALIBRATION AND PERFORMANCE TESTING

- 6.2.1 <u>ANALYZER CALIBRATION</u> Use calibration gases which are certified according to EPA Traceability Protocol Number 1. CO calibration gases may be certified to an accuracy of <u>+</u> 2%. Select analytic ranges so that measured gas concentrations are between 20% and 95% of full scale during the last 10 minutes of each test. Calibrate the analyzers according to the manufacturer's instructions and SCAQMD Method 100.1. It is recommended that the calibration of each analyzer be checked after each test. A 2% drift invalidates the analysis. SCAQMD Method 100.1 is included as Appendix A.
- 6.2.2 <u>SAMPLING SYSTEM BIAS TEST</u> A sampling system bias test must be performed in accordance with SCAQMD Method 100.1

-14-

before and after each day of testing. The sample bypass flowrate shall not be altered during this test.

6.2.3 <u>RESPONSE TIME</u> The system response time test must be performed before each day of testing if NO_X concentrations are to be determined by multi-point traverse. The response time test may be performed in conjunction with the sampling system bias test.

To determine response time, first introduce zero gas into the sample probe until all readings are stable; then switch to high-level calibration gas until a stable reading is obtained. Record the upscale response time, which is defined as the amount of time for the system to display 95% of the step change. Next re-introduce zero gas until all readings are stable. Record the downscale response time. The greater time is the "response time" for the system.

6.2.4 <u>NO₂ TO NO CONVERSION EFFICIENCY</u> The converter

efficiency shall be measured in accordance with EPA Method 20 at least once a month. If the efficiency does not meet the requirements listed in Form I, the converter must be replaced, and all data acquired since the last converter efficiency test shall be considered suspect. The conversion efficiency test is included as Appendix B.

-15-

6.3 ANALYSIS

6.3.1 SAMPLE POINT

- 6.3.1.1 <u>Appliances with Vents Less Than 12 Inch Diameter</u> An integrating sample probe of the proper length is installed six inches from the upper end of the vent pipe. The probe must pass through the center of the vent and contact the opposite side. A system bias check and leak check shall be performed after changing integrating sample probes.
- 6.3.1.2 <u>Appliances With Vents 12 Inch Diameter or Greater</u> An open ended sample probe will be used to traverse the vent pipe at 1/2 vent diameter below its upper end. The traverse will be conducted along two diameters perpendicular to the axis of the vent and to each other. Eight points will be sampled on each diameter. The distance of the sample points from the inside surface of the vent pipe are given in inches in the following table:

VENT -			SAM	PLE PC)INT			
DIAMETER	1	2	3	4	5	6	7	8
12	0.5	1.3	2.3	3.9	8.1	9.7	10.7	11.5
13	0.5	1.4	2.5	4.2	8.8	10.5	11.6	12.5
14	0.5	1.5	2.7	4.5	9.5	11.3	12.5	13.5
15	0.5	1.6	2.9	4.8	10.2	12.1	13.4	14.5
16	0.5	1.7	3.1	5.2	10.8	12.9	14.3	15.5
17	0.5	1.8	3.2	5.5	11.5	13.8	15.2	16.5
18	0.6	1.9	3.5	5.8	12.2	14.5	16.1	17.4
19	0.6	2.0	3.7	6.1	12.9	15.3	17.0	18.4
20	0.6	2.1	3.9	6.5	13.5	16.1	17.9	19.4

The sample probe will be progressively inserted into the vent pipe along one diameter and then the other until all 16 points have been sequentially sampled.

6.3.1.3 <u>Appliances Which Do Not Have Vents</u> Appliances designed for outdoor use which do not have vents shall be sampled by traverse with an open ended probe. The vent guard will be divided into 16 rectangles of equal area on a 4x4 matrix. The sample probe shall be sequentially inserted through the vent guard at the center of each rectangle and the emissions analyzed.

6.3.2 SAMPLING PERIOD

- 6.3.2.1 <u>Integrating Sample Probes</u> When sampling with an integrating sample probe, the analytical system shall operate continuously during the complete test cycle of the appliance. Sampling during appliance warm-up is not required for storage-type water heaters.
- 6.3.2.2 <u>Sample Traverses</u> When sample traverses are required, sampling shall begin after the appliance has reached steady state as defined in Section 8 for each water heater or boiler. Each traverse point shall be sampled for at least one minute plus the system response time.
- 6.3.3 <u>DATA RECORDING</u> The output of each analyzer shall be recorded on a strip chart recorder having a minimum width of six inches. Alternately, the outputs may be recorded with a data logger. The sampling rate of the logger must allow each point to be read at least once every 5 seconds.

7.0 INSTALLATION

7.1 STORAGE TANK WATER HEATERS WITH INPUT RATINGS BELOW 75,000 BTU/HR

- 7.1.1 <u>WATER HEATER MOUNTING</u> Mounting shall be in accordance with the manufacturer's instructions.
- 7.1.2 <u>WATER SUPPLY</u> The water supply shall be capable of delivering water at conditions as specified in Sections
 4.2 and 4.3 of this protocol.
- 7.1.3 WATER INLET AND OUTLET CONFIGURATION Inlet and outlet piping connections shall be configured as illustrated in Figures 4, 5, or 6, except a water heater 36 inches high or less intended for installation either beneath, adjacent to, or in conjunction with a counter shall have the inlet and outlet connections configured as illustrated in Figures 7a and 7b. Type "L" hard copper tubing, the same size as the connections on the water heater, shall be connected to the tank and extend 24 inches in length. If a water heater 36 inches high or less is not equipped with pipe to extend the field connection point of the water heater lines to outside the jacket or cabinet, type "L" hard copper tubing shall be used to extend the water line horizontally to the exterior of the jacket or cabinet. Unions may be used to facilitate installation and removal. A pressure

-19-

gauge shall be installed in the supply at a location upstream of the 24 inch cold water inlet pipe. An appropriately rated pressure and temperature relief valve shall be installed on all water heaters at the port specified by the manufacturer. Discharge piping for the relief valve shall be non-metallic. All energy conservation accessories which are supplied with the water heater shall be installed for testing.

- 7.1.4 <u>FUEL CONSUMPTION</u> Install one or more instruments to measure the quantity of natural gas consumption in accordance with section 5.5 of this protocol.
- 7.1.5 INTERNAL STORAGE TANK TEMPERATURE MEASUREMENTS Install six temperature measurement sensors inside the water heater tank with a vertical distance of at least four inches between successive sensors. A temperature sensor shall be positioned at the vertical midpoint of each of the six equal volume nodes within the tank. Nodes designate the equal volumes used to evenly partition the total volume of the tank. As much as possible, the temperature sensors should be positioned away from any anodic protective devices, tank walls, and flue pipe walls. If the tank cannot accommodate six temperature sensors and meet the installation requirements, install the maximum number of sensors which comply with the installation requirements. The temperature sensors

-20-

shall be installed either through: (1) the anodic device opening; (2) the relief valve opening; or (3) the hot water outlet. If installed through the relief valve opening or the hot water outlet, a tee fitting and elbow shall be installed such that the outlet piping is as close as possible to its original location. If the hot water heater includes a heat trap, the tee fitting shall be between the heat trap and the storage tank. Fittings added to accommodate the temperature sensors shall be covered with thermal insulation having a thermal resistance (R) value not less than 4 hr-ft²-^OF/BTU.

- 7.1.6 <u>AMBIENT TEMPERATURE</u> The ambient temperature shall be measured at the approximate vertical mid-point of the heater and approximately 2 feet from the surface of the water heater. The sensor shall be shielded against radiation.
- 7.1.7 <u>INLET AND OUTLET WATER TEMPERATURE MEASUREMENTS</u> Install temperature sensors in the cold-water inlet pipe and hot-water outlet pipe as shown in Figures 4, 5, 6, or 7, as applicable and in accordance with ASHRAE STD 41.1-1986.
- 7.1.8 <u>FLOW CONTROL</u> A flow control valve shall be installed to provide flow as specified within Section 8 of this protocol.

-21-

VENT REQUIREMENTS Establish a natural draft in the 7.1.9 following manner. For water heaters having a vertically discharging draft hood outlet, a five foot vertical vent pipe extension having a diameter equal to the largest flue collar size of the draft hood outlet shall be installed. For water heaters having a horizontally discharging draft hood outlet, a 90⁰ elbow having a diameter equal to the largest flue collar size of the draft hood shall be connected to the draft hood outlet. A five foot length of standard double walled vent pipe (Type B vent) shall be connected to the elbow and oriented to discharge vertically upward. Optionally, a five foot length of single walled vent pipe may be installed if it is insulated up to the sampling port with glass fiber having a thermal resistance (R) value of not less than 4 hr-ft²-^OF/Btu.

> Direct vent water heaters shall be installed with venting equipment specified in the manufacturers instructions using the minimum vertical and horizontal lengths of vent pipe recommended by the manufacturer.

7.1.10 <u>NATURAL GAS SAMPLE</u> Valving and a tap shall be provided in the natural gas supply to allow collecting a sample of fuel for composition analysis.

- 7.2 STORAGE TANK WATER HEATERS WITH INPUT RATINGS ABOVE 75,000 BTU PER HOUR; CIRCULATING AND INSTANTANEOUS WATER HEATERS.
- •7.2.1 <u>WATER HEATER MOUNTING</u> Mounting shall be in accordance with the manufacturer's instructions.
- 7.2.2 <u>WATER SUPPLY</u> The water supply shall be capable of delivering water at conditions as specified in 4.2 and 4.3 of this protocol.

7.2.3 WATER INLET AND OUTLET CONNECTIONS

7.2.3.1 <u>Storage Tank Water Heaters</u> Storage tank water heaters which are not equipped with integral heat traps shall have inlet and outlet piping connections configured as illustrated in Figures 4, 5, or 6. Storage tank water heaters which incorporate integral heat traps may have the inlet and outlet piping installed in any convenient fashion. Unions may be utilized to facilitate installation and removal.

> If the manufacturer has not provided a temperature and pressure relief valve, one shall be installed on the water heater at the port specified by the manufacturer. Discharge piping for the relief valve shall be nonmetallic.

The relief value and the inlet and outlet piping including heat traps shall be insulated with a material having a thermal resistance (R) value not less than 4 $hr-ft^2-{}^{O}F/Btu$. The insulation on the inlet and outlet piping shall extend four feet from the connection with the appliance.

7.2.3.2 <u>Instantaneous and Circulating Water Heaters</u> Inlet and outlet piping shall be installed as shown in Figure 8. If the manufacturer has not provided a temperature and pressure relief valve, one shall be installed for test purposes.

The inlet and outlet piping including recirculating loop, if used, shall be insulated with material having a thermal resistance (R) value not less than 4 hr-ft²- $^{\circ}_{F/Btu}$.

- 7.2.4 <u>FUEL CONSUMPTION</u> Install one or more instruments to measure the quantity of natural gas consumption in accordance with Section 5.5 of this protocol.
- 7.2.5 <u>INTERNAL STORAGE TANK TEMPERATURE MEASUREMENTS</u> Internal tank temperature measurements are not required.

7.2.6 <u>AMBIENT TEMPERATURE</u> The ambient temperature shall be measured in accordance with Section 7.1.6 of this protocol.

7.2.7 INLET AND OUTLET WATER TEMPERATURE MEASUREMENTS

- 7.2.7.1 <u>Storage Tank Water Heater</u> The inlet and outlet temperature sensors shall be installed as shown in Figures 4,5, and 6 as applicable and in accordance with ASHRAE STD 41.1-1986.
- 7.2.7.2 <u>Instantaneous and Circulating Water Heaters</u> Install temperature sensors as shown in Figure 8 and in accordance with ASHRAE STD 41.1-1986. Supply and outlet water sensors shall be located as close to the appliance as is practical.
- 7.2.8 <u>FLOW CONTROL</u> A flow control valve shall be installed to provide flow as specified within Section 8 of this protocol.

7.2.9 VENT REQUIREMENTS

7.2.9.1 <u>Appliances Equipped With Draft Hoods</u> A water heater having a vertically discharging draft hood shall have attached to and vertically above the outlet, five feet of vent pipe the same size as the draft hood outlet. A water heater having a horizontally discharging draft

-25-

hood shall have attached a 90° elbow and five feet of vent pipe the same size as the draft hood outlet. If necessary to prevent condensation, the vent pipe must be insulated with an (R) value not less than 4 hr-ft²- $^{\circ}$ F/Btu.

- 7.2.9.2 <u>Direct Vent Appliances</u> The appliance shall be installed with the venting arrangement specified in the manufacturer's instructions. The venting must be insulated if the inlet flow of combustion air is not restricted.
- 7.2.10 <u>NATURAL GAS SAMPLE</u> Valving and a tap shall be provided in the natural gas supply to allow collecting a sample of fuel for composition analysis.

7.3 POOL HEATERS

- 7.3.1 <u>Pool Heater Mounting</u> Mounting of the pool heater shall be in accordance with the manufacturer's instructions.
- 7.3.2 <u>Water Supply</u> The water supply shall be capable of delivering water at conditions as specified in 4.2 and 4.3 of this protocol.
- 7.3.3 <u>Water Inlet and Outlet Connections</u> Piping connections shall be as shown in figure 8. Heat traps, insulation,

-26-

and other conservation equipment supplied with the heater shall be installed for testing. When required to achieve temperature rise and minimum flow as specified by the manufacturer, a recirculating loop of minimum length and a pump shall be provided by the manufacturer. The recirculating loop shall be insulated with material having a thermal resistance (R) value of at least 4 hr- $ft^2-{}^{\circ}F/Btu$.

Any device provided to maintain water flow rate shall be removed or adjusted to prevent bypassing of water around the heat exchanger.

- 7.3.4 <u>Fuel Consumption</u> Install one or more instruments to measure the quantity of natural gas consumed in accordance with Section 5.5 of this protocol.
- 7.3.5 <u>Internal Storage Tank Temperature Measurements</u> Internal tank temperature measurements are not required.
- 7.3.6 <u>Ambient Temperature</u> The ambient air temperature shall be measured in accordance with Section 7.1.6 of this protocol.
- 7.3.7 <u>Inlet and Outlet Water Temperature Measurements</u> Install temperature sensors as shown in Figure 8. Supply and outlet water sensors shall be located as close to the

-27-

appliance as is practical and in accordance with ASHRAE STD 41.1-1986.

- 7.3.8 <u>Flow Control</u> A flow control valve shall be installed to provide flow as specified within Section 8 of this protocol.
- 7.3.9 <u>Vent Requirements</u> For pool heaters having a vertically discharging draft hood outlet, a 5 foot vertical vent pipe extension having a diameter equal to the largest flue collar size of the draft hood shall be connected to the draft hood outlet. For heaters having a horizontally discharging draft hood outlet, a 90[°] elbow having diameter equal to the largest collar size of the draft hood shall be connected to the draft hood outlet and a vertical 5 feet of length of vent pipe shall be connected to the elbow. If necessary to prevent condensation, the vent pipe must be insulated with an (R) value not less than 4 hr-ft²-[°]F/Btu.

An appliance for outdoor installation with the venting system provided as part of the appliance shall be tested with the venting system in place.

7.3.10 <u>Natural Gas Sample</u> Valving and a tap shall be provided in the natural gas supply to allow collecting a sample of fuel for composition analysis.

-28-

7.4 STEAM AND HOT WATER BOILERS

7.4.1 STEAM BOILERS

7.4.1.1 <u>Boiler Installation</u> The boiler shall be installed in accordance with the manufacturer's instructions and all applicable safety codes.

Feed water to the boiler shall be automatically controlled to maintain a constant water level in the boiler.

- 7.4.1.2 <u>Water Supply</u> The water supply shall be capable of delivering water at conditions as specified in 4.2 and 4.3 of this protocol.
- 7.4.1.3 <u>Water Inlet and Outlet Connection</u> Piping connections shall be in accordance with the manufacturers instructions and have the general arrangement shown in Figure 9. All conservation equipment supplied with the boiler shall be installed for testing.
- 7.4.1.4 <u>Water Consumption</u> Install one or more instruments to measure the quantity of water delivered to the boiler in accordance with Section 5.4 of this protocol.

- 7.4.1.5 <u>Fuel Consumption</u> Install one or more instruments to measure the quantity of natural gas consumed in accordance with Section 5.5 of this protocol.
- 7.4.1.6 <u>Ambient Temperature</u> The ambient air temperature shall be measured in accordance with Section 7.1.6 of this protocol.
- 7.4.1.7 <u>Inlet and Outlet Temperature Measurements</u> Install a temperature sensor in the water inlet pipe approximately 24 inches from the boiler inlet. Install a temperature sensor in the steam outlet pipe within 24 inches of the boiler outlet in accordance with ASHRAE STD 41.1-1986.
- 7.4.1.8 <u>Vent Requirements</u> The boiler shall be connected to a sheet-metal vent pipe the same size as the draft hood outlet. When the flue gases are vented horizontally, a 90-degree, four-piece, sheet metal elbow and five feet of vertical stack shall be attached to and above the outlet. When the flue gases are vented vertically, five feet of vertical stock shall be attached to and vertically above the outlet. The vent pipe shall be insulated with a thermal resistance (R) value not less than 4 hr-ft²-^oF/Btu.

-30-

A boiler with a power burner or direct vent system shall have vent pipe installed in accordance with the manufacturer's instructions.

An appliance for outdoor installation with the venting system provided as part of the appliance shall be tested with the venting system in place.

7.4.1.9 <u>Natural Gas Sample</u> Valving and a tap shall be provided in the natural gas supply to allow collecting a sample of fuel for composition analysis.

7.4.2 HOT WATER BOILERS

- 7.4.2.1 <u>Boiler</u> The boiler shall be installed in accordance with the manufacturer's instructions and all applicable safety codes.
- 7.4.2.2 <u>Water Supply</u> The water supply shall be capable of delivering water at conditions specified in Sections 4.2 and 4.3 of this protocol.
- 7.4.2.3 <u>Water Inlet and Outlet Connections</u> Piping connections shall be in accordance with the manufacturer's instructions and have the general arrangement shown in Figure 8. Any conservation equipment supplied with the heater shall be installed for testing. When required, a recirculating loop of minimum length and a pump shall be

-31-

provided by the manufacturer. The recirculating loop shall be insulated with material having a thermal resistance (R) value of at least 4 hr-ft²- O F/Btu.

- 7.4.2.4 <u>Water Consumption</u> Install one or more instruments to measure the quantity of water delivered to the boiler in accordance with Section 5.4 of this protocol.
- 7.4.2.5 <u>Fuel Consumption</u> Install one or more instruments to measure the quantity of natural gas consumed in accordance with Section 5.5 of this protocol.
- 7.4.2.6 <u>Ambient Temperature</u> The ambient air temperature shall be measured in accordance with Section 7.1.6 of this protocol.
- 7.4.2.7 <u>Inlet and Outlet Water Temperature Measurement</u> Install temperature sensors in the water inlet and outlet piping approximately 24 inches from the boiler and in accordance with ASHRAE STD 41.1-1986. The outlet piping between the boiler and the temperature sensor shall be insulated with material having a thermal resistance (R) value of not less than 4 hr-ft²-^oF/Btu.
- 7.4.2.8 <u>Flow Control</u> A flow control valve shall be installed in the outlet piping downstream of the temperature sensor

-32-

to provide flow as specified in Section 8 of this protocol.

7.4.2.9 <u>Vent Requirements</u> The boiler shall be connected to a sheet-metal vent pipe the same size as the draft hood outlet. When the flue gases are vented horizontally, a 90-degree, four-piece, sheet-metal elbow and five feet of vertical stack shall be attached to and above the outlet. When the flue gases are vented vertically, five feet of vertical stack shall be attached to and vertically above the outlet. The vent pipe shall be insulated with a thermal resistance (R) value not less than 4 hr-ft²-^oF/Btu.

A boiler using a power burner with positive vent pressures, or with a direct vent system shall have vent pipe installed in accordance with the manufacturer's instructions.

An appliance for outdoor installation with the venting system provided as part of the appliance shall be tested with the venting system in place.

7.4.2.10 <u>Natural Gas Sample</u> Valving and a tap shall be provided in the natural gas supply to allow collecting a sample of fuel for composition or heating value analysis.

8.0 TEST PROCEDURE

- 8.1 STORAGE TANK WATER HEATERS WITH INPUT RATINGS OF 75,000 BTU PER HOUR OR LESS
- 8.1.1 <u>POWER INPUT</u> Burners shall be adjusted to their BTU input rates at <u>+</u> 10% of the stated manifold pressure. The heater shall be tested within <u>+</u> 2% of the manufacturer's specified normal hourly BTU input rate.
- 8.1.2 <u>DETERMINATION OF STORAGE TANK VOLUME</u> Determine the storage tank capacity, VST, of the water heater, in gallons, by subtracting the tare weight - measured while the tank is empty - from the gross weight of the storage tank completely filled with water with all air eliminated and dividing the resulting net weight by the density of water at the temperature.
- 8.1.3 <u>SETTING THE THERMOSTAT</u> The thermostat dial shall be adjusted so that the maximum mean temperature after cutout is $135^{\circ}F + 5^{\circ}F$.
- 8.1.4 <u>EMISSION TESTING</u> With the water heater turned off, fill the water heater with supply water and apply pressure as described in Section 4.3.1. Turn on the water heater and allow heater to come to operational temperature. The water heater may be allowed to come to temperature overnight.

-34-

Initiate burner cut-in by withdrawing 10 gallons of water; wait until cut-out occurs. Measure the mean tank temperature using the temperature sensors described in section 7.1.5 every minute until the maximum mean storage tank temperature is achieved. This is the start of the test. Record the time, the mean tank temperature (To), and the gas meter reading. Note the test start on the analyzer recorders.

Draw water from the tank at the rate of 3.0 ± 0.25 gallons per minute until 10.7 ± 0.5 gallons are withdrawn. If burner cut-in has not occurred when 10.7 gallons have been withdrawn, continue withdrawal until cut-in occurs.

Measure the inlet and outlet water temperature beginning 15 seconds after the draw is initiated and at subsequent 5 second intervals through the duration of the draw. Record the time of cut-in and cut-out. The arithmetic mean of the hot water discharge temperature and the cold water inlet temperature shall be determined for the draw. Record the weight or volume of water withdrawn. At the end of the recovery period, record the maximum tank temperature observed after cut-out, Tmax and the volume of fuel consumed. Collect a sample of fuel for composition analysis. Determine the arithmetic mean of the CO₂ and NO_x concentrations measured during each of the last three one-minute periods prior to cut-out;

-35-

record the maximum CO concentration measured during the test.

8.2 STORAGE TANK WATER HEATERS WITH INPUT RATINGS ABOVE 75,000 BTU PER HOUR; CIRCULATING AND INSTANTANEOUS WATER HEATERS

- .8.2.1 <u>POWER INPUT</u> Burners shall be adjusted to their BTU input rates at <u>+</u> 10% of the stated manifold pressure. The heater shall be tested within <u>+</u> 2% of the manufacturer's specified normal hourly BTU input rate.
- 8.2.2 <u>SETTING THE THERMOSTAT</u> The thermostat shall be placed in the maximum position, or bypassed if the device cycles.

8.2.3 EMISSION TESTING

8.2.3.1 <u>Instantaneous Water Heaters with Input Ratings of</u> <u>200,000 BTU per Hour or Less</u> The water flow shall be adjusted to provide a discharge temperature of 135 <u>+</u> 5^oF. After the outlet temperature has become constant, as indicated by no variation in excess of 1^oF over a three minute period, record the time, water meter and gas meter reading. Do not interrupt fuel to the water heater. Record the inlet and outlet temperatures at every 15 seconds interval throughout the test. Temperature rise cannot change by more than 2^oF during the test. Continuously record the NO_x , CO and CO_2 (or O_2) emissions. After 15 minutes or twice the water residence time, whichever is longer, record the water meter and gas meter readings. Determine the arithmetic mean of the hot water discharge temperature and the cold water inlet temperature during the draw. Collect a sample of fuel for composition analysis. Determine the arithmetic mean of CO_2 (or O_2) and NO_x concentrations measured during the last three minutes of the test. Record the maximum CO concentration measured.

8.2.3.2 Storage with Input Ratings Above 75,000 BTU per Hour, Instantaneous with Input Ratings Above 200,000 BTU per Hour, and Circulating Water Heaters The water flow shall be adjusted to provide a discharge temperature of $140^{\circ} \pm 2^{\circ}$ F. After the outlet temperature has become constant, as indicated by no variation in excess of 1° F over a three minute period, record the time, gas meter and water meter readings. Do not interrupt the flow of fuel to the water heater. Record the inlet and outlet temperatures at every 15 second interval throughout the test. Temperature rise cannot change by more than 2° F during the test. Continuously record the NO_x, CO and CO₂ (or O₂) emissions. After 15 minutes or twice the water residence time, whichever is longer, record the water meter and gas meter readings.

-37-

If a sample traverse is required, identify the traverse point being sampled on the strip chart recorder and record the concentration of NO_x and CO_2 (or O_2) at each point. When the traverse is complete or after 15 minutes, whichever is longer, record the gas and water meter readings.

Determine the arithmetic mean of the hot water discharge temperature and the cold water inlet temperature during the test. Collect a sample of fuel for composition analysis. If an integrating sample probe was employed, determine the arithmetic mean of CO_2 (or O_2) and NO_x concentrations measured during each of the last three one-minute periods of the test. Record the highest CO concentration during the test.

8.3 POOL HEATERS

- 8.3.1 <u>Power Input</u> Burners shall be adjusted to their BTU input rates at <u>+</u> 10% of the stated manifold pressure. The heater shall be tested within <u>+</u> 2% of the manufacturer's specified normal hourly BTU input rate.
- 8.3.2 <u>Outlet Water Temperature</u> The outlet water temperature shall not be more than $115^{\circ}F$, with a temperature rise of $40^{\circ}F$. When specified by the manufacturer, the water temperature rise may be adjusted to a lower value, but

-38-

not less than $10^{\circ}F$, with the average of the inlet and outlet water temperature being $90^{\circ} \pm 5^{\circ}F$.

8.3.3 <u>Emission Testing</u> Allow the heater to operate until equilibrium conditions are attained. Equilibrium is defined as no variation in excess of 2^OF over a three minute period.

> Record the time, gas meter and water meter readings. Do not interrupt the flow to the heater. Record the inlet and outlet temperatures at every 15 second interval throughout the duration of the test. Temperature rise cannot change by more than $2^{\circ}F$ during the test. Continuously record the NO_x, CO, and CO₂ (or O₂)

> emissions. If a sample traverse is required, identify the traverse point being sampled on the strip chart recorder and record the concentration of NO_x and CO_2 (or O_2) at each point. When the traverse is complete or after 15 minutes, whichever is longer, record the water and gas meter readings. Determine the arithmetic mean of the hot water discharge temperature and the cold water inlet temperature during the test. Collect a sample of fuel for composition analysis. Determine the arithmetic mean of CO_2 (or O_2) and NO_x concentration measured during each of the last three one-minute periods of the test. Record the maximum CO concentration during the test.

> > -39-

8.4 STEAM AND HOT WATER BOILERS

8.4.1 STEAM BOILERS

- 8.4.1.1 <u>Power Input</u> Burners shall be adjusted to their BTU input rates at <u>+</u> 10% of the stated manifold pressure. The boiler shall be tested within <u>+</u> 2% of the manufacturer's specified normal hourly BTU input rate.
- 8.4.1.2 <u>Outlet Steam Pressure</u> The boiler shall be tested at atmospheric pressure.
- 8.4.1.3 <u>Emission Testing</u> Allow the boiler to operate until equilibrium conditions are attained but not less than one hour.

When equilibrium conditions are attained, begin monitoring CO_2 (or O_2) and NO_x emissions. Record the time, water and fuel meter readings. Record the inlet water and outlet steam temperatures at 15 second intervals throughout the test. If a sample traverse is required, identify the traverse point being sampled on the strip chart recorder and record the concentration of NO_x and CO_2 (or O_2) at each point. When the traverse is complete or after 30 minutes, whichever is longer, record the water and gas meter readings. Determine the arithmetic mean of the steam discharge temperature and the cold water inlet temperature during the test. Collect a sample of fuel for composition analysis. If an integrating sample probe is employed, determine the arithmetic mean of CO_2 (or O_2) and NO_x concentration measured during each of the last three one-minute periods of the test.

8.4.2 HOT WATER BOILER

- 8.4.2.1 <u>Power Input</u> Burners shall be adjusted to their BTU input rates at <u>+</u> 10% of the stated manifold pressure. The boiler shall be tested within <u>+</u> 2% of the manufacturer's specified normal hourly BTU input rate.
- 8.4.2.2 <u>Outlet Water Temperature</u> The outlet water temperature shall be $180^{\circ} \pm 2^{\circ}F$. The water temperature limiting device shall be set to its maximum temperature.
- 8.4.2.3 <u>Emission Testing</u> Allow the boiler to operate until the equilibrium conditions are attained, but not less than one hour. Equilibrium conditions are indicated by no change in outlet water temperature in excess of 5^oF over a 5 minute period.

After equilibrium conditions are attained, begin monitoring CO, CO_2 (or O_2) and NO_x emissions. Record water and fuel meter readings and time. Record the inlet and outlet water temperatures at 15 second intervals throughout the duration of the test.

-41-

Temperature rise cannot change by more than $5^{\circ}F$ during the test. If a sample traverse is required, identify the traverse point being sampled on the strip chart recorder and record the concentration of NO_x and CO₂ (or O₂) at each point. When the traverse is complete or after 15 minutes, whichever is longer, record the water and gas meter readings. After 30 minutes record the gas and water meter readings. Determine the arithmetic mean of the inlet and outlet water temperatures during the test. Measure the heating value of the fuel or collect a sample of fuel for composition analysis. If an integrating sample probe is employed, determine the arithmetic mean of CO₂ (or O₂) and NO_x concentrations measured during each of the last three one-minute periods of the test.

9.0 CALCULATIONS

9.1 CARBON NUMBER

The carbon number of the fuel can be determined from the measured heating value or determined from gas composition analysis.

Carbon number based on measured heating value is determined from the equation below:

$$Cf = \frac{2 \text{ x Heating Value (Btu/scf)}}{1771} - 0.130$$
 (1)

Carbon number based upon gas composition analysis of the fuel is determined as follows:

$$Cf = \frac{C_1 + 2C_2 + 3C_3 + 4C_4 + C_0}{100}$$
(2)

Where C_f is a dimensionless number; C_1 is concentration of methane in fuel, percent; C_2 is concentration of ethane in fuel, percent; C_3 is concentration of propane in fuel, percent; C_4 is concentration of butane in fuel, percent; C_0 is concentration of CO_2 in fuel, percent.

-43-

9.2 HEATING VALUE

If heating value is measured, H equals that value in Btu/dscf. If gas composition analysis is performed, determine heating value as follows:

First compute the compressibility (Z) of the fuel: $Z = 1.0 - .001473(C_1 \times .0116 + C_2 \times .0239 + C_3 \times .0344 + C_4 \times .0480 + C_0 \times .0197 + I \times .0044)^2$ (3)

Where "I" is the concentration of Nitrogen in fuel, percent;

Then calculate the heating value (H) of the fuel as follows:

$$H = (C_1 \times 10.120 + C_2 \times 17.737 + C_3 \times 25.221 + C_4 \times 32.70) / Z$$
(4)

Where H is the heating value of the fuel in BTU per cubic foot at base conditions of 14.73 pounds per square inch absolute and 60 degrees Fahrenheit.

9.3 HEAT OUTPUT

- 9.3.1 <u>STORAGE TANK WATER HEATERS WITH INPUT RATINGS OF 75,000</u> BTU/HR OR LESS
- 9.3.1.1 <u>Storage Tank Capacity</u> Storage tank capacity is computed with the following:

$$Vst = (Wf - Wt)/Ds$$
(5)

- Where Vst is the storage capacity of the water heaters, gallons;
- Wf is the weight of the water heater completely filled with water, pounds;
- Wt is the weight of the empty water heater, pounds;
- Ds is the density of water at the appropriate temperature, lbs/gallon.
- 9.3.1.2 <u>Computation</u> Heat output is computed using the following: $H_{o} = MC_{pi}(T_{del} - T_{in}) + V_{st}D_{n}C_{p2}(T_{max} - T_{o})$ (6) Where H_o is heat output, BTU;

M is the mass of the water withdrawn, pounds; C_{pi} is the specific heat of water at the average

temperature $(T_{del} + T_{in})/2$, BTU/pound ^OF;

 T_{del} is average delivery temperature, ${}^{O}F;$ T_{in} is average inlet temperature, ${}^{O}F;$ V_{st} is storage tank capacity, gallons (Section 9.3.1.1); D_n is the density of water at the average temperature $(T_{max} + T_0)/2$, pounds/gallon;

- C_{p2} is the specific heat of water at the average temperature $(T_{max} + T_{o})/2$, Btu/pound ^OF;
- T_{max} is the maximum mean tank temperature recorded after cutout following the test draw, ^OF;
- $\rm T_{_{O}}$ is the maximum mean tank temperature recorded prior to the test draw, $\rm ^{O}F.$
- 9.3.2 <u>STORAGE TANK WATER HEATERS WITH INPUT RATINGS ABOVE</u> 75,000 BTU PER HOUR, CIRCULATING, AND INSTANTANEOUS WATER HEATERS, AND POOL HEATERS

Heat output is computed using the following:

 $H_{o} = Cp_{avq} \times (T_{del} - T_{in}) \times V \times D_{i}$ (7)

Where H_0 is heat output, BTU; T_{del} is the average delivery temperature, ${}^{O}F$; Cp_{avg} is the specific heat of water at $(T_{del} + T_{in})/2$, BTU/pound ${}^{O}F$;

 T_{in} is the average inlet temperature, ${}^{O}F$;

V is the volume of water withdrawn, gallons;

- D_i is the density of water at the average inlet temperature, pounds/gallon.
- 9.3.3 <u>STEAM BOILERS</u> Heat output is computed using the following:

$$H_{O} = VD \times (H_{S} - H_{W})$$
(8)

Where H is heat output, BTU;

V is volume of feed water during test, gallons;

- D is density of water at average delivery temperature, pounds/gallon;
- ${\rm H_{_{\rm S}}}$ is the enthalpy of saturated steam at the

average delivery temperature, Tdel; Btu/lb;

 ${\rm H}_{_{\rm W}}$ is the enthalpy of water at the average

inlet temperature, Tin; Btu/lb.

9.3.4 HOT WATER BOILERS

Heat output is computed using the following:

$$H_{o} = Cp_{avg} \times (T_{del} - T_{in}) \times V \times D_{i}$$
(9)

Where H_0 is heat output, BTU; T_{del} is the average delivery temperature, ${}^{O}F$; Cp_{avg} is the specific heat of water at $(T_{del} + T_{in})/2$. BTU/pound ${}^{O}F$; T_{in} is the average inlet temperature, ${}^{O}F$;

V is the volume of water withdrawn, gallons; D_i is the density of water at the average inlet

temperature, pounds/gallon.

9.4 EMISSION OF NO_x

9.4.1 NOx EMISSION (ng/J Heat Output) Compute using the following:

$$N = \frac{5211 \times Cf \times P \times F}{Ho \times C}$$
(10)

Where N is emissions of NO_x as NO_2 , nanograms/joule

(output);

P is NO_x concentration in flue gas, ppm (vol); C_f is carbon number of fuel, from Section 9.1; F is volume of fuel burned, cubic feet (30 in.Hg, 60^OF); C is concentration of CO₂ measured in flue gas, percent

H_o, as determined in Section 9.3.

9.4.2 NOx EMISSION (Concentration at 3% 0₂)

Compute using the following:

$$N = P \frac{20.9 - 3}{20.9 - \%02}$$
(11)

Where N is emissions of $\text{NO}_{_{\rm X}}$ as $\text{NO}_{_{\rm 2}},$ concentration

corrected to 3% oxygen;

P is NO_x concentration in flue gas, ppm (vol);

%02 is the concentration of oxygen measured in flue gas, percent. Note that the CO₂ concentration (C) in

the flue may be related to %02 using the following relation:

802 = 20.9 - 1.75 (C)

9.4.3 NOx EMISSION (lb/MMBtu)

Compute using the following:

$$N = 1.194 \times 10^{-7} (P)(1040) - (12)$$

Where N is emissions of NO_{x} as NO_{2} , lb/MMBtu

(input);

 ${\tt P} \text{ is } {\tt NO}_{_{\mathbf{X}}}$ concentration in flue gas, ppm (vol);

C is concentration of CO_2 measured in flue gas, percent. The O₂ concentration (%02) in the flue may be related to (C) using the following relation: C = 0.5713 (20.9 - %02)

10.0 REPORT

10.1 TEST RESULTS

The following forms may be used in reporting test results:

10.1.1 ENVIRONMENT AND HOT WATER PRODUCTION

- Form A. Storage tank water heaters with input rating of 75,000 Btu/Hr or less
- Form B. Storage tank water heaters with input rating above 75,000 Btu/Hr, instantaneous and circulating water heaters, pool heaters, and hot water boilers.

Form C. Steam boilers.

10.1.2 EMISSION MEASUREMENTS

- Form D. Appliances with vents less than 12 inches in diameter.
- Form E. Appliances with vents 12 inches in diameter and larger.
- Form F. Appliances without vents.

- 10.1.3 GAS COMPOSITION ANALYSIS
 - Form G. Gas composition analysis and average carbon number
- 10.1.4 ANALYZER CALIBRATION AND SAMPLING SYSTEM BIAS TEST
 - Form H. Daily sampling system analyzer calibration and bias test
- 10.1.5 NO₂ CONVERTER EFFICIENCY TEST
 - Form I. Monthly NO₂ converter efficiency test

10.2 FORMS USED FOR PERFORMING THE CALCULATIONS

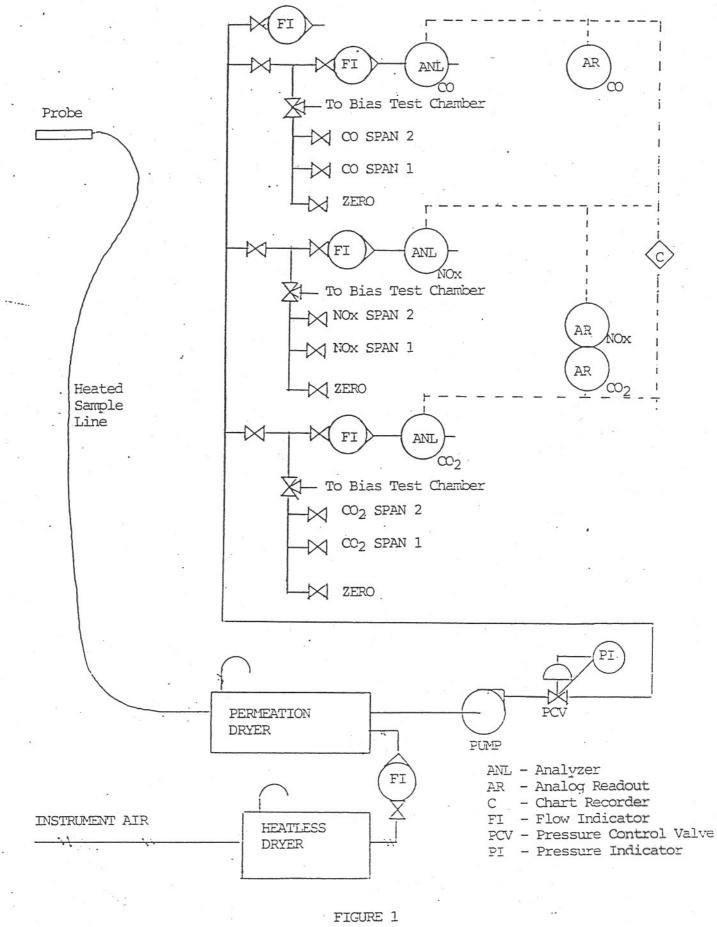
10.2.1 CALCULATION OF HEAT OUTPUT

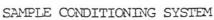
Form J. Storage tank water heaters with input rating of 75,000 Btu/hr or less.

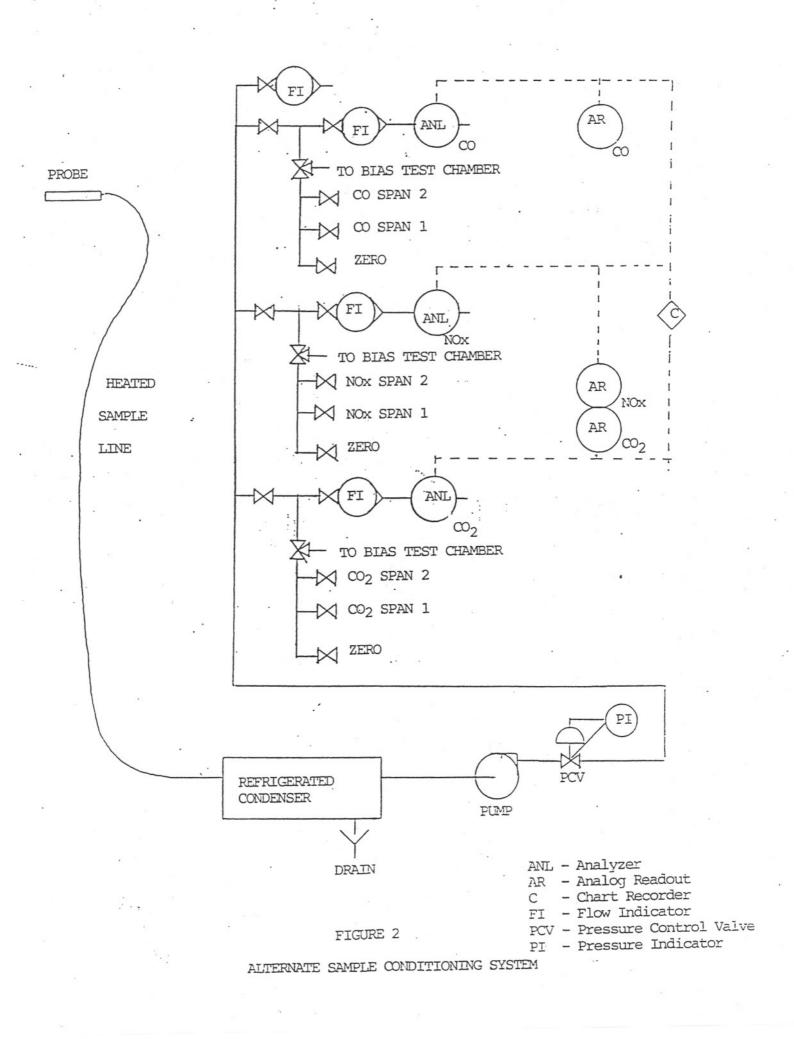
Form K. Storage tank water heaters with input rating above 75,000 Btu/Hr, Instantaneous and circulating water heaters, pool heaters, and hot water boilers.

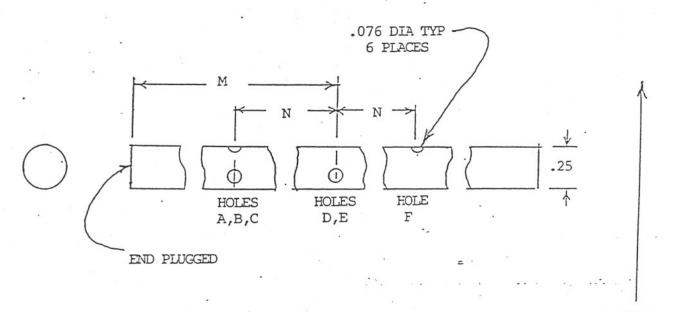
Form L. Steam boilers.

10.2.2 CORRECTION OF GAS METER READING AND DETERMINATION OF FIRING RATE

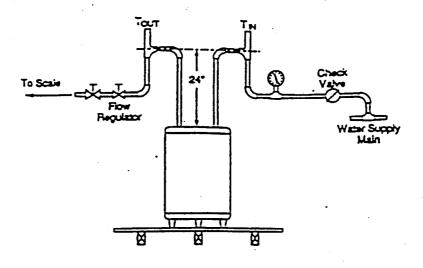

Form M. Correction of gas meter reading and determination of firing rate.

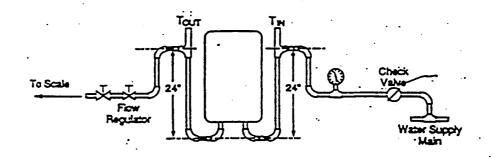

10.2.3 CALCULATION OF NO_x EMISSIONS

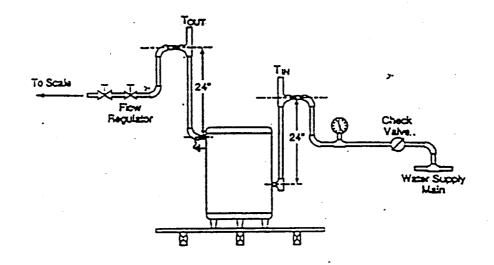

Form N. Calculation of NOx Emissions (ng/J Heat Output)


Form O. Calculation of NOx Emissions (at 3% Oxygen)

Form P. Calculation of NOx Emissions (lb/MMBtu)

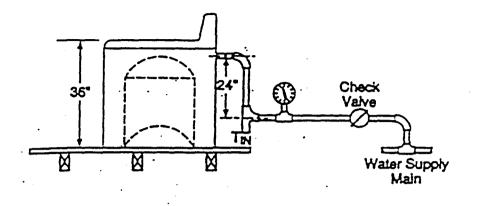

FLOW

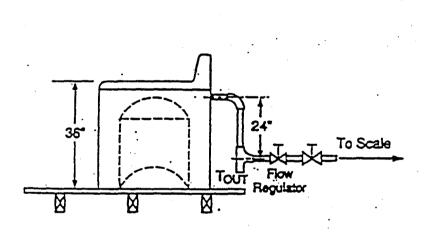

HOI	E ORIENTATI	ON		VENT DIA	<u>M</u> .	N
A	0			3.0	1.50	0.50
В	120			4.0	2.00	1.00
С	240			5.0	2.50	1.36
Ď.	240		>-	6.0	3.00	1.62
E	120			7.0	3.50	1.90
F	0			8.0	4.00	2.17
				9.0	4.50	2.43
				10.0	5.00	2.72
		. M U.		11.0	5.50	2.98


** Hole orientation in degrees; all other dimensions in inches.

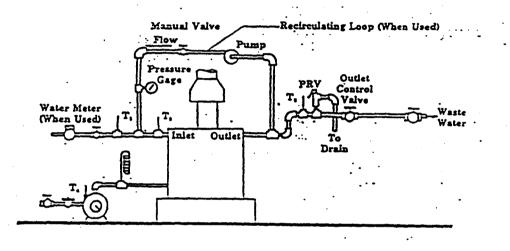
2

FIGURE 3 SAMPLE PROBE



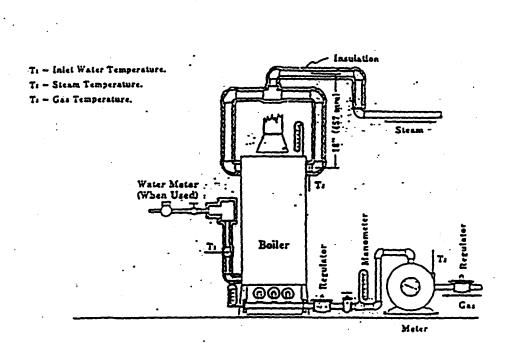


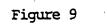
Figures 4, 5, and 6


Arrangement for storage tank water heaters

Figures 7a and 7b

Arrangement for "under counter" water heater




Figure 8

Arrangement for Instantaneous and Circulating Water Heaters,

Pool Heaters, and Hot Water Boilers

58

Arrangement for Steam Boilers

59

Form A. STORAGE TANK WATER HEATERS WITH INPUT RATING OF 75,000 BTU/HR OR LESS.

WATER HEATER		
Manufacturer; Moo	del No; Serial	L
Input Rating:BTU/HR		
Water Heater Weight: Full (Wf)	; Empty (Wt)	pounds.
Collection Tank: After Draw _	; Empty	pounds
Ambient Temperature Relative Humidity Barometric Pressure Gas Meter Reading Gas Pressure Gas Temperature Heating Value of Gas (optional)	START FIN	- [°] F - % - in Hg - cu ft - in H ₂ 0 - [°] F
Mean Tank Temperature at Start Maximum Mean Temperature Follo Start Time Burner Cut-In Burner Cut-Out		- ^o f - ^o f

Water Inlet (Tin); Hot Water Delivery (Tdel); Temperature (^OF).

Min:Sec	Tin	Tdel	Min:Sec	Tin	Tdel	Min:Sec	Tin	Tdel
0:15			1:25			2:35		
0:20			1:30			2:40		
0:25			1:35			2:45		
0:30			1:40			2:50		
0:35			1:45			2:55		
0:40			1:50			3:00		
0:45			1:55			3:05		
0:50			2:00			3:10		
0:55			2:05			3:15		
1:00			2:10			3:20		
1:05			2:15			3:25		
1:10			2:20			3:30		
1:15			2:25			3:35		
1:20			2:30			3:40		

Run No.: _____

Form B. STORAGE TANK WATER HEATERS WITH INPUT RATINGS ABOVE 75,000 BTU/HR, INSTANTANEOUS AND CIRCULATING WATER HEATERS, POOL HEATERS AND HOT WATER BOILERS.

Manufacturer No	; Mode]	el No; Serial				
Туре;	Input Rating:		BTU/HR			
		STAR	Т	FINIS	S H	
Ambient Temperature			_ ° _F		°F	
Relative Humidity			_ 00		00	
Barometric Pressure			_ in Hg		in Hg	
Gas Meter Reading Gas Pressure			_ cu ft _ in H_0		cu ft in H ₂ 0	
Gas Temperature			°F		°F	
Water Meter Reading			_gal		gal	
Heating Value of Gas (c	optional)		_ BTU/Cu.Ft.			

Start Time _____

Water Inlet (T_{in}) ; Hot Water Delivery (T_{del}) ; Temperature $({}^{O}F)$.

Min:Sec	^T in	T del	Min:Sec	T in	T del	Min:Sec	$^{\rm T}$ in	^T del
0:15			5:15			10:15		
0:30			5:30			10:30		
0:45			5:45			10:45		
1:00			6:00			11:00		
1:15			6:15			11:15		
1:30			6:30			11:30		
1:45			6:45			11:45		
2:00			7:00			12:00		
2:15			7:15			12:15		
2:30			7:30			12:30		
2:45			7:45			12:45		
3:00			8:00			13:00		
3:15			8:15			13:15		
3:30			8:30			13:30		
3:45			8:45			13:45		
4:00			9:00			14:00		
4:15			9:15			14:15		
4:30			9:30			14:30		
4:45			9:45			14:45		
5:00			10:00			15:00		

Date: _____

Form C. STEAM BOILERS (Page 1 of 2)

STEAM BOILER

Manufacturer _____; Model No.____; Serial

No._____

Input Rating: _____BTU/HR

	START	FINISH
Ambient Temperature	° _F	° _F
Relative Humidity	%	⁹ 6
Barometric Pressure	in Hg	in Hg
Gas Meter Reading Gas Pressure	cu ft in H ₂ 0	cu ft in H ₂ 0
Gas Temperature	° _F	° _F
Water Meter Reading	gal	gal
Steam Drum Pressure Manifold Pressure	psig in H ₂ 0	psig in H ₂ 0

Heatin	g Value	of	Gas	(optional)	 BTU/Cu.Ft.
Start	Time				

Record inlet and outlet temperatures on Page 2.

Date: _____

Form C. STEAM BOILERS (Page 2 of 2)

Water Inlet (T_{in}) ; Steam Delivery (T_{del}) ; Temperature $({}^{O}F)$.

Min:Sec	^T in	^T del	Min:Sec	$^{\rm T}$ in	^T del	Min:Sec	T in	^T del
0:15			10:15			20:15		
0:30			10:30			20:30		
0:45			10:45			20:45		
1:00			11:00			21:00		
1:15			11:15			21:15		
1:30			11:30			21:30		
1:45			11:45			21:45		
2:00			12:00			22:00		
2:15			12:15			22:15		
2:30			12:30			22:30		
2:45			12:45			22:45		
3:00			13:00			23:00		
3:15			13:15			23:15		
3:30			13:30			23:30		
3:45			13:45			23:45		
4:00			14:00			24:00		
4:15			14:15			24:15		
4:30			14:30			24:30		
4:45			14:45			24:45		
5:00			15:00			25:00		
5:15			15:15			25:15		
5:30			15:30			25:30		
5:45			15:45			25:45		
6:00			16:00			26:00		
6:15			16:15			26:15		
6:30			16:30			26:30		
6:45			16:45			26:45		
7:00			17:00			27:00		
7 : 15			17 : 15			27 : 15		
7:30			17:30			27:30		
7:45			17:45			27:45		
8:00			18:00			28:00		
8:15			18:15			28:15		
8:30			18:30			28:30		
8:45			18:45			28:45		
9:00			19:00			29:00		
9:15			19:15			29 : 15		
9:30			19:30			29:30		
9:45			19:45			29:45		
10:00			20:00			30:00		

Run No.: _____ Date: _____

Form D. EMISSION MEASUREMENTS - Appliances with vents less than 12 inches in diameter.

Туре		;	Manufacturer	;
Model	No	;	Serial No	•

			ZER	O G A S	SPA	N G A S
ANALYZERS CO ₂ (O ₂)	Manufacturer	Serial No.	Value	Reading	Value	Reading
NOx		 				
CO		 				

CONCENTRATION MEASUREMENTS CO_2 (or O_2) - %; NOx - ppm; CO - ppm

	$\frac{CO}{2} \frac{10}{2}$	NOX	<u>C0</u>
Last minute before cut-out or end of test			
Next to last minute			
Preceding minute			

Form E. <u>EMISSION MEASUREMENTS</u> - Appliances with vents 12 inches in diameter and larger.

Type____; Manufacturer____; Model No.____; Serial No._____;

				ZER	OGAS	SPA	N G A S
ANALYZERS	Manufacturer	Model	Serial No.	Value	Reading	Value	Reading
$CO_2 (or O_2)$							
NOX							
CO							

CONCENTRATION MEASUREMENTS CO $_2$ (or O $_2$) - %; NO $_X$ - ppm; CO - ppm

Point	^{CO} 2 ^{/O} 2	$^{\rm NO}_{\rm X}$	CO	Point	со ₂	NOX	CO
1				9			
2				10			
3				11			
4				12			
5				13			
6				14			
7				15			
8				16			

Circle the eight highest CO_2 concentrations.

Traverse Points Ref: 6.3.1.2

Date: _____

Form F. APPLIANCES WITHOUT VENTS

Type____; Manufacturer____; Model No.____; Serial No._____

				ZER() G A S	SPAI	N G A S
ANALYZERS	Manufacturer	Model	Serial No.	Value	Reading	Value	Reading
$CO_2 (or O_2)$							
NOX							
CO							

CONCENTRATION MEASUREMENTS CO $_2$ (or O2) - %; NO $_X$ - ppm; CO - ppm

Point	CO_{2}^{O}/O_{2}^{O}	NOX	CO	Point	со ₂	NOX	CO
1				9			
2				10			
3				11			
4				12			
5				13			
6				14			
7				15			
8				16			

Circle the eight highest CO₂ concentrations.

Traverse Points Ref: 6.3.1.2

Run No.:		Da	te of Run	:		-
		Da	te of Ana	lysis:		-
Form G. GAS	COMPOSITIC	N ANALYSIS				
ANALYZER: Manufa	cturer	; Mod	el No	; Serial	No	
Heating Value Me	asurement if	Performed:				
Measured Heating	Value:					
Cf based on Heat	ing Value (fr	com Section 9	.1):			
Gas Chromatograp	h Analysis if	Performed:				
COMPONENT	Span (Value			ample H #2		
Ethane (C2)	%	%	%	%	%	%
Propane (C3)	°	o	o	%	0	%
Butane+ (C4)	۶	o	0	%	%	<u></u> %
Nitrogen (I)	%	o	%	%	<u></u> %	<u></u> %
Carbon Dioxide (Co)	%	8	%	%	%	8
TOTAL			0	%	%	%
Methane (Cl) (10	0%-Total)		%	%	%	%
Cf CALCULA	TION					
1.	Methane Cor	itribution	C1/1	00.0		
2.	Ethane Cont	ribution	C2/5	0.0		
3.	Propane Cor	ntribution	C3/3	3.33		
4. 5.	Butane Cont CO ₂ Contrik		C4/2 C0/1	5.0 00.0		
б.	Total is Cf	Ē				

Form H. CALIBRATION CHECK AND SAMPLING SYSTEM BIAS TEST. Must be conducted before and after each day of testing. (Page 1 of 2)

START OF DAY

Time: _____

	Value	Analyz CO ₂ *		sponse CO	-	_		BIAS % of Range
Zero Gas								<u> </u>
CO ₂ * Span			Х	Х		Х	Х	
NOx Span		Х		Х	Х		Х	
CO Span		Х	Х		Х	Х		

END OF DAY Time: _____

		_	er Re	sponse	-	Resp	onse	BIAS
	Value	со ₂ *	NOx	CO	со ₂ *	NOx	CO	% of Range
Zero Gas								
CO ₂ * Span			Х	Х		Х	Х	
NOx Span		Х		Х	Х		Х	
CO Span		Х	Х		Х	Х		
DRIFT (% Zero CO ₂ * NOx CO	of ran	.ge) 		* co ₂	or O ₂ A	nalyz	er	

If system bias and/or drift for the CO_2 , O_2 , or NOx analysis exceeds the ranges specified in this protocol, all tests for the day are void.

Form H. CALIBRATION CHECK AND SAMPLING SYSTEM BIAS TEST. Must be conducted before and after each day of testing (Page 2 of 2)

Analyzer:_____

Range:_____

	Cylinder Value (Indicate Units)	Analyzer Calibration Response (Indicate Units)	Absolute Difference (Indicate Units)	Difference (Percent of Range)
Zero Gas				
Mid-Range Gas				
High-Range Gas				

Linearity Error _____ percent range

Form I. NO₂ CONVERTER EFFICIENCY TEST. Must be performed monthly.

ANALYZER CALIBRATION

	Value	Analyzer Reading
Zero Gas		
Span Gas		

CONVERTER TEST

	Time	Analyzer Reading
Start		
Max Reading		
Finish		

If final analyzer reading is more than 2.0% less than the maximum analyzer reading, the converter must be repaired or replaced.

Run No.:		Date:	Date:			
Form		ALCULATION OF HEAT OUTPUT - STORAGE TANK WAY				
Α.	STOR <i>I</i> 1.	AGE TANK CAPACITY Wf, weight of water heater filled with water (Form A)		pounds		
	2.	Wt, weight of empty water heater (Form A)		pounds		
	3.	Ds, density of water at the temperature weighted		pounds/gal		
	4.	<pre>Vst, storage tank capacity is: Vst = (Wf - Wt) / Ds Substituting the corresponding line numbers gives: (1 - 2)/3</pre>		gallons		
В.	HEAT 5.	OUTPUT Weight of collection tank and water at end of test (Form A)		pounds		
	6.	Tare weight of collection tank (Form A)		pounds		
	7.	M, mass of water withdrawn (lines 5-6)		pounds		
	8.	Tdel, average delivery temperature, sum of all outlet temperatures on Form A		о _ғ		
	9.	divided by number of measurements Tin, average inlet temperature, sum of all inlet temperatures on Form A divided		F.		
		by number of measurements		° _F		
	10.	<pre>Average of inlet and outlet temperature is (Tdel + Tin)/2.0 substituting the corresponding line numbers gives (8 + 9)/2.0</pre>		° _F		
				-		

* The values of these parameters may be found in handbooks such as Perry's Chemical Engineers Handbook. Use correct units.

11.	Cpi, specific heat of water at temperature	
	in line 10*	BTU/lb ^O F
12.	Tmax, maximum mean tank temperature after cut-out (Form A)	° _F
13.	To, initial mean tank temperature (Form A)	° _F
14.	Average tank temperature is (Tmax + To)/2	° _F
15.	Dn, density of water at the temperature in line 14.	lb/gal
16.	Cp2, specific heat of water at the temperature in line 14.	BTU/lb ⁰ F
	Ho, heat output is Ho = M x Cpi x (Tdel-Tin) + Vst x Dn x Cp2 x (Tmas substituting the corresponding line numbers gives = 7 x 11 x $(8-9)$ + 4 x 15 x 16 x $(12-13)$:

* The values of these parameters may be found in handbooks such as Perry's Chemical Engineers Handbook. Use correct units. Run No.: _____ Date: _____

- Form K. CALCULATION OF HEAT OUTPUT Storage Tank Water Heaters With Input Rating Above 75,000 BTU/HR, Instantaneous and Circulating Water Heaters, Pool Heaters and Hot Water Boilers.
- Α. HEAT OUTPUT 1. Tdel, average delivery temperature, sum of all delivery temperatures in Form B divided by °_F number of measurements (60 if 15 min. test) 2. Tin, average inlet temperature, sum of all inlet temperatures in Form B divided by ਾਜ number of measurements (60 if 15 min. test) ੦_ਦ Tavg, (Tdel + Tin) / 2 3. Cp_{avg} , specific heat of water at the temperature 4. BTU/lb^OF in line 3.* 5. V, volume of water withdrawn, final water meter reading - initial water meter reading (Form B) _____ gallons Di, density of water at the average inlet 6. temperature (line 2)* _____lbs/gal 7. Ho, heat output is: Ho= Cp_{avq} x (Tdel - Tin) x V x Di substituting the corresponding line number qives: 4 x (1 - 2) x 5 x 6 _____ BTU

* The values of these parameters may be found in handbooks such as Perry's Chemical Engineers Handbook. Use correct units.

Date: _____

Form L. CALCULATION OF HEAT OUTPUT - STEAM BOILERS.

A. HEAT OUTPUT - STEAM BOILERS

V, volume of feed water during test, final 1. water meter reading - initial water meter reading (Form B) _____ gallons 2. Tdel, average delivery temperature, sum of all delivery temperatures in Form C divided by number of measurements (120 if 망 30 minute test) Tin, average inlet temperature, sum of all 3. inlet temperatures in Form C divided by °_F number of measurements(120 if 30 min.test) 4. Hs, enthalpy of saturated steam at the average delivery temperature, line 2*. BTU/lb 5. Hw, the enthalpy of water at the average inlet temperature, line 3*. _____BTU/lb D, density of water at the average inlet 6. temperature (line 3)* _____ lbs/gal 7. Ho, heat output is: Ho= $V \times D \times (Hs - Hw)$

substituting the corresponding line number gives: 1 x 6 x (4 - 5) _____ BTU

* The values of these parameters may be found in handbooks such as Perry's Chemical Engineers Handbook. Use correct units.

Form M. CORRECTION OF GAS METER READING AND DETERMINATION OF FIRING RATE

A. CORRECTION OF GAS METER READING

1.	Final Gas Meter Reading (Form A, B, or C)	 cu.ft.
2.	Initial Gas Meter Reading (Form A, B, or C)	 cu.ft.
3.	Uncorrected Volume of Gas Burned (Line 1 - Line 2)	 cu.ft.
4.	Gas Pressure (Form A, B, or C)*	 in H ₂ 0
5.	Barometric Pressure (Form A, B, or C)	 in Hg
6.	Pressure Correction to 30 in Hg is ((Line 5 + (Line 4 / 13.57)) / 30.0	 No Units
7.	Gas Temperature (Form A, B, or C)*	 °F
8.	Temperature Correction to 60 ⁰ F is: 519.7 / (Line 7 + 459.7)	 No Units
9.	Meter Correction Factor (from Meter Calibration Curves)	 No Units
10.	Corrected Volume of Gas Burned (Line 3 x Line 6 x Line 8 x Line 9)	 cu.ft.

B. FIRING RATE

11. Time of Burner Operation From Form A,B, or C _____ minutes
12. Heating Value of Fuel from Form A, B, or C, or compute using equations in Section 9.2 _____ BTU
13. Firing Rate _____ Line 12 x Line 10 x (60/Line 11) _____ BTU/HR

* If initial and final values are different, record the average.

Date:		
-------	--	--

Form N. CALCULATION OF NOx EMISSIONS (ng/J Heat Output Basis)

1.	Cf, average carbon number of fuel (Form G) No Units
2.	C, percent of CO_2 measured. If an integrating sample probe was used, the percent CO_2 is the
	average of the three measurements from Form D. If a traverse was required, the percent CO ₂ is
	the average of the eight highest readings recorded in Form E or F %
3.	P, is part per million NOx measured. Use the

average of the NOx readings from the sample points which were used to determine the average CO₂ reading in Line 2. _____ ppm

4. F is the corrected fuel burned (Form M) _____ cu.ft.

5. Ho is the heat output (Form J, K, or L) _____ BTU

6. N is the NOx emissions

5211 x Cf x P x F

N =

Но х С

Substituting the corresponding line numbers gives

5211.0 x 1 x 3 x 4/(5 x 2) _____ nanograms

per joule

Form O. CALCULATION OF NOx EMISSIONS (Corrected to 3% Oxygen)

 C, percent of CO₂ measured. If an integrating sample probe was used, the percent CO₂ is the average of the three measurements from Form D. If a traverse was required, the percent CO₂ is the average of the eight highest readings recorded in Form E or F.
 %02, percent of O₂ measured. If an integrating

2. %02, percent of O₂ measured. If an integrating sample probe was used, the percent O₂ is the average of the three measurements from Form D. If a traverse was required, the percent O₂ is the average of the eight lowest readings recorded in Form E or F. If %02 is calculated

from CO_2 measurements, use the following equation:

%02 = 20.9 - 1.75 (C)
where C is the reading from Line 1 _____ %

- 3. P, is part per million NOx measured. Use the average of the NOx readings from the sample points which were used to determine the average CO₂ reading in Line 2.
- 4. N is the NOx emissions Corrected to 3% Oxygen

$$N = P \times \frac{20.9 - 3}{20.9 - 802}$$

Substituting the corresponding line numbers gives

Date: _____

Form P. CALCULATION OF NOx EMISSIONS (lb/MMBtu)

1. C, percent of CO₂ measured. If an integrating
 sample probe was used, the percent CO₂ is the
 average of the three measurements from Form D.
 If a traverse was required, the percent CO₂ is
 the average of the eight highest readings
 recorded in Form E or F. If C is calculated
 from O₂ measurements, use the following equation:
 %CO2 = 0.5713 (20.9 - %O2)
 where %O2 is the averaged reading from
 Form O, Line 2.

2. P, is part per million NOx measured. Use the average of the NOx readings from the sample points which were used to determine the average CO₂ (or O₂) reading in Line 2. _____ ppm

3. N is the NOx emissions

 $N = 1.194 \times 10^{-7} (P)(1040) - \frac{100}{C}$

Substituting the corresponding line numbers gives

0.01242 (Line 2/ Line 1) _____ lb/MMBtu

APPENDIX A

SCAQMD METHOD 100.1

Method 100.1 can be found at this location: http://www.aqmd.gov/tao/methods/stm/stm-100-1.pdf

APPENDIX B

 NO_2 to NO Conversion Efficiency

NO2 to NO Conversion Efficiency

Add gas from the mid-level NO in N_2 calibration gas cylinder to a clean, evacuated, leak-tight Tedlar bag. Dilute this gas approximately 1:1 with 20.9 percent O_2 purified air.

Immediately attach the bag outlet to the calibration valve assemble and begin operation of the sampling system. Operate the sampling system, recording the NO_x response, for at least 30 minutes. If the NO_2 to NO conversion is 100 percent, the instrument response will be stable at the highest peak value observed. If the response at the end of 30 minutes decreases more than 2.0 percent of the highest peak value, the system is not acceptable and corrections must be made before repeating the check.