NOx RECLAIM Working Group Meeting

March 18, 2014

Agenda

- Welcome & Introductions
- General BARCT Methodology
- Refinery Sector
 - Gas Turbines
 - Review of FCCUs (January 22, 2014 WGM)
- Non-Refinery Sector
 - Gas Turbines
- Discussion
- Schedule/Next Meeting

Status

Category	Control Equipment Manufacturer Contacted	Preliminary Cost Effectiveness Analysis Completed	
FCCU	X	Х	
Cement Kilns	X	X	
Gas Turbines (Refinery and Non-Refinery)	X	X	
Coke Calciner	X	In progress	
Glass Furnaces	X	In progress	
Metal Melting Furnaces	In progress	In progress	
SRU/Tail Gas	In progress	In progress	
ICEs	X	X	
Boilers/Heaters	Х	In progress	

Overall BARCT Methodology

- Technical Feasibility
- Cost Effectiveness
 - –Incremental Cost Effectiveness Based on 2000/2005 BARCT
 - -Based on 2011 activity

Refinery Sector Preliminary Analysis Gas Turbines

Overview of Emission Control Technologies

- Water or Steam Injection: 50 ppmv 20 ppmv
- Dry Low NOx (DLN), Dry Low Emissions (DLE), Cheng Low NOx (CLN): 25 ppmv - 9 ppmv
- Selective Catalytic Reduction: 9 ppmv 2 ppmv
- Other Types of Control
 - CO Oxidation Catalysts for CO Emissions
 - Ammonia Slip Catalysts for NH3 Slip, CO, HC Emissions

Proposed BARCT for Gas Turbines

- 2 ppmv NOx
- SCR with as applicable
 - Dry Low NOx (DLN) / Dry Low Emissions (DLE)
 - Cheng Low NOx (CLN)
- Implementation Schedule
 - 2017 to 2020
 - May Consider Synchronization with Refinery's Turnaround Schedule

Development of Cost Data Refinery's Information (Present Worth Value)

- 7 MW Gas Turbine
 - Total Installed Costs (TIC) = \$1.83 M
 - Annual Operating Costs (AOC) = \$93,000
 - Catalysts Replacement (CR) = \$435,500 every 10 years
 - PWV = TIC + (15.62*AC) + (1.14*CR) = \$3.80 M
- 83 MW Gas Turbine
 - Total Installed Costs (TIC) = \$5.90 M*
 - Annual Operating Costs (AC) = \$375,000*
 - Catalysts Replacement (CR) = \$950,000 every 10 years*
 - PWV = \$15.5 M*

(* adjusted up 20% to match cost effectiveness provided in permit application)

Development of Cost Data Manufacturers' Information (Present Worth Value)

- 7 MW and 83 MW Gas Turbines
- SCR and CO Catalysts
- SCR and Ammonia Slip Catalysts
 - Dual Function. Equivalent or Better Control
 Efficiency for NOx, CO, HC Compared to
 Conventional SCR and CO Catalysts at Less Costs
 - Extend SCR Life and Achieve Low Ammonia Slip

Development of Cost Data EPA's Information (Present Worth Value)

- "Alternative Control Techniques Document NOx Emissions from Stationary Gas Turbines" EPA-453/R-93-007
- Equations to Estimate TIC, AOC, and CR
- 80% 90% Reduction Equivalent to Reducing to 2 ppmv from 10 ppmv or 20 ppmv

Development of Cost Data DOE's Information (Present Worth Value)

- "Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines", November 5, 1999
- TIC and AOC for 5 MW, 25 MW, and 150 MW Gas Turbines
- 80% 90% Reduction Equivalent to Reducing to 2 ppmv from 10 ppmv or 20 ppmv

PWV of SCR for Gas Turbines

Proposed BARCT Cost Effectiveness @ 2 ppmv

Incremental Cost Effectiveness with SCR

Unit Rating Profile (MW)	2000/2005 BARCT Level (lbs/mmscft)	PWV (\$M)	Emission Reduction from 2000/2005 BARCT (tpd)	CE for 2014 BARCT (\$/ton)
(a)	(b)	(c)	(e)	(f)
59	62.27	15.7	0.210	8,210
46	62.27	12.6	0.310	4,472
30	62.27	8.9	0.200	4,851
23	62.27	7.2	0.140	5,631
83	62.27	4.8 (d)	0.600	870
No Turbines/E No of Cog	Duct Burners = 21 en Units = 12	Total PWV = \$97.68 M	Total Reductions = 4.14 tpd	Average CE = 2,692 \$/ton (g)

- (a) All gas turbines and all SCRs at the refineries were installed \geq 25 years ago
- 2000/2005 BARCT Level from Table 1 of Rule 2002 (b)
- $PWV = (0.2372 \times MW) + 1.7376$ (c)
- Costs for additional SCR catalysts to get from 10 ppmv to 2 ppmv (d)
- Emission Reduction = Emissions @ 2000/2005 BARCT Level Emissions @ 2 ppmv (e) where Emissions @ 2000-2005 BARCT Level = 2011 Fuel Gas Usage (mmscft/yr) x 62.27 (lb/mmscft) Emissions @ 2 ppmv = 2011 Emissions x (2 ppmv / 2011 NOx Level in ppmv)
- (f) CE = PWV/Emission reductions from 2000-2005 BARCT = (c)/(e x 365 x 25)
- CE (DCF Method) = \$2692 per ton. CE (LCF Method) = \$4500 per ton for 25 years life and 4% interest rate (g) 4/4/2014 NOx RFCLAIM

Refinery Sector Review for FCCUs

(Summary from January 22, 2014 WGM)

Proposed BARCT for FCCUs

(Summary from January 22, 2014 WGM)

- 2 ppmv NOx
- Control Technology
 - -SCR
 - LoTOx
 - NOx Reducing Additives in combination with SCR or LoTOx
- Implementation Schedule
 - 2017 to 2020
 - May Consider Synchronization with Refinery's Turnaround Schedule

Proposed BARCT Cost Effectiveness @ 2 ppmv

Incremental Cost Effectiveness with SCR or LoTOx

(Summary from January 22, 2014 WGM)

Equipment	2005 BARCT Level	Incremental PWV (\$M)	Incremental Emission Reduction from 2005 BARCT Level (tpd)	CE for 2014 BARCT (\$/ton)
	(a)	(b)	(c)	(d)
FCCUs with SCR	85% reduction	13	0.43	3,444
FCCUs with LoTOx	85% reduction	- 14	0.43	- 3,521

(a) 2005 BARCT level from Table 3 of Rule 2002

- (b) Incremental difference in costs of control equipment for 85% reduction and control equipment for 2 ppmv
- (c) Incremental emission reductions = Emissions @ 2005 BARCT Emissions @ 2ppmv
- (d) CE = (b)/(c*365*25) for DCF method. For LCF, CE = \$5,700 \$5,900 per ton

Non-Refinery Sector Preliminary Analysis Gas Turbines

Non Refinery Gas Turbines (From 38 Facilities)

Cost Analysis for Gas Turbines

- Onshore gas turbines fired on natural gas
- Offshore (OCS) gas turbines fired on process gas or diesel
- Tier-1 Level 2000 (0.06 lb/mmBtu)
- Proposed BARCT level: 2 ppm @15% O₂
- For inlet NOx below 25 ppm, 2 ppm is achievable
- For inlet NOx above 25 ppm, 95% reduction is achievable
- Proposed Control technology: Selective Catalytic Reduction (SCR)

BARCT Emission Level

 Based on inlet concentration range for units emitting at or above 25 ppm (~50-160 ppm)

Inlet NOx @15%O2	BARCT Emission Level
< 25 ppm	2 ppm
At or above 25 ppm	95% Reduction*

* Further evaluation ongoing

- Implementation Schedule
 - 2017-2020

Cost Analysis for Gas Turbines

- SCR vendor equipment costs include:
 - Ductwork, NH₃ injection hardware, catalyst, PLC system, tempering air/mixing system, and CFD flow modeling
- Installation costs were calculated to be 200% of the equipment costs (400% for OCS)
- Total Installed Cost (TIC) includes equipment plus installation
- Vendor-supplied annual costs (AC) include NH₃ usage, catalyst replacement, and power.
 - Catalyst replacement every 3 years

Cost Analysis for Gas Turbines

- Present Worth Value (PWV) assumes a 4% interest rate and a 25-year equipment life
- PWV = TIC + (15.622 x AC)
- Emission Reductions (ER) for this category
 1.71 tons per day
- Cost Effectiveness = PWV / (ER x 365 x 25)
- Cost Effectiveness Range
 - DCF range: \$3,100 \$26,000 / ton
 - LCF range: \$5,000 \$42,000 / ton

PWV of SCR for Non-Refinery Gas Turbines

(Inlet ppm at or above 25 ppm to achieve a 95% reduction of 3-8 ppm)*

PWV of SCR for Non-Refinery Gas Turbines

(Inlet ppm below 25 ppm to achieve 2 ppm)

Proposed BARCT Cost Effectiveness

Unit Rating Profile Range (MW)	2000/2005 BARCT Level	PWV Range (\$M)	Emission Reductions from 2000/2005 BARCT (tpd)	C.E. Range for 2014 BARCT (\$/ton)
1-140	0.06 lb/MMBTU	3-14	1.71	\$3,000 - \$26,000 Average: (\$13,198/ton)

* Cost Effectiveness LCF range: \$5,000 - \$42,000 / ton

Next Steps

- Complete BARCT Analysis
- Schedule next meeting April/May 2014
- Ongoing individual meetings to review BARCT

Contact

Refineries

Minh Pham, P.E. <u>mpham@aqmd.gov</u> (909) 396 - 2613

Non-Refineries

Kevin Orellana korellana@aqmd.gov (909) 396 - 3492