Proposed Rule 1165 Control of Emissions from Municipal Solid Waste Incinerators

Public Workshop July 11, 2024

**Zoom Meeting Information** 

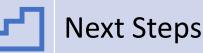
URL: https://scaqmd.zoom.us/j/96068287409 Webinar Meeting ID: 960 6828 7409 Dial-In: +1 (669) 900-6833





Proposed Rule 1165 Background






**Emission Reductions and Cost-Effectiveness** 



Socioeconomic Impact Assessment and

California Environmental Quality Act (CEQA)



# Proposed Rule 1165 Background

# Need for PR 1165

PR 1165 will codify emission requirements and other operating considerations into a rule<sup>1</sup>

### Compliance with U.S. EPA Good Neighbor Plan

- Establish implementation and permitting schedule for compliance
- Include requirements for meeting U.S. EPA limits of 110 and 105 ppmvd NOx @ 7% O2



<sup>1</sup> Both rule and permit conditions will apply Image source: U.S. EPA. *Good Neighbor Plan for 2015 Ozone NAAQS*. https://www.epa.gov/Cross-State-Air-Pollution/good-neighbor-plan-2015-ozone-naaqs.

### Compliance with Basin NAAQS Attainment

- Further reduce aggregate PM emissions
  - Included in draft plan for PM2.5, scheduled for release in 2024
- Further reduce aggregate NOx emissions beyond U.S. EPA Good Neighbor Plan
  - Included in 2022 AQMP Control Measure L-CMB-09

## U.S. EPA "Good Neighbor Plan"

- Issued on March 15, 2023<sup>1</sup> as an implementation of the "good neighbor" provision of Clean Air Act Section 110<sup>2</sup>(a)(2)(D)(i)(I)
- Good Neighbor Plan affects power plants (or Electricity Generating Units, "EGUs") and industrial facilities (or non-EGUs) including municipal waste incinerators



Image Source: U.S. EPA. *Good Neighbor Plan for 2015 Ozone NAAQS*. https://www.epa.gov/Cross-State-Air-Pollution/good-neighbor-plan-2015ozone-naaqs.

<sup>1</sup> U.S. EPA. Federal "Good Neighbor Plan" for the 2015 Ozone National Ambient Air Quality Standards. https://www.govinfo.gov/content/pkg/FR-2023-06-05/pdf/2023-05744.pdf. <sup>2</sup> See U.S. Clean Air Act Section 110(a)(2)(D)(i)(I) (under U.S. Code §7410).

https://www.govinfo.gov/content/pkg/USCODE-2013-title42/html/USCODE-2013-title42-chap85-subchapIpartA-sec7410.htm.

## Status of U.S. EPA "Good Neighbor Plan"

- Originally required each of 23 states to each submit a State Implementation Plan (SIP)
  - SIP would ensure that pollution sources do not contribute significantly hinder NAAQS attainment in other states
- The U.S. Supreme Coat granted of a judicial stay on June 27, 2024 regarding U.S. EPA's Good Neighbor Plan<sup>1</sup>
  - This stay is expected to continue pending resolution of judicial challenges in the D.C. Circuit Court of Appeals and only applies to 12 non-California states of the original 23 states
  - No current impacts to California's obligations under the Good Neighbor Plan
  - Impacts to California may be subject to further direction or clarification by either the U.S. EPA or the U.S. Supreme Court

<sup>1</sup>U.S. Supreme Court. *Ohio et al. v. Environmental Protection Agency et al.* https://www.supremecourt.gov/opinions/23pdf/23a349\_0813.pdf.

## NOx Emission Limits in U.S. EPA "Good Neighbor Plan"

- Non-EGU category includes municipal solid waste (MSW) combustors or incinerators
- Table I.B-7 specifies the NOx limits<sup>1</sup> for MSW incinerators
  - NOx limits must be demonstrated in compliance by the beginning of the 2026 ozone season (typically May 1)

TABLE I.B-7—SUMMARY OF NO<sub>X</sub> EMISSIONS LIMITS FOR COMBUSTORS AND INCINERATORS IN SOLID WASTE COMBUSTORS OR INCINERATORS

| Combustor or incinerator, averaging period | NO <sub>X</sub> emissions limit<br>(ppmvd) |
|--------------------------------------------|--------------------------------------------|
| ppmvd on a 24-hour block averaging period  | 110                                        |
| ppmvd on a 30-day rolling averaging period | 105                                        |

<sup>1</sup> NOx limits are corrected to 7% O2.

https://www.epa.gov/system/files/documents/2023-03/Final%20Non-EGU%20Sectors%20TSD.pdf.

## Proposed Universe

### • One MSW incinerator in Basin

- City of Long Beach's Southeast Resource Recovery Facility (SERRF)
- No other incinerators identified by Staff
- SERRF owned by City of Long Beach and operated by Covanta



- Only one other MSW facility in California, located in Stanislaus County
  - Also operated by Covanta, but is outside the South Coast Air Basin



## Facility Background

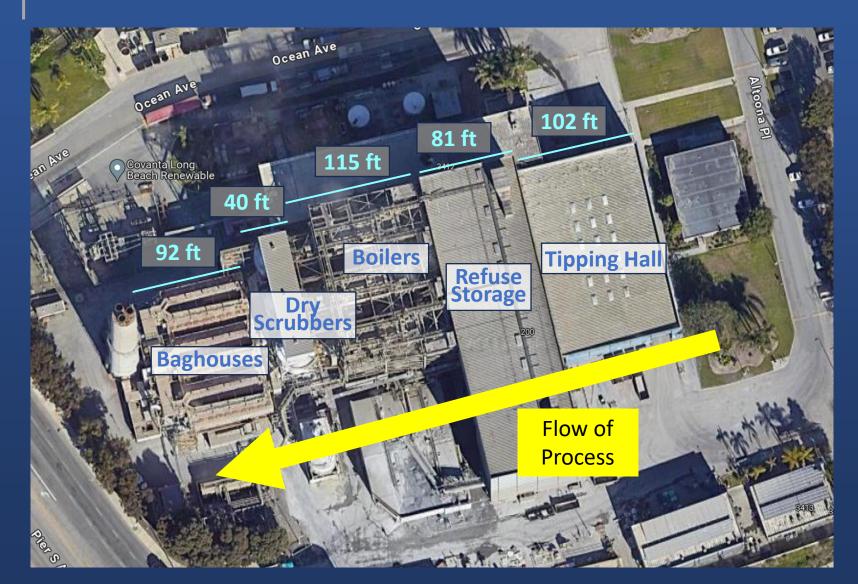


The Long Beach Southeast Resource Recovery Facility (SERRF) began operation in July 1988



Currently, the facility has ceased operation and is working towards permanent shutdown




Utilizes mass-burn process to reduce volume of nearly 1,300 tons of municipal solid waste (MSW) per day

Generates up to 38 MW of electricity per day



Facility produces toxics and large amounts of criteria air pollutants

## Background - SERRF Equipment Process



Main Equipment:

- <u>Tipping Hall</u> Trucks offload trash
- <u>Refuse Storage</u> Trash moved from Tipping Hall to be stored until burnt
- <u>Boilers</u> Trash burnt in selfsustaining burn
- <u>Dry Scrubbers</u> Clean exhaust gas of metals and acid
- <u>Baghouses</u> Remove particulate matter
- Ammonia injected at boilers for NOx control – Non-Selective Catalytic Reduction technology

# Proposed Rule Language Overview

# Proposed Rule Overview

| Subdivision (a), (b) | Purpose, Applicability                     |
|----------------------|--------------------------------------------|
| Subdivision (c)      | Definitions                                |
| Subdivision (d)      | Requirements                               |
| Subdivision (e)      | Housekeeping Requirements                  |
| Subdivision (f)      | Monitoring and Source Testing Requirements |
| Subdivision (g)      | Reporting and Recordkeeping Requirements   |

12

# Subdivision (a) – Purpose Subdivision (b) – Applicability

Purpose

Reduce NOx emissions from incinerators combusting municipal solid waste

## Applicability

PR 1165 applies to municipal solid waste incinerators that combust more than 35 tons per day of municipal solid waste

• SERRF is only facility subject to proposed rule

Image source: U.S. EPA. https://www.epa.gov/eg/waste-combustorseffluent-guidelines.

13

# Subdivision (c) – Definitions Key Definitions

## Municipal Solid Waste

- Includes any mixture of Household Waste (e.g. residential dwelling waste), Commercial Waste (e.g. office and restaurant waste), or Institutional Waste (school, prison, and government facility waste), landscaping, or yard waste
- Does not include large pieces of trees, wood pallets, construction waste, or motor vehicles

Municipal Solid Waste Incinerator

- Equipment that combusts municipal solid waste in an exothermic manner in the presence of oxygen
- Does not include pyrolysis equipment, gasification equipment, or utilizing biological degradation processes



Image Source: Recycle Track Systems. *Commercial waste solutions for property managers*. https://www.rts.com/blog/commercial-waste-solutions-for-property-managers/

# Subdivision (c) – Definitions (cont.) Key Definitions

### Startup

- Begins when a unit burns fuel or combustion air is introduced into the unit after a period of zero fuel flow
- Ends when the flue gas temperature reaches the minimum operating temperature of stable conditions or, if applicable, of the NOx postcombustion control equipment

### Shutdown

- Begins when the fuel load is reduced and the flue gas temperature falls below the minimum operating temperature of stable conditions or, if applicable, of the NOx postcombustion control equipment
- Ends when the there is a period of zero fuel flow or combustion air flow ends

### Workspace Cleaning Method

 Process to remove or collect debris using methods that include water or a dust suppressant, including wet mops and dry vacuum with dust suppression

## Subdivision (d) – Emission Limit Requirements

- Two-phase Emission Limit Implementation for NOx
  - Phase 1: Compliance with U.S. EPA Good Neighbor Plan (2026)
  - Phase 2: Compliance with BARCT emission limits (2029)
- Two-phase Total and Condensable Particulate Matter limit implementation
  - Phase 1: Based on current emission levels
  - Phase 2: Based on co-benefit from installation of Selective Catalytic Reduction

| Pollutant                                              | Limit        | Averaging Time         | Compliance Date    |
|--------------------------------------------------------|--------------|------------------------|--------------------|
| NOx                                                    | 110 ppmv     | 24-hour Block Average  | May 1, 2026        |
| NOx                                                    | 105 ppmv     | 30-Day Rolling Average | May 1, 2026        |
| NOx                                                    | 50 ppmv      |                        | May 1, 2029        |
| со                                                     | 100 ppmv     |                        | (date of adoption) |
| Total Particulate<br>Matter                            | 26.4 mg/dscm | 1 hour                 | (date of adoption) |
| Total Particulate<br>Matter                            | 17.7 mg/dscm |                        | July 1, 2029       |
| PM-Filterable                                          | 10.2 mg/dscm |                        | (date of adoption) |
| PM-Condensable                                         | 23.3 mg/dscm |                        | (date of adoption) |
| PM-Condensable                                         | 15.6 mg/dscm |                        | July 1, 2029       |
| Opacity                                                | 10%          | 6 minutes              | (date of adoption) |
| * All concentration limits corrected to 7% $O_2$ , dry |              |                        |                    |

## Subdivision (d) – Other Requirements

Odor Capture System

Vent any waste unloading area's ambient air to an odor capture or control system

Any fly ash or bottom ash collected from the flue gas must be stored in sealed, leak-proof container to prevent fugitive dust emissions Ash Collector System

Minimum Operating Temperature

Any NOx Post-Combustion Control System must be in full operation when the temperature of the system is above its minimum operating temperature

# Subdivision (d) – Other Requirements (cont.)

## Startup and Shutdown

- Any individual startup or shutdown limited to a duration of three hours
- Minimizes the duration of time that is excluded from compliance calculations

### Decommissioning

- A final source test must be completed if sufficient time has elapsed since the previous source test
- To prevent restarting the unit:
  - All utilities must be disconnected and all fuel flow blinded or air-gapped
  - Unit's operating permit must be surrendered

## Subdivision (e) – Housekeeping Requirements

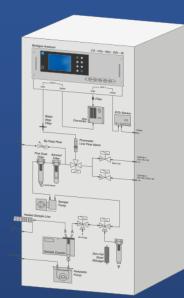
## Debris and Dust Cleaning

- Workspace Cleaning Method used at least once per week on all areas of travel within the facility and on all areas surrounding pollution control equipment
- Workspace Cleaning Method used after any construction or maintenance activities

Prohibited Cleaning Methods

- Cannot use any cleaning using dry methods or those without dust suppression
- Examples include dry sweeping or using compressed air only

### **Dust Storage**


- Similar to flue gas ash collection, any debris and dust that are cleaned on the grounds of the facility must be sealed in leak-proof containers
- Prevents fugitive dust emissions

•

# Subdivision (f) – Monitoring Requirements

# Three continuous emission monitors required to be installed

- **1. COMS**: Continuous Opacity Monitoring System. To measure opacity from the exhaust stack.
- CEMS: Continuous Emissions Monitoring System. To measure oxygen, NOx, and CO from the exhaust stack
- **3. Temperature Gauge**: To measure temperature at the inlet of each pollution control equipment and at the exhaust stack



#### Image source:

Fuji Electric. Continuous emission monitoring system – CEMS.

https://www.fujielectric.fr/en/technologies/cont inuous-emission-monitoring-system-cems/.

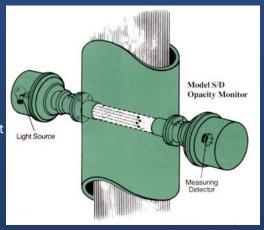



Image source: McNab. Model S/D Stack Opacity Monitor/Controller.

http://www.themcnab.com/Products/SD/Model \_SD\_Stack\_Opacity\_Monitor\_Controller.htm.

## Subdivision (f) –Source Testing Requirements



A source test protocol must be submitted no later than 90 days prior to scheduled date of a source test



The source tests must be conducted using a contractor approved by the South Coast AQMD Laboratory Approval Program and conducted according to the test methods specified in Table 2

## **Test Methods**

| Pollutant                       | Test Method                                                                                                                                   |  |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| NOx, CO, Oxygen, Carbon Dioxide | SCAQMD Method 100.1                                                                                                                           |  |
| Total Particulate               |                                                                                                                                               |  |
| PM – Filterable                 | SCAQMD Method 5.2                                                                                                                             |  |
| PM – Condensable                |                                                                                                                                               |  |
| Opacity                         | <ul> <li>Performance Specification 1 of 40<br/>CFR Part 60, Appendix B (COMS);</li> <li>U.S. EPA Method 9 (Manual<br/>Measurement)</li> </ul> |  |

# Subdivision (g) – Reporting and Recordkeeping Requirements

5-Year On-Site Maintenance of Various Logs



#### All Compliance Records

• CEMS and source test data

## In the event of a failure of the COMS:

- Logs of reading values and times
- Opacity evaluator certification information must be readily available

### **Daily Waste Intake Log**

A daily record of the weight of municipal solid waste entering the facility

#### Startup and Shutdown Log

- All unscheduled startups and shutdowns
- All scheduled startups and shutdowns

# Emission Reductions and Cost-Effectiveness Analysis

## NOx Emission Reductions

- Emission reductions were calculated using a variety of data sources
  - Permit limits or emission factors
- Source test results
- Annual fuel usage from
   CEMS data
   submitted Annual Emission Reports
   Staff proposal for concentration limits
- Staff evaluated use of two commercially available exhaust emission control technologies:
  - Selective Catalytic Reduction (SCR)
  - Ceramic Catalytic Filter (CCF)
- Concentration limits determined after a review of all available information for SCR and CCF technologies
- Baseline emissions for emission reduction totals are based on CEMS and source test data

### Projected emission reductions by May 1, 2029: 0.25 tpd

Ammonia injection

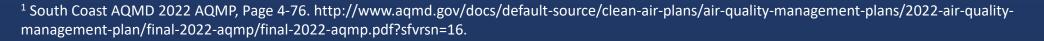


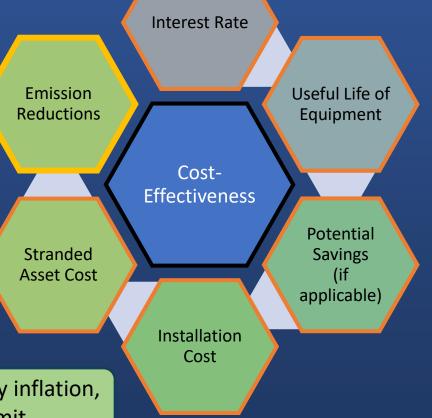
Image source: Hitachi Zosen. *SCR (Selective Catalytic Reduction) NOx Removal System.* https://www.hitachizosen.co.jp/english/business/field/m arine/denitration.html.

## **Overview of Cost-Effectiveness**

Cost-effectiveness is the cost (capital and annual costs) over the emission reductions for the life of the equipment

• Cost-effectiveness is expressed in dollars per ton of pollutant reduced (\$/ton)


#### Costs


- Capital costs
- Annual costs

Emission Reductions

- Baseline emissions
- Initial BARCT Emission Limit emissions

Staff uses the 2022 AQMP<sup>1</sup> cost-effectiveness of \$325,000/ton, adjusted by inflation, of NOx reduced as guidance for establishing the BARCT emission limit





## Cost-Effectiveness: Costs <u>Selective Catalytic</u> <u>Reduction Costs</u>

## Ceramic Catalytic Filter Costs

| Cost Variable                                | Value                   |  |
|----------------------------------------------|-------------------------|--|
| Capital Costs                                | \$26,963,000            |  |
| Increased Annual<br>Operating Costs          | \$1,182,000<br>per year |  |
| Expected Useful Life of<br>Control Equipment | 25 years                |  |
| Assumed Discount Rate                        | 4%                      |  |
| Total Costs                                  | \$45,424,000            |  |

| Cost Variable                                | Value                   |  |
|----------------------------------------------|-------------------------|--|
| Capital Costs                                | \$44,940,000            |  |
| Increased Annual<br>Operating Costs          | \$3,757,000<br>per year |  |
| Expected Useful Life of<br>Control Equipment | 25 years                |  |
| Assumed Discount Rate                        | 4%                      |  |
| Total Costs                                  | \$103,637,000           |  |

# Cost-Effectiveness: Results

| Control<br>Technology | Pollutant | Total Costs   | Total Emission<br>Reductions<br>(tons) | Cost-Effectiveness<br>(\$/ton reduced) |
|-----------------------|-----------|---------------|----------------------------------------|----------------------------------------|
| SCR                   | NOx       | \$45,424,000  | 2,302                                  | \$19,700                               |
| CCF                   | NOx       | \$103,637,000 | 2,302                                  | \$45,000                               |

No incremental cost-effectiveness analysis was conducted between SCR and CCF control technologies as the emission reductions for each are identical

# Socioeconomic Impact Assessment and California Environmental Quality Act (CEQA)

## Socioeconomic Impact Assessment

Pursuant to California Health and Safety Code §40440.8, a Socioeconomic Impact Assessment will be conducted

- Socioeconomic Impact Assessment is required for any proposed rule or rule amendment which "will significantly affect air quality or emissions limitations"
- Socioeconomic Impact Assessment will include:
  - Type of affected industries, including small businesses
  - Range of probable costs, including costs to industry or business
  - Impact on employment and regional economy



Image source: Rainer Lesniewski. *iStock Photo*. https://www.istockphoto.com/vector/vector-street-map-of-greater-los-angeles-area-california-united-states-gm1347023648-424619424.

## California Environmental Quality Act (CEQA)

- PR 1165 comprises the proposed "project" and is subject to CEQA
- South Coast AQMD is reviewing the proposed project to determine if it will result in any environmental impacts
- Appropriate CEQA documentation will be prepared



Image Source: CEQANet. https://ceqanet.opr.ca.gov/.

# Next Steps

## Next Steps





**Set Hearing** 

Scheduled for August 2, 2024 Public Process Timeline

Scheduled for September 6, 2024

# **Keep Connected**

James McCreary Air Quality Specialist jmccreary@aqmd.gov 909-396-2451

Rodolfo Chacon Program Supervisor rchacon@aqmd.gov 909-396-2726

Michael Morris Planning and Rules Manager mmorris@aqmd.gov 909-396-3282

Michael Krause Assistant Deputy Executive Officer mkrause@aqmd.gov 909-396-2706

### **Proposed Rules Page**

https://www.aqmd.gov/home/rulescompliance/rules/scaqmd-rulebook/proposed-rules/rule-1165

### eNewsletter Sign-Up

https://www.aqmd.gov/sign-up