SCAQMD Working Group Meeting NOx RECLAIM

Diamond Bar, CA June 13, 2013

Agenda

- Welcome and Introductions
- Potential BARCT
- Data Verification/Request
- Schedule
- Open Discussion

Potential BARCT

- Low-NOx and Ultra Low-NOx burners
- Selective Catalytic Reduction (SCR)
- Alternative technologies
- Fuel technologies

BARCT

2005

Future Consideration

 Ref B/H >110 mmbtu/hr

0.006 lb/mmbtu (5 ppmv) Any further control (2 ppmv)? 2-5 ppmv with SCR?

 Ref B/H 40-110 mmbtu/hr 0.03 lb/mmbtu (25 ppm)

 Fluid Catalytic 85% Control Cracking Units Any further control?

 Industrial B/H >20 mmbtu/hr 	BARCT 2005 0.01 lb/mmbtu (9 ppmv)	Future <u>Consideration</u> 2-5 ppmv w/ LNB or SCR?
 Industrial B/H 5- 20 mmbtu/hr 	0.015 lb/mmbtu (12 ppmv)	9 ppmv w/ LNB?
• Utility Boilers	0.008 lb/mmbtu (7 ppmv)	2 ppmv (NG) w/SCR? - 2.5 ppmv (RFG)
• Turbines	0.06 lb/mmbtu (17 ppmv)*	w/SCR?

*Concentration value can vary due to operating configuration

 Cement Kilns Glass Furnaces 	BARCT 2005 No further control 1.2 lb/ton (container glass) 4.0 - 5.6 lb/ton (others)	Future Consideration 85% further control? 1.2 lb/ton (all types)?							
• ICEs	55-60 ppmv	11 ppmv							
 Other Furnaces/Ovens 	30-45 ppmv	Any further control?							
 Process Units: No further 	 Process Units: No further control 								

•Innovative ideas for reducing NOx from Major/Large sources?

Data Verification/Request

- Survey Questionnaire
- Focus on higher emitting facilities
- Simple operations may be handled with phone call or meeting
- AQMD Staff:
 - Populate spreadsheet with Facility Permit data
 - Send data to the facility owner/operator
 - Request other information pertinent to rulemaking but part of our data base

Data Verification/Request

- Facility owner/operator:
 - Verify data accuracy and completeness
 - Agree that data reflects the current operation and/or submit corrected data back to AQMD
 - Submit to AQMD other rulemaking information as requested

Facility Contact

1. Please provide the facility contact for this project:

Name:	
Title:	
Phone Number: _	
Email Address:	

Top NOx Emitting Equipment or Processes

- (* The attached list may contain the information requested)
- 2. * Please verify the attached list for the top 10 NOx emitting equipment and processes at your facility in Compliance Year 2011 and their emissions.
- Please mark on the attached list the NOx control equipment installed <u>after the</u> <u>2005 NOx RECLAIM amendment</u>

Refinery Example – List of Equipment

Facility A

FacID	Source Type	Device ID	Device	Process Name	Max Unit Rating (MMBTU/hr or HP)	2011 Emissions (Ibs)	Fuel Type (note 1)	Control Technology (note 2)	Shared Stack? Shared Control?	Control Installed After 2005?
80000A	Major	36	REGENERATOR	FLUID CATALYTIC CRACKING	1206	249,277	RFG	ESP		
80000A	Major	52	HEATER	HYDROTREATING	36	33,729	RFG	LNB		
80000A	Major	74	HEATER	CATALYTIC REFORMING	258	33,729	PG, RFG	LNB		
80000A	Major	6	HEATER	CRUDE DISTILLATION	136	25,910	RFG	LNB		
80000A	Major	430	HEATER	HYDROTREATING	200	18,157	RFG	SCR		
80000A	Major	12	HEATER	COKING	144	17,071	RFG	LNB, SCR		
80000A	Major	22	HEATER	COKING	95	14,427	RFG	LNB		
80000A	Major	768	HEATER	HYDROTREATING	110	13,321	RFG	LNB, SCR		
80000A	Major	1550	BOILER	STEAM GENERATION	245	12,416	RFG	SCR		
80000A	Major	8	HEATER	CRUDE DISTILLATION	49	10,975	RFG	LNB		
80000A	Large	9	HEATER	CRUDE DISTILLATION	20	5,500	RFG	LNB		
80000A	Large	59	HEATER	HYDROTREATING	26.4	3,671	RFG	LNB		
80000A	Large	60	HEATER	HYDROTREATING	29.7	3,644	RFG	LNB		
80000A	Major	429	HEATER	HYDROTREATING	30	2,014	RFG	SCR		
Note: 1) Fuel Ty	pe. RFG=	Refiner	y Fuel Gas. NG = Nat	ural Gas. B = Butane. PG = Proc	cess Gas, P = Pro	ppane				

2) Control Technology. LNB = Low NOx Burner. SCR = Selective Catalytic Reduction. FGR = Flue Gas Recirculation. ESP = Electrostatic Precipitator.

Non Refinery Example - List of Equipment -

Facility B

FacID	Source Type	Device ID	Device	Process Name	Max Unit Rating (MMBTU/hr or HP)	2011 Emissions (Ibs)	Fuel Type (note 1)	Control Technology (note 2)	Shared Stack? Shared Control?	Control Installed After 2005?
XXXXXX	Major	45	BOILER	EXTERNAL COMBUSTION	3350	27,778	NATURAL GAS	FGR, SCR		
xxxxxx	Major	5	TURBINE	INTERNAL COMBUSTION	220.6	46,866	NATURAL GAS	CO Oxidation Cat		
XXXXXX	Large	82	ICE	INTERNAL COMBUSTION	853	6,104	DIESEL	Aftercooler, Turbocharger		
XXXXXX	Large	6	BOILER	BOILERS	650	726	NATURAL GAS	LNB, FGR		
XXXXXX	Process	9	ICE	INTERNAL COMBUSTION	553	94	DIESEL	Aftercooler, Turbocharger		
xxxxxx	Process	94	FURNACE	FORGING/HEAT TREATING	4	370	NATURAL GAS	LNB, FGR		

Note:

1) Fuel Type. RFG = Refinery Fuel Gas. NG = Natural Gas. B = Butane. PG = Process Gas, P = Propane

2) Control Technology. LNB = Low NOx Burner. SCR = Selective Catalytic Reduction. FGR = Flue Gas Recirculation. ESP = Electrostatic Precipitator.

Boilers, Heaters, Furnaces, Kilns, Turbines, and Cogeneration Units (Major and Large Sources)

- 4. For each major and large combustion source at your facility, please verify the following information in the attached list, and provide information if the attached list does not contain this specific information:
 - a. * Device description, Device ID, Process Name
 - b. * Emissions in CY 2011 (tons per day)
 - c. * Maximum unit rating (MMBTU/hr)
 - d. * Type of fuel used
 - e. Fuel usage rate and BTU content of fuel
 - f. Flue gas flow rate (million dry standard cubic feet), temperature, oxygen and water content
 - g. Representative flue gas analysis and fuel gas analysis
 - h. NOx concentration in the exhaust flue gas (ppmv at $3\% O_2$ or ppmv at $15\% O_2$). Please attach a copy of the most current source test reports/results.
 - i. Allowable back pressure
 - j. * Control technology used (e.g. LNB, SCR, NOx scrubber)

- 5. For the control technology identified in item #4 above:
 - a. Device description, Device ID
 - b. Manufacturer's name and performance. Please attach a copy of manufacturer's specification/guarantee
 - c. Design parameters (e.g. maximum flue gas flow rate, inlet and outlet ppmv, ammonia slip)
 - d. If the control device is shared between multiple NOx emitting sources, please identify all other sources that are vented to this control device
 - e. Dimension of the add-on NOx control device (e.g. length, width, height of the SCR, catalyst volume)
 - f. Cost information (capital costs, installation costs, and annual operating costs)
 - g. Installation date (e.g. July 2005)
- 6. Provide drawings that show location and distances between the major and large NOx sources at the facility.

Fluid Catalytic Cracking Units (if applicable)

- 7. If the facility currently uses NOx reduction catalysts, please provide:
 - a. Manufacturer's name
 - b. Usage rate (e.g. lbs of catalysts added per day)
 - c. Flue gas flow rate, temperature, oxygen, water content and flue gas analysis
 - d. NOx in the exhaust flue gas (ppmv at 3% O2). Please attach a copy of the source test results
 - e. Cost information (annual operating costs)
- 8. If the facility uses add-on NOx control device, please provide:
 - a. Manufacturer's name and performance. Please attach a copy of manufacturer's specification/guarantee
 - b. Design parameters (max flue gas flow rate, temperature, oxygen, water content, flue gas analysis)
 - c. NOx in the exhaust flue gas (ppmv at 3% O2). Please attach a copy of the source test report/results
 - d. Dimension of the add-on NOx control device
 - e. Cost information (capital costs, installation costs, and annual operating costs)
 - f. Installation date (e.g. July 2005)

Reports Submitted Under the U.S. EPA Consent Decree

9. If the facility must install control technology to reduce the NOx emissions under an U.S. Environmental Protection Agency (EPA)'s consent decree, please provide the District a copy of the most recent reports/test results submitted to the EPA related to this consent decree.

Feasible Control Approach Including Energy Efficiency Project

10. List any feasible control approach that your facility plans to install, including replacement of the existing units with higher energy efficient units, to further reduce your facility's NOx emissions and green-house gases. Provide a brief description of the control approach, manufacturer's name, estimated emission reductions, and cost information.

Survey Questionnaire Reply by **July 12, 2013**

Rule Development Schedule

- Facility Reply to Survey Questionnaire – July 12, 2013
- Working Group Meetings
 - Monthly as needed
- Public Workshop
 - September 2013
- Board Hearing
 - November 2013

AQMD Contacts

Refineries

Minh Pham

mpham@aqmd.gov

(909) 396 - 2613

Non-Refineries

Kevin Orellana

korellana@aqmd.gov

(909) 396 - 3492